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The purpose of this review is to explore how metabolomics can help uncover

mechanisms through which physical activity may influence the progression of

cardiovascular aging. Cardiovascular aging is a process of functional and structural

changes in older adults which can progress to cardiovascular disease. Metabolomics

profiling is an investigative tool that can track the diverse changes which occur in

human biochemistry with physical activity and aging. This mini review will summarize

published investigations in metabolomics and physical activity, with a specific focus on

the metabolic pathways that connect physical activity with cardiovascular aging.
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INTRODUCTION

The role of physical activity in reducing the risks of cardiovascular disease (CVD) is well-established
(1–6). Physical activity has an impact on many of the traditional cardiovascular risk factors
including high blood pressure, type 2 diabetes mellitus and abnormal lipid profiles (7–12). Physical
activity has been shown to be a major modifiable lifestyle factor that can mitigate aging related
changes in cardiovascular function as well as sarcopenia and frailty (13). Physical activity thus has
an important role in modulating highly prevalent diseases such as obesity, type 2 diabetes mellitus,
cardiovascular disease as well as aging-related declines in muscle mass and overall function. In
recognition of the important beneficial effects of physical activity, healthcare practitioners are
now advocating exercise as a medicine. Given the potential importance of physical activity as
a therapeutic tool, we need to gain a better understanding of the underlying biological and
physiological processes stimulated by physical activity in order to elucidate how it works as
an intervention. Uncovering the mechanisms for the beneficial effects of physical activity will
improve our basic understanding of disease pathophysiology, highlight new potential pathways for
intervention and identify biomarkers to help guide exercise prescriptions. Current evidence points
to the importance of fuel metabolism and mitochondrial oxidation pathways for physical activity
effects on cardiovascular health (14, 15). Metabolomics, defined as the study of chemical processes
involvingmetabolites within the human biological system, can serve as a useful tool to guide further
investigative work in these areas.

METABOLIC ALTERATIONS IN HUMAN SERUM WITH PHYSICAL
ACTIVITY

Physical activity increases energy demand across multiple tissues and stimulates acute and chronic
changes in metabolic pathways. These changes can be detected through metabolomics analysis of
serum. In the first 24 h after a bout of exercise lactate, pyruvate, TCA cycle intermediates, fatty
acids, acylcarnitines, and ketone bodies all typically increase whereas bile acids decrease (16).
Multiple trials have shown that chronic exercise also leads differences in metabolomic profiles.
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Exercise groups generally have lower levels of triglycerides,
higher levels of high-density lipoprotein cholesterol and
apolipoprotein A1 and decreased insulin resistance, fasting
insulin levels and glycosylated hemoglobin A1c as compared
to control groups. Exercise groups also have higher levels
of interleukin-18 and lower levels of leptin, fibrinogen, and
angiotensin II (17). Additionally, glycerol concentration is
directly correlated and glutamine is indirectly correlated with
resting heart rate (18) which is known to be an independent
predictor of exercise capacity (19) and cardiovascular outcomes
(20). Pang et al. conducted a comprehensive case-control
study that aimed to determine the effect of physical activity
on circulating metabolomics and subsequent incidence
of cardiovascular disease. Increased physical activity was
inversely correlated with biomarkers such as VLDL, LDL,
alanine, lactate, acetoacetate, and the inflammatory marker
glycoprotein acetyls, which were in turn highly associated
with cardiovascular disease (21). A common finding of these
studies is the prominent response of the major fuel metabolic
pathways (fatty acids, pyruvate/lactate, alanine, glutamine)
as well as central carbon and mitochondrial metabolism
(TCA cycle intermediates, acylcarnitines, and acetoacetate) to
exercise interventions.

CARDIAC RESPONSE TO PHYSICAL
ACTIVITY

The increased energy demand from physical activity alters
metabolic pathways across multiple tissues. The most
notable changes occur in mitochondria, fuel oxidation and
muscle function pathways. The typical cardiac response to
physical activity includes physiologic growth and alteration
of metabolic pathways (22). Fatty acid oxidation, electron
transport, and TCA cycle genes are all up regulated by
physical activity. These changes are distinct from the
metabolic changes associated with heart failure which
include pathophysiologic remodeling, reduced fatty acid
and mitochondrial fuel oxidation and increased reliance on
glucose (23).

Treating human myotubes with natriuretic peptide treatment
increased oxidative phosphorylation genes, recapitulating the
effect of exercise training on muscle fat oxidative capacity in
vivo. This was accompanied by positive correlations between
natriuretic peptide receptor type A gene expression and
mRNA levels of PPAR coactivator-1 (PGC1a) and oxidative
phosphorylation genes in human skeletal muscle (24). In
an interventional human study, 12 weeks of twice daily
supplementations of a beverage containing L-carnitine
and carbohydrate were given to men after low intensity
physical activity. L-carnitine is a quaternary amine which
facilitates mitochondrial fatty acid burning. Compared to
controls, study subjects who received supplementation had
upregulation of genes related to fuel metabolism after 12
weeks. These genes represented pathways of insulin signaling,
peroxisome proliferator-activated receptor signaling and fatty
acid metabolism (25).

