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MicroRNAs (miRNAs) are small, non-coding RNAs that regulate posttranscription by

binding to 3
′
-untranslated regions of target mRNAs. Recent functional studies have

elucidated mechanisms that miRNAs regulate leukotriene synthesis by perturbing

arachidonic acid metabolism. Both microarrays and high-throughput sequencing

revealed distinct differential expression of miRNAs in children with respiratory syncytial

virus (RSV) infection compared with healthy controls. Abnormal miRNA expression may

contribute to higher leukotriene levels, which is associated with airway hyperreactivity.

Targeting miRNAs may benefit to restore the homeostasis of inflammatory reaction and

provide new strategies to alleviate airway hyperreactivity induced by RSV. In this article,

we provide an overview of the current knowledge about miRNAs modulating leukotrienes

through regulation of arachidonic acid metabolism with a special focus on miRNAs

aberrantly expressed in children with RSV infection.
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INTRODUCTION

Respiratory syncytial virus (RSV) is the most common pathogen of acute lower respiratory
infection in children and the leading cause of hospitalization in childhood, which results in a
great burden on global health-care services (1, 2). Due to high morbidity and mortality, RSV
infection poses a serious threat to children’s health, especially for premature infants, or infants
with congenital heart disease or primary immunodeficiency (3–5). RSV is a single-strand negative
RNA virus belonging to the Paramyxoviridae family and the Pneumovirus genus. RSV encodes
11 proteins including two non-structural proteins 1 and 2 (NS1 and NS2), structural proteins
such as membrane envelope glycoproteins (F and G), and matrix proteins (M). These proteins are
critical pathogenic factors to induce airway hyperreactivity (AHR), including immune disorder,
overexpression of Th2-type cytokines, and inflammatory disequilibrium (6–8). RSV infection
in early childhood induces AHR and contributes to the subsequent development of recurrent
wheezing (9, 10). Increasing leukotriene levels are crucial for the occurrence of AHR after RSV
infection and related to recurrent wheezing attacks (11). However, the mechanism of leukotriene
upregulation after RSV infection is not clear yet.

MicroRNAs (miRNAs), a type of endogenous non-coding RNAs with a length of 18 to 25
nucleotides, are the most important molecules in the posttranscriptional regulation of gene
expression (12). MiRNAs nearly precisely fine-tune the intensity of the cellular signals which are
activated by RSV and associated with AHR (13–16). Many miRNAs have been confirmed to be
abnormally expressed after RSV infection, some of which negatively regulate AHR, such as miR-24,
miR-27, and let-7 family (17–21), others positively, such as miR-140-5p and miR-146b (22, 23).
Recently, accumulating evidence demonstrated that miRNAs play an important role in regulating
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the synthesis and balance of lipid inflammatory mediators (24).
The regulatory networks of miRNAs on leukotriene synthesis
after RSV infection have not been explained in detail. Therefore,
here we present an updated review on this issue.

LEUKOTRIENE SYNTHESIS AND RSV
INFECTION

In humans, leukotrienes are produced by leukocytes, bronchial
epithelial cells, and fibroblasts. The biosynthetic pathway of
leukotrienes is briefly outlined in Figure 1. 5-Lipoxygenase (5-
LOX) and 5-lipoxygenase-activating protein (FLAP) are critical
determinants of leukotriene biosynthesis (25). 5-LOX carries out
the first steps in the 5-LOX pathway of leukotriene synthesis.
FLAP plays an important role in the coupling of cPLA2 to 5-LOX
at the perinuclear membrane. Under the action of 5-LOX and
FLAP, leukotriene A4 (LTA4) is synthesized from free arachidonic
acid (AA) released by phospholipase A2 (PLA2) from membrane
glycerophospholipids (26). Then, LTA4 is transformed to LTB4
and LTC4 by LTA4 hydrolase (LTA4H) and LTC4 synthase
(LTC4S), respectively. LTD4 and LTE4 are synthesized from
LTC4. LTC4, LTD4, and LTE4 are collectively called cysteinyl
leukotrienes (CysLTs) (27). Released AA can also be oxidized
to prostaglandin H2 (PGH2) by cyclooxygenase (COX) or

