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Early detection of Pancreatic Ductal Adenocarcinoma (PDAC), one of the most aggressive
malignancies of the pancreas, is crucial to avoid metastatic spread to other body regions.
Detection of pancreatic cancer is typically carried out by assessing the distribution and
arrangement of tumor and immune cells in histology images. This is further complicated
due to morphological similarities with chronic pancreatitis (CP), and the co-occurrence of
precursor lesions in the same tissue. Most of the current automated methods for grading
pancreatic cancers rely on extensive feature engineering involving accurate identification
of cell features or utilising single number spatially informed indices for grading purposes.
Moreover, sophisticated methods involving black-box approaches, such as neural
networks, do not offer insights into the model’s ability to accurately identify the correct
disease grade. In this paper, we develop a novel cell-graph based Cell-Graph Attention
(CGAT) network for the precise classification of pancreatic cancer and its precursors from
multiplexed immunofluorescence histology images into the six different types of pancreatic
diseases. The issue of class imbalance is addressed through bootstrapping multiple
CGAT-nets, while the self-attention mechanism facilitates visualization of cell-cell features
that are likely responsible for the predictive capabilities of the model. It is also shown that
the model significantly outperforms the decision tree classifiers built using spatially
informed metric, such as the Morisita-Horn (MH) indices.

Keywords: PDAC (pancreatic ductal adenocarcinoma), cell-graph, spatial method, pancreas, attention network,
chronic pancreatitis, graph convolutional network (GCN)
1 INTRODUCTION

In recent years, there has been an increase in the incidence of pancreatic cancers cases (1). Though
there are various forms of exocrine and endocrine tumors such as primary pancreatic lymphoma
manifest in the pancreas, Pancreatic Ductal Adenocarcinoma (PDAC) accounts for more than 90%
of diagnosed malignancies (2). PDAC is an extremely aggressive malignancy of the pancreas, with a
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reported overall 5-year survival rate of just 10.8% (3). As with
other cancers, there have been precursor lesions that have been
identified and associated with sequential progression to PDAC,
with the most important being intraductal papillary mucinous
neoplasm (IPMN), pancreatic intraductal neoplasia (PanIN),
and mucinous cystic neoplasm (MCN), all of which have been
well-documented in recent years (4, 5). It is possible for MCN
and IPMN to be concomitant with PDAC, with both histologies
being present in a patient (6). Additionally, it has been observed
that a dense inflammatory mass formation is present in around
30% of CP diagnoses, mimicking the appearance of PDAC,
posing additional challenges in differential diagnosis (7).

Currently, qualitative visual analysis of tissue biopsy is the
prevailing methodology used by pathologists, where diagnosis is
made based on visual markers such as tissue morphology and
potential cell phenotype distribution. This visually driven
approach has been marred with subjectivity, with very low inter-
observer agreements in many cases (8, 9). Moreover, though
Hematoxylin and Eosin (H&E) is the most widely used staining
paradigm, the emergence of molecular and antigenic-based
staining paradigms, such as multiplexed immuno-florescence
and CODEX had allowed for the identification of more than 20
antigens on the cell’s surface, enabling richer tissue information to
be available (10, 11). It is possible to now characterize multiple sub
types of different cell phenotypes, of which immune cells are of
great interest. Multiple studies have depicted the differences in the
interplay between the different immune populations with a
positional component being a key prognostic factor in many
cancers, including PDAC (12). Quantitative methods such as the
Morisita-Horn index and Shannon Entropy that take into
consideration the spatial arrangement of single or multiples cell
phenotypes, are being increasingly adopted to quantify cellular
organization in the tumor environment tissue (13, 14). Though
these methods offer some spatially aware intuition about the image
in the overall tissue region, the resultant single number metrics
does little to capture the richness in disease heterogeneity. Thus, it
would be ideal that the full space of spatial information be
leveraged to give insight into the different patterns in tumor and
immune engagement in different pancreatic diseases. The
identification of such differing spatial patterns can assist in
screening patients at risk of PDAC, thus allowing for rigorous
treatment planning or resection.