CARDIOVASCULAR HEALTH AND
METABOLISM

Many of the metabolites altered by physical activity have also
been linked to cardiovascular disease risk. These metabolites are
generated by pathways which may provide the mechanistic link
between physical activity and reduction in cardiovascular risk.
Observational studies have noted that serum free fatty acids,
the acylcarnitines, and amino acid levels are associated with
cardiovascular health markers (26). In older subjects, medium
and long-chain dicarboxyl and hydroxyl acylcarnitines levels
were directly associated with higher arterial stiffness (27), while
greater accumulation of wide-spectrum acyl-carnitines, alanine
and glutamine/glutamate were associated with lower aerobic
capacity as measured by VO2, which is the maximum rate of
oxygen consumption measured during exercise of increasing
intensity (28). However, ethnicity and genetics may also have a
role to play in metabolic profile and cardiovascular health. In
an article by Benedetti et al., South Asian men had substantially
lower levels of cardiovascular fitness as compared to white
European men even though there were no significant differences
in physical activity or sedentary behavior. The authors found
that South Asian men exhibited higher concentrations of five
free fatty acids (FFA), elevated fasting insulin, interleukin-6,
and lower fasting HDL-C among other differences (29). Despite
having similar levels of physical activity, differences among
ethnic groups in cardiovascular health may be explained by
intrinsic differences in metabolic profiles/pathways. The effect
of some of the highlighted metabolites on cardiovascular health
can be linked to well-described mechanisms such as VLDL and
LDL accumulation predisposing to atherosclerosis. Many of the
other metabolites associated with cardiovascular risk (free fatty
acids, amino acids, and acylcarnitines) are intermediates in fuel
metabolism and mitochondrial oxidation pathways. It is still
unclear how these pathways are linked to cardiovascular risk.
However, since these pathways can be modified by physical
activity they may serve as a common link that explains how
physical activity might improve cardiovascular health.

TRICARBOXYLIC ACID (TCA) CYCLE

The TCA cycle is known to be upregulated when there is a
high demand for ATP. Increased energy demand stimulates
regulatory enzymes of the cycle such as isocitrate dehydrogenase
and alpha-ketoglutarate dehydrogenase. It has also been shown
in recent studies that there is a rise in the level of TCA cycle
intermediates just after an acute bout of physical activity (16).
Certain amino acids such as alanine and glutamine/glutamate
can serve as metabolic fuels by feeding into the TCA cycle.
The process by which amino acids are fed into the TCA
cycle is known as “anaplerosis” (or “filling of mitochondria”).
Koh et al. have reported that low serum levels of anaplerotic
amino acids are associated with better cardiorespiratory fitness
(CRF; VO2) in human cohorts (28). The observed reduction
in anaplerotic amino acid levels could be due to increased
consumption by an activated TCA cycle. The importance of
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matching of carbon fuel inflow and TCA cycle activity has been
replicated in a study that examined metabolic changes in the
heart in response to heart failure or physical activity (30). In heart
failure there was an elevation of lactate and acylcarnitines with
a reduction in TCA cycle intermediates. In contrast, exercised
hearts showed decreases in both acylcarnitines as well as TCA
cycle intermediates. The former result suggests accumulation of
carbon fuel which is not able to be cleared by a slowing TCA cycle.
The latter suggests increased consumption of carbon fuel as a
result of higher TCA cycle activity. These findings highlight a role
for increased activity of the TCA cycle brought about by sustained
aerobic training, thereby improving VO2 levels and links TCA
cycle activity to cardiorespiratory fitness.

LIPIDS

Free fatty acids (FFAs) and its associated metabolites are
associated with insulin resistance, diabetes mellitus and
coronary artery disease, mainly due to the accumulation of
mitochondrially derived by-products of lipid oxidation in
skeletal muscle. When muscle tissue is exposed to elevated
lipids chronically, there is an increase rather than decrease
in expression of genes of the fatty acid β-oxidative pathway.
However, this causes a disconnect between mitochondrial
beta-oxidation and TCA cycle activity, resulting in build-up of
beta-oxidative metabolites and reactive oxygen species (ROS)
that promote insulin resistance (31). Rodent models support
the theory that physical activity improves mitochondrial and
TCA cycle activity by increasing expression levels of peroxisome
proliferator-activated receptor-gamma co-activator 1alpha
(PGC1alpha), which enables muscle mitochondria to better cope
with a high lipid load (32). This thereby reduces accumulation
of metabolites from lipid oxidation, preventing the development
of insulin resistance. Additionally, accumulation of lipid
intermediates are directly responsible for cardio lipotoxicity
and ventricular dysfunction, thereby contributing to poor
cardiovascular health (33).