FIGURE 1 | miRNAs were validated to modulate the metabolism of arachidonic acid (AA). In airway epithelial cells, RSVs are recognized by PAMPs such as TLRs,

which subsequently activate signal pathways like NF-κB and affect the expression profile of miRNAs. MiRNAs regulate leukotriene synthesis by modulating AA

metabolism, which mainly includes the LOX pathway and COX pathway. Thereinto, miR-219-2 can inhibit several enzymes such as cPLA2, 5-LOX, and LTA4H. Some

miRNAs have been confirmed to inhibit the expression of 5-LOX, such as let-7, miR-19a, and miR-125. In addition, miR-146a, miR-135a, and miR-199 can regulate

5-LOX enzyme activity by downregulating FLAP; let-7 and miR-21 by downregulating p38 MAPK. Interference with these miRNAs may contribute to the consistently

overexpressed leukotrienes. MiRNAs such as miR-16, miR-26, miR-30a, miR-143, and miR-146a may lead to the conversion of more AA to leukotriene by inhibiting

the COX pathway. Besides, overexpression of miRNAs like miR-101 and miR-106a can suppress 12-LOX/15-LOX, which could disrupt the balance between

pro-inflammatory and inflammation-resolving mediators. Among these miRNAs, let-7, miR-16-5p, miR-19a, miR-21, miR-26b, miR-30a-5p, miR-125a, miR-143, and

miR-146a have been found abnormal expression in RSV infection.

converted to specialized pro-resolving mediators (SPMs) by 12-
lipoxygenase (12-LOX)/15-lipoxygenase (15-LOX). Inhibition or
enhancement of these metabolic pathways of AA may also take
a great effect on the formation or resolving of leukotrienes.
Furthermore, all these enzymes mentioned above play essential
regulatory roles and do not act alone but form distinct complexes
on the nuclear membrane (28).

Over the last decades, different studies have demonstrated
the elevations in locally produced LTC4 during RSV infection
(29, 30), which may persist beyond 1 month after the onset
of infection (31). The level of LTC4 was positively correlated
with disease severity (30, 32). Persistent elevated LTC4 levels
in nasopharyngeal aspirates (NPAs) were observed in infants
who suffered from wheezing compared with the group without
symptoms after the acute RSV infection (33). Besides, high levels
of LTB4 and CysLTs were detected in the culture supernatant
of RSV-infected human bronchial epithelial cells (HBEC) (34,
35). Further studies suggest that RSV induces the expression
of 5-LOX in bronchial epithelial cells and thus increases
airway inflammation (35). In a RSV-infected mouse model,
inhibiting FLAP could reduce inflammation (36). In addition,
RSV may regulate leukotriene synthesis by disrupting the COX
pathway. The expression levels of COX-2 are upregulated in
peritoneal and alveolar macrophages of cotton rats infected with
RSV (37).
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miRNAs EXPRESSION PROFILE CHANGED
IN RSV INFECTION

MiRNAs have been intensively studied in the last decades
since its discovery in Caenorhabditis elegans in 1993 (38).
Whereas the majority of miRNAs have their own gene loci,
there are 30% of miRNAs co-transcribed from the introns
of protein-coding host genes (39, 40). Recent studies have
uncovered that miRNA biogenesis can be regulated at multiple
levels, including transcription, processing, modification by RNA
editing, Argonaute loading, and RNA decay (41). There is
complicated cross talk between miRNA synthesis and other
cellular signaling pathways (42, 43). RSV could affect the
biogenesis of miRNAs through G, NS1, and NS2 proteins by
affecting cellular signal transduction (17, 44). RSVG proteins can
upregulate host miRNA (let-7f, miR-24) expression to weaken the
host antivirus response by inhibiting the formation of interferon-
λ (IFN-λ) (45). In NHBE cells, the promoting role of NS1 and
NS2 proteins in the expression of let-7i and miR-30b is mediated
through interferon-β (IFN-β) and nuclear factor-κB (NF-κB)
signaling separately (46). Similarly, RSV NS1 modifies miR-24
expression via transforming growth factor-β (TGF-β) in A549
cells (47). It should be noted that RSV has cell-specific regulation
ofmiRNA expression. Let-7b can be upregulated in dendritic cells
(DCs), while the upregulation of let-7i andmiR-30b requires viral
replication (46).