In recent years, a graph-theoretic approach to modeling
cellular interactions has been extensively explored. For instance
(15–17), propose the notion of using “cell-graphs”, where cellular
organization modeled using graph theory concepts can be utilized
to understand functional relationships between cells exhibiting
similar and different phenotypes. Consequently, the evolution of
cancer can be effectively modeled as a graph evolution process
(18). Given the spatial distribution of tumor and immune cells in a
tissue sample, graph-theoretic methods appear as natural solutions
to capture the diversity in distributions; however, the classical
graph-based methods do not scale well with the number of cells in
a sample. In the recent years, graph neural networks (GNNs) (19–
21) and their variants have emerged as viable alternatives that can
capture the interdependence of nodes within a graph (or cells
within a tissue sample) via message passing between the nodes of
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the graph. The paradigm shift from employing classical methods
to adopting deep learning methods, such as the graph
convolutional networks (GCNs), is particularly fueled by the
recent advances in network architectures, optimization
algorithms, and their parallelizable implementation. Zhou et al.
(22) recently proposed a cell graph convolutional network that
uses the basic notion of cell graph coupled with the graph
representation capabilities of GCNs for colorectal tumor
grading. Their approach to construct cell graph is based on
accounting for both cell-level information and the overall tissue
micro-architecture. The authors employ extensive feature
engineering for accurately delineating the boundaries of each
nucleus via CIA-Net (23), followed by obtaining representative
nuclei using farthest point sampling (FPS) algorithm. The authors
identify a set of seventeen nuclear descriptors for their
representative nuclei. More recently, the authors in (24) have
combined GCN with gene expression profiles for classifying
cancer types. Their approach involves designing four GCNs
based on co-expression graph, co-expression+singleton graph,
protein-protein interaction (PPI) graph, and PPI+singleton
graph. Feature design and extraction is extremely critical to the
success of both of the above GCN-based approaches, which also
limits the applicability of these approaches to scenarios where
accessibility to high-fidelity features is difficult.

In this paper, we propose a cell-graph based method for the
classification of point patterns derived from mIF-stained
histopathology images belonging to six different cohorts of
pancreatic diseases. Instead of focusing on extensive feature
engineering, we work with cell-graphs consisting of only one
feature per node. A modified GCN architecture, comprising of a
novel self-attention mechanism, is shown to achieve excellent
performance for pairwise classification tasks. We refer to this
new GCN architecture as the Cell-Graph ATtention (CGAT)
network. The pairwise classifiers are subsequently bootstrapped
to build a multi-class classification network, where an input
image is predicted to belong to any one of the six different
cohorts of pancreatic diseases. The key contributions of this work
can be summarized as:

Construction of cell-graphs: Unlike existing methods on
tumor grading and classification that employ extensive feature
engineering, such as evaluation of mean nuclei intensity, GLCM
of dissimilarity, GLCM of homogeneity, solidity and orientation,
the proposed CGAT network is provided with an input image
where only positions and labels (Epithelial, Cytotoxic
Lymphocyte and Regulatory-T) of nuclei are known. The
position information is used to construct edges of the
associated cell-graph based on pairwise Euclidean distances
using the k-nearest neighbors (kNN) graph algorithm (25).
The nuclei feature, i.e., the labels of the nuclei are embedded
into the CGAT framework using an embedding layer (26).

Self-attention mechanism: The proposed CGAT network
incorporates a novel self-attention mechanism (27) at its
output in order to facilitate further interactions between the
inputs (nodes) of the graph. The self-attention mechanism
assigns scores/weights to different node embeddings. The large
weighted nodes are likely to contribute more towards the
model prediction.
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Multi-class consensus classifier: Class imbalance across the
six different cohorts makes it extremely challenging to be able to
train a single classifier for accurately predicting the correct
disease type. We alleviate this issue by bootstrapping multiple
pairwise classifiers, each trained to accurately distinguish
between two different disease types.

Performance on imbalanced datasets: Spatially informed
metrics, such as the Morisita-Horn (MH) dissimilarity indices,
indicate that there is significant overlap between histopathological
images between two different classes. Despite the overlap and
underlying class-imbalance in data acquisition, our CGAT
network performs significantly better on the hold-out validation
set as compared to decision tree classifiers trained using the MH
indices. We thereby conjecture that CGAT is able to pick on several
spatial features without having to explicitly design those features.