AMINO ACIDS

Separately, a previous study has also drawn an association
between increased branched chain amino acids (BCAA) levels
(specifically leucine and isoleucine) and prevalence of heart
failure. Of note, diabetes mellitus was present in about 70%
of heart failure patients in this study, which may act as an
intermediate step to the development of heart failure (34).
This finding is supported by other studies that demonstrate a
clear association between BCAA and related metabolites with
insulin resistance, perhaps even more so than the association
between FFAs and insulin resistance (35, 36). Physical activity
may decrease BCAA levels by increasing the uptake of BCAAs
into the TCA cycle as anaplerotic substrates. This reduces the
accumulation of BCAAs which is associated with heart failure.

Recently, Cheng et al. (37) also demonstrated that a panel of
metabolites including histidine, phenylalanine, spermidine and
phosphatidylcholine C34:4, has diagnostic value in heart failure

similar to B-type natriuretic peptide (BNP). Another metabolite
panel consisting of the asymmetric methylarginine/arginine
ratio, butyrylcarnitine, spermidine, and the total amount of
essential amino acids also significantly prognosticate for death or
heart failure-related re-hospitalization.

METABOLIC FLEXIBILITY

The heart primarily derives its contractile energy from
the oxidation of fatty acids (38). However, during acute
haemodynamic stress the heart responds by switching to using
glucose as a fuel (39). The ability to switch from fatty acid
to carbohydrate-derived fuel sources is termed ‘metabolic
flexibility’. Gibbs et al. showed that healthy, exercise-trained
mice underwent a physiologic metabolic switching in the heart
with decreased glycolytic activity. This reduced reliance on
glucose was associated with increased physiological remodeling.
In the failing heart, this metabolic flexibility is reduced and
glycolysis predominates even in the absence of haemodynamic
stress, with reduction in respiratory chain activity and impaired
reserve for mitochondrial oxidative flux (40, 41). Other work in
mice involved cardiac-specific expression of a kinase-deficient 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgene.
These mice have constitutionally low glycolytic activity. The
hearts from these mice had enhanced function and larger
myocytes. This enforced metabolic change was also associated
with modest mitochondrial damage that was not seen in the
wild type mice. These studies demonstrate that the optimal
fuel for hearts to use is context dependent. Maneuvers which
limit the heart’s ability to select the desired fuel are associated
with defects in heart function. The overall conclusion from this
work is that metabolic flexibility is important for maintaining
both mitochondrial health and normal tissue function in the
heart (42).

Exercise training may induce changes in the genomic and
proteomic level to increase capacity for substrate utilization and
metabolic flexibility in both cardiac and skeletal muscle (43).
Physical activity may also improve the efficiency of fatty acid
oxidation by means of upregulating the TCA cycle (as elucidated
upon above) and enhancing oxidative metabolism. This reduces
the reliance of anaerobic glycolysis to generate energy in the
heart as more frequently observed in cardiomyopathic hearts.
Physical activity decreases baseline lactate levels by promoting
the efficiency of oxidative metabolism and metabolic flexibility.
Blood lactate levels have been found to be associated with
atherosclerosis (44). A decrease in baseline blood lactate levels
may thereby reduce blood pressure, vascular dysfunction, and
improve blood flow to the heart. This thereby increases the
oxygen supply to the heart, allowing for increased oxidative
metabolism and decline in glycolysis rates. Lactate is thus further
reduced, and the positive cycle would bring about superior
cardiovascular health.

The importance of metabolic flexibility for cardiovascular
health suggests that dynamic testing of the metabolic response
to physical activity and/or hemodynamic stress may be a novel
research and clinical tool to assess cardiovascular fitness.
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FIGURE 1 | Schematic diagram of possible metabolic pathways linking physical activity, cardiovascular health and musculoskeletal function with aging. Decreased

levels of branched chain amino acids and free fatty acids, decreased baseline lactate, decreased blood glucose levels as well as increased musculoskeletal mass may

be expected with physical activity. All these effects are important in promoting better cardiovascular health, slowing down cardiac aging as well as maintaining good

musculoskeletal mass into old age.