RSV could significantly change the expression profile of
miRNA in human bronchial epithelial cells, of which 24 miRNAs
were greatly downregulated and two miRNAs were upregulated
(48). In clinical samples and in vitro cell experiments, miRNA
expression showed a distinct profile. The regulation of RSV on
miRNAs was first observed in A549 cells, including elevated
levels of let-7a, let-7f, miR-24, miR-36, miR-520, and miR-337
and decreased levels of miR-198, miR-224, and miR-595 (49).
Recently, miR-29 has been identified to be upregulated by RSV
NS1 protein not only in A549 cells but also in NPAs (50). Apart
from A549 cells, normal epithelial cells and Hep-2 cells are the
most common models of RSV infection. In RSV persistently
infected Hep-2 cells, miRNA-146-5p, miR-let-7c-5p, miR-221,
and miR-345-5p are differentially expressed (51). In addition
to the cellular level, RSV infection also leads to changes in the
expression of exosome miRNAs such as Let-7a, Let-7f, miR-
320a, miR-21, miR-4449, and miR-22 (52). MiRNAs in exosome,
which is an important tool for intercellular communication,
play an important role in pathogenesis and protection against
diseases. In this way, the change of miRNA expression by RSV
infection can not only act on the infected cells themselves but
also regulate intercellular communication, thus affecting the
local microenvironment.

Abnormal miRNA profiles have also been verified in
clinical specimens such as nasal epithelium cytology brushings
and peripheral blood from infants infected by RSV. Our
former research found a significant alternation of miRNA
expression profile in the peripheral blood of infants after
RSV infection (53). The upregulated miRNAs include miR-
106b-5p, miR-181a-5p, miR-20b-5p, miR-342-3p, and miR-652-
3p, while the downregulated including miR-122-5p, miR-320e,

miR-320d, miR-877-5p, miR-92b-5p, and let-7c-5p. Considering
the different expression levels of miR-125a and miR-429 in
NPAs of children with different severity of RSV infection (21),
miRNAs may become potential biomarkers for the diagnosis
and treatment of RSV infection. Furthermore, an increasing
number of miRNAs (Figure 1) are confirmed to directly regulate
leukotriene levels by targeting proteins associated with AA
metabolism (24, 54, 55). The majority of miRNAs mentioned
above were involved in pathways related to the immune and
inflammatory responses such as macrophage polarization states
(56–58), which is closely associated with the balance between
leukotriene synthesis and regression and the following severe
airway inflammation (59–61).

THE REGULATORY FUNCTIONS OF
miRNAs RELATED TO LEUKOTRIENE
SYNTHESIS ON THE INFLAMMATORY
RESPONSE DURING RSV INFECTION

Many miRNAs are directly or indirectly related to leukotriene
synthesis, however, only a few of them have been confirmed
to be significantly changed and involved in the regulation of
leukotriene synthesis in RSV infection. We matched the function
in arachidonic acid metabolism and expression during RSV
infection of these miRNAs (miR-125a, miR-19a, let-7, miR-146a,
miR-30a-5p, miR-16-5p, miR-26b, miR-21, miR-143) together
and summarized inTable 1. Next, we focus on the expression and
role of several kinds of miRNA which are widely involved in the
regulation of inflammatory pathways after RSV infection.

MiR-19a
MiR-19a is a member of the miR-17-92 cluster which contains
6 miRNAs (miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and
miR-92) and is a potential regulator of several proliferation-
related genes. MiR-19a is overexpressed in both asthma
cases and RSV-infected patients. In asthma, miR-19a can
promote the production of Th2 cytokine IL-13 by directly
targeting PTEN, a signal transduction inhibitor suppressor
of cytokine signaling 1 (SOCS1), and deubiquitinase A20
(73, 74). Similarly with leukotriene, IL-13 is a key driver of
airway inflammation, inducing epithelial cell proliferation
and mucus production, airway hyperreactivity, and eosinophil
recruitment. RSV infection stimulates group 2 innate lymphoid
cells (ILC2) to express a higher level of IL-13 through the
thymic stromal lymphatic hormone in the mouse model
(75). Interestingly, CysLTs induce ILC2 cell migration and
promote the production of IL-13, and IL-13 increased
bronchial smooth muscle cell (BSMC) CysLT1R protein
expression in effect related to its concentration in in vitro
experiments (76, 77).