The rest of the paper is organized as follows. First, we provide
a brief description of the data used as input in our framework.
The architectural details of the proposed pairwise CGAT
network for any two of the six groups in the study is explained
in greater detail. Then, the extension of the pairwise classifiers for
each disease pair for multi-class classification problems are
discussed subsequently. This is followed by a presentation of
the results obtained from our framework. Finally, we briefly
discuss the biological significance of the results obtained from
our classification framework.
2 MATERIALS AND METHODS

2.1 Dataset Preparation
The study cohort consisted of 388 point pattern representations
obtained from multiplexed immunofluorescence (mIF) image
cellular data belonging to six different pancreatic disease groups,
including pancreatic cancer and non-malignant diseases. These
images were obtained from patients at the University of
Michigan Pancreatic Cancer Clinic who had undergone
surgical resection for various pancreatic diseases, and was done
in accordance and approval of the University of Michigan
Institutional Review Board.The six pathologies represented in
this study were, namely, Chronic Pancreatitis (CP), Pancreatic
intraepithelial neoplasia (PanIN), Mucinous cystic neoplasm
(MCN), Intraductal Papillary Mucinous Neoplasm (IPMN),
IPMN associated cancers (Special Dx IPMN), and traditional
Pancreatic Ductal Adenocarcinoma (PDAC). A point pattern
Frontiers in Immunology | www.frontiersin.org 3
representation is obtained when each cell identified is
represented by a point on a two-dimensional grid, with the cell
location determined by the center of the cell. Out of the 388
image point representations available, 56 were identified as CP,
41 as PanIN, 21 as MCN, 89 as IPMN, 38 as Special Dx IPMN
and 143 as PDAC.

For the identification of phenotypes, multiplexed
immunofluorescent staining was done on a tissue micro-array
composed of 0.6mm cores taken from Formalin-fixed Paraffin-
embedded (FFPE) tissue blocks, as explained in our previous work
(28). In this process, slides underwent serial rounds of antigen
retrieval, followed by primary and secondary antibody staining.
DAPI nuclear staining was performed for to identify and segment
nuclei and assign spatial locations to every cell present. Nuclear stain
phenotyping was done using antibodies for the identification of
phenotypes, including CD3, CD8, pancytokeratin, and FoxP3
expression. A subset of the mIF images representative of each
cohort is included in the Supplementary Material (see
Supplementary Figure 2). Of the available phenotypes, 3 were of
interest to us as advised by the physician: the Epithelial cell, the
immunosuppressive Regulatory T-cell (Treg), and the
immunoreactive Cytotoxic Lymphocytes (CTL). An epithelial cell
was considered to be any cell expressing Pancytokeratin, a Treg cell
was any cell expressing FoxP3, and a CTL was identified as one
expressing CD3 and CD8, identified through mIF staining and
imaging procedures. Note that we do not strongly claim that only
these cell types are sufficient for the characterization of these diseases,
but rather that they are the cells that the proposed CGAT framework
examines as a first pass. These cell sets are theoretically known
to interact with each other in a biologically meaningful way. In
future, we aim to expand the types of cells that we query in the
microenvironment. All phenotyping and processing of mIF images
was done on AKOYA Biosciences’ Inform Software. Additional
clinical and demographic information is presented in Table 1.

2.2 Classification
2.2.1 Pairwise Classification
Our approach is based on constructing a k-NN (k-nearest
neighbor) (29) graph from the stained image. The stained
image data consists of 2D-coordinates of cell positions, along
with the corresponding cell types. Each cell is identified to be one
of the three types - (a) Epithelial, (b) Regulatory T (Treg), and
(c) Cytotoxic Lymphocyte (CTL). The cell positions are used
to construct the k-NN graph, while the cell type reflects the
TABLE 1 | A summary of clinical characteristics of the patient cohort.

Characteristics CP PDAC IPMN MCN PanIN IPMN-associated PDAC

Number of patients N = 34 N =71 N = 70 N = 16 N = 29 N = 8
Median age at surgery (years) 50 64 64 44 63 NA
BMI (Mean ± SD) 27.16 ± 6.16 28.5 ± 5.61 28.4 ± 7.05 34.05 ± 9.07 23.48 ± 4.56 NA
Smoking
Status

Yes 13 33 15 2 5 NA
No 4 26 12 11 6 NA
Unknown 17 12 43 3 18 NA

Sex Male 13 31 15 0 5 NA
Female 6 29 13 13 7 NA
S
eptember 2021 | V
Missing values were excluded when computing summary statistics in each category.
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property of each cell and is the only physiological feature to be
considered as an input to the proposed CGAT architecture. This
is in sharp contrast to existing methods that rely on extensive
feature engineering, requiring a lot of morphological and
physiological features for imparting predictive capabilities (22,
30). Figure 1 shows sample k-NN graphs from the six
different classes.