IMPACT OF PHYSICAL ACTIVITY ON
CARDIOVASCULAR HEALTH IN AGING
AND AGING SKELETAL MUSCLE

For sedentary old adults that are frail or pre-frail, physical
activity can improve cardiorespiratory fitness, muscle strength,
functional status and quality of life (45, 46). After an adverse
cardiovascular event such as myocardial infarction, physical
activity reduces further decline in function and worsening frailty
(47–49). Aerobic exercise training also confers benefit in aerobic
capacity to healthy older adults (48) as well as older heart
failure patients (50) with reduced ejection fraction (51) or
preserved ejection fraction (52). Notably, a recent multicentre
randomized control trial in older patients hospitalized for
acute decompensated heart failure revealed that a tailored
progressive rehabilitation intervention that included multiple
physical function domains such as strength, balance, mobility
and endurance resulted in a greater improvement in physical
function than usual care. These greater improvement in physical
function relative to the control group were seen despite the
control group receiving routine physical or occupational therapy
or traditional cardiac or pulmonary rehabilitation. This suggests
that comprehensive physical activity including both aerobic and
strengthening exercise may be a valuable tool in rehabilitation for
older heart failure patients (53).

Mitochondrial function and energetics are central to the
maintenance of good musculoskeletal mass and the prevention
of aging-related muscle atrophy (54). In aging muscle, there is

both a decline in mitochondrial organelle content and impaired
mitochondrial function (55, 56). Some studies suggest that
declines in mitochondrial respiratory function are associated
with reduced levels of physical activity and are not directly tied to
aging.Melov et al. showed that genes implicated inmitochondrial
function and metabolism were among 306 genes found to be
reduced with age. After 6 months of resistance training, these
genes normalized toward a younger transcriptomic signature
(57). Maintaining healthy muscle metabolism is thus important
for prevention of age-related decline in muscle mass and
function. Muscle metabolism is also important for prevention
and treatment of type 2 diabetes and related metabolic disease.
Skeletal muscle is especially important in the disposal of
intravenous glucose by increasing glucose storage and use (58).
Chronic exercise increases insulin sensitivity even in older
humans by increasing skeletal muscle GLUT-4 abundance (59)
and capillarisation (60). The beneficial effects of physical activity
on skeletal muscle and whole body insulin sensitivity has been
demonstrated in multiple animal (61) and human (62) trials.

Figure 1 summarizes possible metabolic pathways linking
physical activity, cardiovascular health and musculoskeletal
function.

CONCLUSIONS AND IMPLICATIONS

Physical activity has clear cardiovascular and general health
benefits. Human and animal model studies of heart and skeletal
muscle responses to physical activity point to changes in
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the patterns of fuel use and mitochondrial oxidation as key
components of a healthy adaptation. These changes include
increased TCA cycle activity (16) and better coordination
between fuel processing and TCA cycle activity (30). In
contrast, heart failure and aging-related frailty are associated
with accumulation of fatty acid fuel intermediates (31), mismatch
between fuel supply and TCA cycle, reduced TCA cycle activity
(30) and finally greater reliance on non-oxidative glucose
metabolism. An emerging concept is the importance of metabolic
flexibility. Healthy hearts are able to switch fuel use patterns in
response to available supply and immediate energy demand (42).
Reduced metabolic flexibility is associated pathologic changes
and this can be reversed with exercise interventions (43). In
future, dynamic testing of heart and whole-body fuel use may be
an important component of assessing cardiovascular health and
response to exercise interventions. We also recognize that age
itself exerts a major impact on the metabolome that is separate
from the effects of physical activity.

We acknowledge a limitation of our review that a cardiac-
centric view of the impact of physical activity in the absence
of information from other organs such as the liver, skeletal
muscle and brain may limit the interpretation of the beneficial
effects of physical activity at the cardiovascular and organism
levels (2). In addition, our work mainly focuses on leisure time
physical activity. Interestingly, it has been shown that while
leisure time physical activity is associated with reduced major
adverse cardiac events (MACE), occupational physical activity is
instead associated with increasedMACE instead. Thismay be due
to the associated with occupational physical activity with fatigue
and insufficient recovery, as well as more static and constrained
activity as compared to leisure physical activity (63).

Despite the current advances in the understanding of
metabolomics and its relation to cardiovascular health, there
have been limited cohort studies or randomized control trials

(RCTs) to provide good evidence for the role of physical activity
in altering an individual’s metabolomic profile, and how this
change in metabolomic profile eventually affects cardiovascular
health. Findings from such studies can potentially be used by
clinicians to titrate exercise regimens based on individually
tailored cardiovascular outcomes. These individualized exercise
regimens can be prescribed even to healthy individuals, thereby
reducing the cardiovascular disease burden in healthcare
systems worldwide. Finally, while our review is limited to
studying the effect of metabolomics in cardiovascular health,
we also recognize that there has been increasing interest in
studying multiple-omics techniques to gain greater insights into
cardiovascular health. This would include combining genomics,
transcriptomics, proteomics and metabolomics which may form
a more comprehensive picture of the factors involved in
cardiovascular health and heart failure as compared to either one
alone (64, 65).
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