In a prior study, miR-17-92 controls the proliferation and
survival of CD8 T-cells by suppressing the expression of the
phosphatase and tensin homolog (PTEN) (78). The decreasing
formation of PTEN leads to the activation of the PI3K–Akt–
mTOR signaling pathway, which causes memory differentiation
inhibition (79). Moreover, both fatty acid synthesis and fatty acid
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TABLE 1 | Summary—miRNAs influencing the AA metabolism and abnormal expressed in RSV infection.

miRNA miRNAs and AA metabolism RSV infection and miRNAs

Target gene Cell type Reference Year Expression

level

Method Sample source Reference Year

hsa-miR-125b 5-LOX Monocytes

(MM6 cells),

T-

lymphocytes

(62) (2015) ↓ miRNA

microarray,

qPCR

nasal mucosal

specimens

(21) (2015)

hsa-miR-19a 5-LOX Monocytes

(MM6 cells),

T-

lymphocytes

(62) (2015) ↑ miRNA

microarray

nasal mucosal

specimens

(21) (2015)

let-7 5-LOX Endothelial

cells (ECs) of

mouse model

(63) (2017) ↑ miRNA

microarray

peripheral blood (53) (2017)

hsa-miR-146a FLAP,COX-2 Lung cancer (64, 65) (2014) (2018) ↑ qPCR Hep2 (51) (2018)

hsa-miR-30a-5p COX-2 Gastric

cancer

(66) (2017) ↑ NGS, qPCR moDCs from

human PBMCs

(67) (2018)

hsa-miR-16-5p COX-2 Cervical

cancer,

Hepatocellular

carcinoma

(55, 68) (2005) (2012) ↑ miRNA,

microarray,

qPCR

nasal mucosal

specimens

(21) (2015)

hsa-miR-26b COX-2 Nasopharyngeal

epithelial

cancer

(69) (2010) ↑ miRNA,

microarray,

qPCR

PBMCs (49) (2012)

hsa-miR-143 COX-2 Amnion

mesenchymal

cells

(70) (2011) ↓ multiplex

qPCR array

NHBEs (48) (2012)

hsa-miR-21 15-PGDH Cholangiocarcinom (71) (2014) ↑ NGS, qPCR exosomes derived

from RSV-infected

A549/SAE cells

(72) (2012)

uptake are stimulated in response to mTOR signaling, including
polyunsaturated fatty acids, which are the immediate precursors
of many lipids (80). In the NPAs of infants infected with RSV,
the results of microarray support the upregulation of miR-19a-
3p in the severe disease subgroup (21). We previously found
that miR-106b-5p, a paralog of the miR-17-92 cluster family, was
significantly increased in the peripheral blood of infants with
RSV infection (53). Consistent with the function of miR-19a,
miR-106b regulates the PI3K-Akt pathway by suppressing PTEN
(81). MiRNA-19a and miR-106b may play an activator role in
leukotriene synthesis.

miR-125a
Also in the NPAs of infants infected with RSV, the expression
of miR-125a in the mild and moderate disease subgroups was
downregulated, while it was not expressed in the severe disease
subgroup (21). Previous studies have promoted that miR-125a
and miR-125b constitutively activate the NF-κB pathway by
targeting the tumor necrosis factor alpha-induced protein 3, and
miR-125a may participate in the self-regulatory loop of miR-
125b and NF-κB (82). Prior research substantiates the belief that
the NF-κB pathway plays a central role in mediating airway
inflammation induced by RSV, and RSV can regulate miRNAs by
the NF-κB pathway (46, 83).