Every k-NN graph defines the corresponding binary graph
adjacency matrix, A, with Ai,j = 1 if the jth-cell is a neighbor
(connected) to the ith-cell in the k-NN graph. In order to employ
cell types for learning to classify disease types, a trainable
embedding layer is used which converts symbolic cell type
labels to a real vector of a specified dimension d. Thus for a
graph with N vertices, the input feature X0 ∈RN×d. While the
Frontiers in Immunology | www.frontiersin.org 4
proposed work uses onlythree different cell types for disease class
prediction, the CGAT framework is quite general and can
accommodate any number of cell types by appropriately
modifying the maximum size of the dictionary of embeddings
in the embedding layer. An l-layer GCNupdates the vertex
embeddings using the following update rule (20):

Xt+1 = s (eAXtWt), for all  t ∈ 0, 1,…, l − 1f g, (1)

where eA = D̂−1
2Â D̂−1

2 denotes the normalized adjacency matrix
with Â = A + I and D̂ being the degree matrix of Â . Wt ∈Rd×d

denotes the weight matrix of the tth layer and is a trainable
parameter. s is a nonlinear activation function, such as, rectified
linear unit (ReLU) or hyperbolic tangent (tanh). A key
A B

D E F

G IH

J K L

C

FIGURE 1 | Construction of k-NN graphs from point pattern data derived from mIF pathological images from six different classes: (A) CP, (B) IPMN, (C) MCN,
(D) PanIN, (E) PDAC, (F) IPMN-associated PDAC. Their corresponding k-NN graphs are shown in (G–L), respectively. In all images, the red, blue and green cells
correspond to epithelial, cytotoxic lymphocytes, and t-regulatory cells, respectively.
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component of the proposed CGAT architecture is its novel self-
attention mechanism. An attention model helps with focusing on
specific parts of the input rather than using all available
information to compute the neural response (27). Since its
inception, attention models have been used extensively in
language-to-language translation, speech recognition and image
captioning. The self-attention mechanism of the CGAT takes
final node embeddings from GCN as its input and trained to
identify vertices (cells) relevant for the prediction task. The self-
attention mechanism is specified by the following set of rules:

a = tanh(Xl)w

 ½p�i = eai

SN
j=1e

aj
·   for all  i ∈ 1, 2…,Nf g,

s = XT
l p,

(2)

where s ∈ Rd is the resulting d-dimensional embedding vector.
The parameter w ∈ Rd is a trainable parameter, while [p] ∈ RN

represents the relative importance of each vertex embedding
towards the classification task. It is important to note that the
proposed self-attention mechanism converts an N × d-
dimensional embedding to an equivalent d-dimensional
embedding. Thus, graphs (or stained images) of varying sizes
can be easily accommodated as the final context vector s is simply
d-dimensional and independent of the number of cells N.
Moreover, sizes of the trainable weight parameters are also
independent of N. Finally, a simple feed forward network
(FFN) is used to produce a two-dimensional output vector -
one for each target class. The weight matrix in the FFN are
learned in an end-to-end manner. A final SoftMax layer is applied
to produce a probability, one for each of the possible classes.
Figure 2 shows the schematic of the proposed CGAT architecture
for the pairwise classification of pancreatic cancer and precursor
types. CGAT assigns to each graph in the dataset, a different
embedding, and subsequently a different context vector, which
can then be used to predict the correct disease class.
Frontiers in Immunology | www.frontiersin.org 5
2.2.2 Multi-Class Classification
The anonymized dataset is highly imbalanced in its classes. For
instance, there are significantly more number of examples of
PDAC (N=143) than MCN (N=21). Consequently, training an
end-to-end multi-class CGAT classifier biases the model towards
PDAC. At the same time, a pairwise classifier aimed to
distinguish a given pancreatic disease type from the rest of the
classes in a one-vs-rest classification manner suffers from a
similar class imbalance issue. Thus, we build a sequence of
pairwise classifiers, each trained to distinguish between two
different classes. For six unique classes, we have a pair of 15
unique pairwise classifiers that are bootstrapped to build a multi-
class classifier. Note that bootstrapping does not entail training
any new classifier, however, it is built upon the pretrained
pairwise classifiers sequenced in a rule-based manner. For
instance, given the superior performance of pairwise classifiers
involving PDAC and CP classes, a consensus based-approach is
built to first identify if the input belongs to one of these two
classes. We similarly leverage high-performing pairwise
classifiers in case the input belongs to any other class.

2.2.3 Model Implementation
All models are implemented in Python 3.6.5 using PyTorch (31) on
an Intel i7-7700HQ CPU with 2.8GHz x64-based processor and an
NVIDIA GeForce GTX 1060 GPU. The hyperparameters of our
CGAT implementation are as follows: optimizer: Adam optimizer
(32) with learning rate l = 10-3; loss function: cross-entropy;
number of epochs = 100; embedding dimension d = 30; number
of GCN layers l = 2; and number of nearest neighbors in k-NN
graph k = 20. The choice of $k=20$ is motivated by the need to
strike an optimal balance between a connected only and a complete
graph. For the purpose of creating cell graphs and employing a
graph neural network architecture, it is desirable to work with
graphs that are connected, i.e., there exists a path (a set of edges)
between any two nodes in the graph. This facilitates efficient
message passing through the cell graph during the aggregation
phase of GCN operation. At the same time, it is not desirable to
FIGURE 2 | Schematic of the proposed cellular graph attention network (CGAT). Based on the geometrical coordinates of the epithelial and immune cells, a k-NN
graph is constructed and passed through an embedding layer, which converts cell types labels to a d-dimensional vector. The output of the embedding layer is
passed through a GCN with self-attention mechanism. The context vector is finally fed to a simple feed forward network, which maps the input graph to one of the
two classes. For the multi-class classifier, 15 such pre-trained pairwise classifiers (one for each combination of classes) are bootstrapped in a rule-based manner.
September 2021 | Volume 12 | Article 727610

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Baranwal et al. CGAT for Pancreatic Cancer Grading
work with complete graphs, i.e., all nodes are connected through
direct edges between them, as the node or region-specific properties
would not be sufficiently expressed. The code for the
implementation of CGAT framework is available on request.

2.3 Model Interpretation Using the Giotto
framework
We also wanted to explore neighborhood relationships of the cells
which were identified as having high “self-attention weights” in
the images for the binary classifier. To achieve this, we perform
cell-pair enrichment analysis using Giotto (33). For each sample,
a cell neighbor graph is created, in which each node represents a
cell, and each node is connected to the cell’s three nearest
neighbors. A simulation distribution is then created by shuffling
the nodes’ cell type labels, while keeping the graph topology the
same. For a cell pair of interest, the number of edges between
nodes of those two cell types in the original sample is compared to
the distribution of edges in the simulations. If the number of
edges is significantly higher compared to the simulation
distribution, that cell pair is considered to be “enriched”, where
cells of those two types are neighbors more than would be
expected at random. In contrast, if the number of edges is
significantly lower compared to the simulation distribution, that
cell pair is “depleted”, where the cells of those two types are
neighbors less frequently than would be expected at random. This
is done both for cells of the same phenotype as well as cells
belonging to different phenotypes. Implementation of the
framework using the Giotto package, and other associated
analyses were implemented in R [R Core Team (2013)] (33).
3 RESULTS

Of the 388 immunofluorescent stained images that belong to one
of the six pancreatic disease types, nearly 80% of the data is
selected randomly for training while the remaining 20% is held
out for cross-validation study. The held-out samples are kept
separate and the model performances are evaluated on the test
set at the end of the training process. In essence, the train/test
split includes 44/12 samples for CP, 71/18 for IPMN, 16/5 for
MCN, 33/8 for PanIN, 113/30 for PDAC and 30/8 for IPMN-
associated PDAC. The training process is further subjected to a
5-fold cross-validation study. Unlike the standard train/test split,
a k-fold cross-validation study results in a less biased or less
optimistic estimate of the model. In a k-fold cross validation
study, the training data is split randomly into k groups of equal
sizes. Subsequently, each unique group is considered in an
iterative manner as a hold-out or test set, while the model is
trained on the remaining k - 1 groups. At the end of each training
phase, the trained model is discarded while the evaluation scores
are retained. Finally, the performance of the model is
summarized using the sample of model evaluation scores on
each unique group. For validation purposes, the classification
results from our cell-graph attention network classification
paradigm was compared with those generated using another
spatially informed metric: the Morisita-Horn index (34, 35). This
Frontiers in Immunology | www.frontiersin.org 6
metric has shown to be prognostic in many diseases, including
breast cancer (13). A brief description of this method is given in
the supplementary section of this paper.