miR-146a
The expression of miR-146a is significantly altered by RSV
infection, which could also be mediated by the activation of
the NF-κB pathway (51, 84). The academic community has
extensively explored the anti-inflammatory functions of miR-
146a in the airway. Pro-inflammatory cytokines such as IL-1β,
TNF-α, and IFN-γ can induce the expression of miR-146a in
human airway smoothmuscle cells (85). MiR-146a can negatively
regulate inflammatory gene levels in numerous cell types,
including monocytes, fibroblasts, and endothelial, airway smooth
muscle, and epithelial cells (85–87). Based on these studies, RSV
infection downregulates the expression of miR-146a which may
play a key role in impairing inhibitory effects on inflammatory
pathways such as leukotriene synthesis. For example, miR-146a
enhances M2 macrophage polarization by activating peroxisome
proliferator-activated receptors γ (88), while it negatively
regulates TLR4 signaling which plays an essential role in the
regulation of M1 macrophage polarization (89).

Let-7 Family
Let-7 family miRNAs play an important role in inhibiting
host innate immunity and promoting replication during RSV
infection (17, 45, 52). RSV induces let-7 family miRNA levels.
We have previously found that let-7c was increased by RSV in
A549 cells and peripheral blood of infants (53). RSVmay enhance
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nuclear transcription factors associated with let-7 synthesis by
activating MAPK pathways through TLR signaling (90–92).
Ras-ERK/MAPK signaling is repressed by let-7 miRNAs in
humans and other species (92). This phenomenon may be a
conserved regulatory mechanism. The overexpression of let-
7 miRNAs may be one of the negative feedback loops for
regulatingMAPK. Furthermore, MAPK is associated with 5-LOX
enzyme activity. p38 MAPK can be rapidly activated by RSV.
Activated p38 phosphorylates and stimulates downstream kinase
to phosphorylate 5-lipoxygenase. RSV is a potent inducer of NF-
kB and p38 MAPK phosphorylation in A549 cells (90, 93). RSV
induces high-mobility group box 1 (HMGB1) to release from
human airway epithelial cells via NF-kB and TLR4 signaling
pathways. Then, HMGB1 activates p38 MAPK and triggers the
release of pro-inflammatory mediators (94). In an ovalbumin-
sensitized murine model of asthma, let-7 miRNA downregulated
IL-13 and relieved allergic airway inflammation (20).

miR-21
MiR-21, which can be secreted by exosomes, is one of the
most highly expressed members of the small non-coding
miRNA family in many cell types and tissues. It is accepted
as an activator of regeneration processes in tissue damage
repair and tumor growth (63). In addition, miR-21 may
be a common biomarker of inflammation-related diseases
(95). Induced by many pro-inflammatory stimuli including
pathogen-associated molecular patterns (PAMP) and danger-
associated molecular patterns (DAMP), miR-21 subsequently
triggers the inflammatory circuit and promotes the function
of the immune system. It may be a negative regulation of the
inflammatory process and an important switch for dispelling
inflammation (96, 97). In RSV-infected cells, there was a
significant upregulation in the composition of exosome miR-
21(72, 98). Exosomes released from virus-infected A549 cells
can alter innate immune responses through the induction of
pro-inflammatory mediators. Antagonistic miR-21 treatment
can inhibit eosinophil inflammation and AHR in RSV-induced
steroid-insensitive mouse airway allergic disease models (99).
Therefore, miR-21may be a key signal to regulate the balance and
transition between pro-inflammatory and immune activation.
The regulatory roles of miR-21 on the synthesis of leukotrienes
are described below.

miR-26b and miR-16
These miRNAs are widely involved in the inflammation reaction
induced by RSV infection. Microarray and NGS of RSV infection
specimens have shown an obvious change in expression profile
(21, 67). Peripheral blood mononuclear cells (PBMCs) in
children with RSV infection had higher miR-26b levels, while
miR-26b induced downregulation of the TLR4 signal in vitro
(100). Similarly, RSV induced miR-26 in A549 cells (49). Besides,
miR-26a is correlated with hypertrophic human airway smooth
muscle cells, which is one of the hallmarks of airway remodeling
in severe asthma (101). In a study aiming to establish whether
miRNAs could be used to characterize or subtype asthmatic
patients, circulating miR-16 was one of the most predictive of

allergic and asthmatic status (102). Likewise, miR-16 upregulated
by RSV may participate in the formation of AHR.

LINKAGES BETWEEN miRNAs AND
LEUKOTRIENES DURING OTHER
RESPIRATORY VIRUS INFECTIONS

Leukotrienes are also believed to contribute to the
pathophysiology of respiratory infection by other viruses such
as influenza, rhinovirus (RV), metapneumovirus (HMPV), and
adenovirus. The sporadic association between leukotrienes and
miRNAs has been reported during infection of these viruses. We
included related studies in Table 2. Compared to RSV, influenza
may increase leukotriene concentrations by inducing the 5-LOX
pathway (103). Similar to RSV, the miRNA expression profile
of host cells is significantly changed by influenza (111). Among
these miRNAs, let-7, miR-21, and miR-29 have connections with
AA metabolism and miR-29 activates COX-2 through epigenetic
changes during influenza A infection (104). Alveolar lavage fluid
of RV infection patients contains higher cysLT levels than the
control group (112). This may be associated with the induction
of 5-LOX, FLAP, and COX-2 (105). However, there are few
reporters about leukotriene synthesis-related miRNAs except
RV-increasing airway secretory miR-155 in young children
(106). MiR-155 is associated with prostaglandin metabolism
in cancer, but its roles in leukotriene synthesis have not been
investigated yet. As to HMPV, which shows common symptoms
of wheezing like RSV, one study has shown that bronchiolitis
children infected with HMPV have higher leukotriene levels in
blood and urine than the control group (107). However, the roles
of 5-LOX and COX-2 in HMPV infection are still unknown.
Nonetheless, montelukast, a selective CysLT1R antagonist,
has been used to treat HMPV infection of hospitalized young
children (113). A high-throughput sequencing study of HMPV-
infected A549 cells shows upregulation of let-7f (108). Both
upregulation of leukotrienes and let-7f in HMPV infection are
consistent with RSV infection. This remains to be established.
Unlike these RNA viruses, adenovirus reduces the release of
arachidonic acid by inhibiting the translocation of cPLA2 to
membranes (109). MiRNA (include miR-125, miR-19a, miR-191)
levels in adenovirus-infected cells fluctuate in distinct stages
(110). Whether or not miRNAs changed by these viruses are
involved with leukotriene synthesis during infection still needs
further investigations.

miRNAs REGULATING THE SYNTHESIS OF
LEUKOTRIENES

miRNAs and Lipoxygenase Pathway
Expression and Activity of 5-LOX
During RSV infection, a damaged or inflamed bronchial
epithelium synthesizes a higher level of leukotrienes by inducing
5-LOX (114), the most critical enzyme of leukotriene synthesis.
Recent studies have demonstrated various types of miRNAs
involved in the regulation of 5-LOX. For example, miR-219-2

can directly interact with the 3
′
untranslated region (3

′
-UTR)

Frontiers in Pediatrics | www.frontiersin.org 5 April 2021 | Volume 9 | Article 602195

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Liu et al. miRNAs and Leukotrienes in RSV

T
A
B
L
E
2
|
m
iR
N
A
s
in
flu
e
n
c
in
g
th
e
A
A
m
e
ta
b
o
lis
m

in
o
th
e
r
re
sp

ira
to
ry

vi
ru
s
in
fe
c
tio

n
.

V
ir
u
s

T
y
p
e

V
ir
u
s
&
LT
s

V
ir
u
s
&
m
iR
N
A
s

LT
s
le
v
e
ls

E
n
z
y
m
e
s

le
v
e
ls

S
a
m
p
le

s
o
u
rc
e

R
e
fe
re
n
c
e

Y
e
a
r

m
iR
N
A
s

E
x
p
re
s
s
io
n

le
v
e
l

M
e
th
o
d

S
a
m
p
le

s
o
u
rc
e

R
e
fe
re
n
c
e

Y
e
a
r

In
flu
e
n
za

R
N
A

↑
5
-L
O
X
↑

N
a
so

p
h
a
ry
n
g
e
a
l

sw
a
b
s
a
n
d

la
va
g
e
s

( 1
0
3
)