It can be observed that there is significant class imbalance,
with MCN having only 16 training samples. A 5-fold cross-
validation study further reduces the number of training examples
to about 12 or 13 for each unique group. Consequently, the
models are going to be biased towards predicting other classes.
Despite the absence of sufficient number of examples to train a
neural network model, the proposed CGAT framework performs
appreciably well.

Table 2 shows the AUC, precision and recall performances of
15 pairwise classifiers for the aforementioned 5-fold cross-
validation study on the held-out test set. For every pairwise
classifier, the corresponding row and column entries indicate
classes 1 (positive) and 0 (negative), respectively. Recall that a
large value of AUC (area under curve) implies that the model has
a good measure of separability. On the other hand, precision and
recall capture the positive predictive value (PPV) and sensitivity
of a model. In order to fully evaluate the effectiveness of the
model, both precision and recall scores must be examined, since
improving precision typically reduces recall and vice versa.
Despite the significant class imbalance, it can be seen in Table 2
that most of the pairwise classifiers perform appreciably well, with
PDAC being the most easily distinguishable class. Likewise, the
performance of pairwise classifiers in distinguishing CP is
significantly high. On the other hand, it appears generally
difficult to distinguish classes, such as, MCN and PanIN, both
having relatively fewer training examples to work with.We leverage
the superior performance of PDAC and CP classifiers in building a
bootstrapped multi-class classifier.

Table 3 shows the confusion matrix of a multi-class classifier
derived from bootstrapping multiple pairwise classifiers. The
diagonal entries indicate the number of correctly classified
instances on the held-out test set. The label for each row
indicates the ‘true’ class, whereas the off-diagonal entries
indicate the ‘predicted’ class. It can be observed that of the 12
examples labeled as CP, the model correctly identifies 11 of them.
Similarly, PDAC is correctly identified on 28 out of 30 instances.
The performance on other classes is not as noteworthy, primarily
due to lack of both quality and quantity of the available data.

As mentioned earlier, the Morisita Horn dissimilarity indices
were also computed for each image in the cohort to assess the
performance of our classifier. A set of decision tree pairwise
classifier models were trained for classifying index values for
many two pairs of diseases. Table 4 shows the AUC, precision
and recall performances obtained from these models. As is
evident, we find that the model performs poorly in comparison
to the CGAT model for all disease pairs, with the pairs of PDAC
and IPMN, PDAC and PanIN, IPMN-associated PDAC and CP,
and IPMN-associated PDAC and PDAC performing barely better
than a random classifier with AUC of 0.5. This claim is further
strengthened by a strong overlap observed in the index values
between all six groups, as depicted in Supplementary Figure S1.
The AUC values of less than 0.5 observed for the other disease
pairs can be explained by the significant class imbalance observed
in this dataset.
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4 DISCUSSION

Despite the advances in pathology imaging paradigms and
computational methods, challenges in discrimination between
pathologies with similarities still continues to persist. This is
specifically seen in the case of pancreatic cancers and their
precursor conditions (36). Additionally, surveying the immune
landscape and the arrangement and clustering of cells in the
disease microenvironment may be crucial in deciphering disease
progression and in the development of effective therapeutic
regimens. Though spatial methods like the Morisita-Horn
dissimilarity index have been used to quantify spatial
relationships, they are usually limited to two distinct cell
phenotypes. To the best of our knowledge, there has not been
an attempted to use this metric to capture the relationships fully
in multiplexed data sets (such as mIF imaging data or
transcriptomics data) where multi-way phenotype relationships
have the potential to be assessed. In this study, we proposed and
applied a graph attention-based classification method on a cohort
of imaging data from different pancreatic disorders. Rather than
utilize single cell features that usually call for extensive feature set
creation, our network relies on cell identity and relative locations
as inputs for the classification paradigm.

On the application of our framework to the study data, we
observe that the k-NN based classification paradigm was able to
Frontiers in Immunology | www.frontiersin.org 7
perform significantly better than the single-number Morisita-
Horn indices across all pairwise comparisons. Specifically, we
observed that our classifier is able to distinguish between CP and
PDAC in a significantly better manner, as opposed to the MH
Index. From a clinical perspective, this discrimination is highly
relevant, as misdiagnosis of these two diseases with frequently
similar pathological appearances may lead to either a missed
diagnosis of a severe carcinoma, or repeated biopsies due to the
high cancer risk of patients with previous history of CP (37).
Similar performance improvements were observed between
PDAC and its precursor and co-occurring conditions like MCN
and PanIN. This alludes to a nuance in the neighborhood
relationships between the three cell phenotypes utilized in this
study, which may have been missed during visual observation.
Furthermore, our frame can offer hypothesis generation tools for
biologists to interrogate the tumor micro-environment.

Of the various cells present in the disease micro-environment,
cytotoxic lymphocytes (CTLs) have a functionally significant
presence, and play an active role in regulating anti-tumor
response, specifically in PDAC (38). Of the various subtypes,
the anti-tumor CTLs and immunoregulatory Tregs play a large
role in this, with opposing effects on immune mediation and
disease prognosis. It has been known that T-regulatory cells play
an active role in the immunosuppressive environment present in
PDAC, and thus have a greater probability to co-localize and
TABLE 3 | The confusion matrix for the multi-class CGAT classifier for the six different pancreatic diseases.

CP IPMN MCN PanIN PDAC IPMN-associated
PDAC

CP 11 1 0 0 0 0
IPMN 6 8 0 0 4 0
MCN 2 0 1 0 2 0
PanIN 2 2 0 2 2 0
PDAC 1 1 0 0 28 0
IPMN-associated PDAC 1 2 0 0 2 3
Sept
ember 2021 | Volume
The weighted (class-normalized) precision, recall and F1-scores for the confusion matrix were obtained as 0.73, 0.65 and 0.62, respectively.
TABLE 2 | Classification metrics for the 15 pairwise CGAT classifiers from every point pattern set from each disease group.

Groups Scores IPMN MCN PanIN PDAC IPMN-associated
PDAC

AUC 0.65 ± 0.04 0.83 ± 0.07 0.75 ± 0.16 0.93 ± 0.01 0.84 ± 0.13
CP Precision 0.61 ± 0.05 0.80 ± 0.40 0.83 ± 0.26 0.92 ± 0.05 0.76 ± 0.15

Recall 0.99 ± 0.02 0.42 ± 0.29 0.40 ± 0.19 0.89 ± 0.08 0.79 ± 0.11
AUC 0.87 ± 0.07 0.84 ± 0.09 0.91 ± 0.05 0.80 ± 0.10

IPMN Precision 0.33 ± 0.42 0.83 ± 0.16 0.94 ± 0.05 0.80 ± 0.19
Recall 0.11 ± 0.13 0.43 ± 0.18 0.85 ± 0.06 0.48 ± 0.27
AUC 0.64 ±0.17 0.84 ± 0.10 0.73 ± 0.13

MCN Precision 0.68 ±0.23 0.88 ± 0.03 0.70 ± 0.23
Recall 0.92 ± 0.16 1.00 ± 0.00 0.98 ± 0.04
AUC 0.74 ± 0.10 0.74 ± 0.13

PanIN Precision 0.78 ± 0.06 0.63 ± 0.24
Recall 0.99 ± 0.01 0.85 ± 0.15
AUC 0.84 ± 0.04