(2
0
1
3
)

m
iR
-2
9

↓
q
P
C
R

P
B
M
C
A
5
4
9

c
e
lls

(1
0
4
)

(2
0
1
2
)

R
V

R
N
A

↑
5
-L
O
X
↑

F
L
A
P
↑

C
O
X
-2
↑

B
A
L
flu
id

( 1
0
5
)

(2
0
0
2
)

m
iR
-1
5
5

↑
m
iR
N
A

m
ic
ro
a
rr
a
y

N
a
sa

la
irw

a
y

se
c
re
tio

n
s

(1
0
6
)

(2
0
1
6
)

H
M
P
V

R
N
A

↑
/

S
e
ru
m

a
n
d

u
rin

e

( 1
0
7
)

(2
0
1
9
)

le
t-
7

↑
q
P
C
R

A
5
4
9
c
e
lls

(1
0
8
)

(2
0
1
4
)

A
d
e
n
o
vi
ru
s

D
N
A

↓
c
P
L
A
2
↑

A
5
4
9
c
e
lls

( 1
0
9
)

(1
9
9
7
)

le
t-
7

m
iR
-1
2
5

m
iR
-1
9
a

↑
/↓ ↑ ↓

m
iR
N
A

m
ic
ro
a
rr
a
y

h
u
m
a
n
lu
n
g

fib
ro
b
la
st

( 1
1
0
)

(2
0
1
5
)

of 5-LOX to downregulate the expression of 5-LOX mRNA
in macrophages (115). Similarly, overexpression of miR-216a-
3p in human colorectal cancer cell lines can directly bind to

the 3
′
-UTR, causing the same effect on 5-LOX (116). MiR-19a-

3p and miR-125-5p, which are abnormally expressed in RSV
infection (21), have also been identified to directly regulate the
expression of 5-LOX protein without affecting 5-LOX mRNA
in monocyte line MM6 induced in vitro (62). MiR-674-5p
can attenuate concanavalin A-induced liver injury in mice by
downregulating 5-LOX (117). In rats with focal cerebral ischemia
and reperfusion, miRNA-193b-3p can alleviate the injury by
inhibiting the expression of 5-LOX (118). In a deficient mouse
model, a decrease of let-7 miRNAs led to the upregulation of
5-LOX and subsequent aberrant activation of the leukotriene
biosynthesis pathway in Drosha mutants (119). MiR-21 can
activate the signal transduction downstream of TGF-β (120),
while the combination of TGF-β and 1,25-dihydroxyvitamin D3
(VD3) can significantly increase the levels of 5-LOX in human
monocytes (121). Accordingly, RSV can upregulate the level
of leukotrienes by upregulating 5-LOX through the abnormal
expression of miRNAs.

The activity of intracellular 5-LOX is strictly controlled by
Ca2+, ATP, redox state, and phosphorylation (25, 122). However,
nearly all of these factors can be affected by RSV (90, 123). Ca2+
regulates 5-LOX activity through the C2-like domain. Besides,
Ca2+ increases the activation of MAPK and facilitates 5-LOX
migrating to the nuclear membrane, which is necessary for
leukotriene synthesis. By activating the p38 MAPK signal, RSV
can directly activate 5-LOX by phosphorylation in monocytes
(MM6) and polymorphonuclear leukocytes (PMNL) (124). In
this process, miRNAs such as let-7 and miR-21 play a pivotal
role (125, 126). Taken together, these examples reveal the possible
mechanism of how miRNAs control the enzymatic activity of
5-LOX in RSV infection.

Expression of FLAP
Abnormal levels of miRNAs and FLAP have been well-
documented in RSV infection. Besides, recent studies have found
that miRNAs can suppress the formation of FLAP, one of the
most critical factors of the 5-LOX catalysis function. MiR-135a

and miR-199a-5p can target the 3
′
-UTR of mRNA to negatively

regulate the expression of FLAP. Therefore, in hypoxia-induced
endothelial cells, the downregulation of miR-135a andmiR-199a-
5p can increase the expression of FLAP (127). Another study
has confirmed that hypermethylation of the miR-146a promoter
leads to decreased expression of FLAP and leukotrienes in lung

cancer cells, also by directly targeting the 3
′
-UTR of FLAP (64).

Expression of 12/15-LOX
The lipoxygenase pathway can also synthesize SPMs via 5-LOX
and 12/15-LOX. SPMs are endogenous regulators of infection
and inflammation, with a wide range of pro-inflammatory effects,
such as inhibition of neutrophil and eosinophil chemotaxis,
vascular adhesion, and transendothelial and transepithelial
migration (65, 128–130). MiRNAs targeting 12/15-LOXmay also
contribute to the imbalanced inflammation in RSV infection.
In a mouse hippocampal cell line, miR-181b directly binds to
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12/15-LOX 3
′
-UTR, thereby negatively regulating 12/15-LOX

expression (131). By inhibiting the expression of 12/15-LOX,
miR-106a could reverse the effect that was induced by high
glucose in the diabetic peripheral neuropathy mouse model
(131). Moreover, overexpression of miR-219-2 in macrophages
can increase 15-LOX and 12-LOX mRNA expression but
decrease the expression of LTA4H (115). Recently, a study found
that eicosapentaenoic acid’s metabolism of 15-LOX promotes the
expression of miR-101, thus inhibiting the COX2 pathway in
colon cancer, which also implies the complicated links among
miRNA, LOX pathway, and COX pathway (132).

miRNAs and COX Pathway
Another vital way to increase leukotrienes is to inhibit the
COX pathway. Prostaglandins (PGs), synthesized by AA through
the COX pathway, are the most widely studied inflammation
mediators by far. There is strong evidence that RSV infection can
induce COX-2 with the concomitant production of PGs in AECs
(37, 133). COX-2 is an inducible enzyme for PG synthesis, which
is upregulated in inflammatory cells and thus induces an increase
of PGs and inflammatory damage (134). Evidence for miRNAs
controlling the expression of COX-2 is abundant. MiR-16 can

complement with the AU-rich region of 3
′
UTR of COX-2, thus

changing the stability of COX-2 mRNA (135). Overexpression
of miR-216a-3p in human colorectal cancer cell lines can also
inhibit the expression of COX-2(116). Similarly, both COX-
2 and FLAP were downregulated by hypermethylation of the

miR-146a promoter through directly interacting with the 3
′
UTR

of the target mRNA (64). A study showed that NAD+-linked
15-hydroxyprostaglandin dehydrogenase (15-PGDH), which is
part of the COX-2/PGE2 signaling pathway, was identified as
a target of miR-21 in cholangiocarcinoma (71). In addition,
miRNA can also inhibit the expression of COX-2 by reducing
the level of the RNA-binding protein HUR in human hepatoma
cells (68). Other miRNAs, such as miR-26, miR-30, miR-101,
miR-137, miR-143, miR-144, miR-146a, miR-199a, and miR-
216, are successively identified to modulate the COX pathway
(24, 55, 66, 67, 69, 70), although their detailed mechanism has
not been previously reported.

CONCLUSION

The expression of miRNAs and leukotrienes changed
dramatically after RSV infection. Overexpressed leukotrienes
are closely related to AHR, mucous cell metaplasia, leukocyte
aggregation, and airway barrier destruction following RSV
infection. To explore the mechanism of action of miRNAs in
RSV infection is important for developing strategies to restore
the level of leukotrienes. MiRNAs can modulate the synthesis of
leukotrienes by participating in posttranscriptional regulation
of several key enzymes and associated activating proteins,
which results in an imbalance between pro-inflammatory and
pro-resolving mediators. Moreover, miRNAs can be secreted
through the exosome and they have cellular specificity, so they
can widely regulate the immune response after RSV infection. In
summary, we described miRNAs that are abnormally expressed
both in RSV infection and related to leukotriene synthesis, which
may have important implications in the excessive inflammation
of RSV infection and provide a potential therapeutic approach
for the reasonable regulation of leukotriene expression after
RSV infection.
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