PDAC Precision 0.63 ± 0.19
Recall 0.51 ± 0.20
The AUC, precision and recall scores on the held-out test set for each pairwise classifier is listed here. The proposed CGAT framework results in significant improvement in pairwise
classification accuracy over the MH indices based classifier.
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have an inhibitory effect on the more immunoreactive CTLs
present in the environment (39). One of the advantages of our
proposed CGAT-network is its ability to highlight important
nuclei through its self-attention mechanism. The self-attention
mechanism helps the model to focus only on specific parts of the
input, while learning to ignore unimportant details. Attention
mechanisms are not only known to boost model’s predictive
performance, they can also assist in better visualization of the
features that are likely responsible for the predictive capabilities
of the model. Figure 3 shows the original histopathological
images (on the left) and the corresponding attention-visualized
images (on the right) for three representative images from the
PDAC class. The attention weights are computed as described in
(2), and the cells with attention scores in the 90th-percentile
are highlighted in bold. As observed in Figure 3, these cells are
observed to be those in closer proximity to cells of other
phenotypes, rather than their own. Additionally, the regions
with the highest attention weights also overlaps with regions of
higher Treg density (marked in blue). This further lends
credence that the presence of Tregs influences the spatial
positions, and in turn the functional effect of cytotoxic
lymphocytes on epithelial cells in the cancer environment.
Further identification and exploration of the spatial
arrangement of other associated cell phenotypes at these
interaction interfaces holds the key in quantifying the state of
the cancer micro-environment in PDAC. This, in turn can
potentially lead to more robust methods not only to prevent
misdiagnosis, but also is key in earlier identification of the disease
for more effective treatment paradigms to be delivered.

To reiterate, CGAT’s ingenuity lies in the utilization of only the
nuclei class labels for the construction of the k-NN based cell graph
used as input for the classificationmodel. This alleviates the need for
extensive feature engineering, reducing reliance on the computation
of secondary graph summary metrics such as centrality measures.
The ability of the attention network to delineate nuclei, and in turn
explicitly point to regions influencing classification is a tool that can
Frontiers in Immunology | www.frontiersin.org 8
be leveraged in the identification of novel cell-cell relationships that
have been not been previously deemed as influential. This is in
sharp contrast to previously applied neural network based methods,
which essentially function as a black box and do not completely give
context into the decision making process for classification. The
identification of these cell clusters can help in the identification of
functionally influential cell-cell arrangement of the same phenotype
as well as other phenotypes.

We wanted to closely analyze the regions of “attention” pointed
out to us by the CGAT framework, and attempt to interpret them
from a physiological context. We chose to examine the results from
the CP-PDAC classifier, as that had been our best performer, and
was of great interest from a biological perspective. For this purpose,
we first segmented out the cells lying within the top 50th percentile
of attention weights obtained from the CP-PDAC binary classifier,
as identified by our framework. This was used as input for the
Giotto framework, and the results are mentioned in Tables 2 and 3
in the Supplementary Material. The results from the high
attention weight regions point to a few trends. Firstly, we
observed an enrichment of Tregs around other Tregs in PDAC
with no such phenomenon in CP. This is consistent with
known literature stating that factors present in the cancer
microenvironment are driving the location-specific polarization
of these regulatory cells (40). In contrast, a depletion in
neighborhood relationships was observed between Tregs and
epithelial cells in the attention regions in PDAC, which goes
against current domain knowledge, and potentially suggests that
another cell type present in the microenvironment might be
influencing Treg polarization. Additionally, it was also observed
that there was a depletion in neighborhood proximity between
epithelial cells and CTLs in CP when compared to a random
neighborhood model, which can be explained by the global
inflammatory nature of the disease (41, 42). Though the strength
of the relationships were not strong enough, the significance of
these contrasting relationships observed between the high attention
cells identified by the classifier warrants further exploration in
TABLE 4 | Classification metrics for the 15 pairwise decision-tree classifiers based on the Morisita-Horn index values from every point pattern set from each disease
group.

Groups Scores IPMN MCN PanIN PDAC IPMN-associated
PDAC

AUC 0.41 ± 0.02 0.37 ± 0.06 0.35 ± 0.09 0.45 ± 0.06 0.53 ± 0.08
CP Precision 0.31 ± 0.02 0.60 ± 0.05 0.48 ± 0.08 0.19 ± 0.12 0.64 ± 0.08

Recall 0.38 ± 0.10 0.50 ± 0.16 0.50 ± 0.10 0.17 ± 0.10 0.57 ± 0.07
AUC 0.41 ± 0.04 0.41 ± 0.04 0.54 ± 0.04 0.40 ± 0.03

IPMN Precision 0.74 ± 0.02 0.64 ± 0.03 0.45 ± 0.06 0.63 ± 0.03
Recall 0.79 ± 0.13 0.69 ± 0.08 0.33 ± 0.07 0.65 ± 0.12
AUC 0.30 ± 0.04 0.53 ± 0.06 0.45 ± 0.04

MCN Precision 0.18 ± 0.04 0.16 ± 0.11 0.13 ± 0.18
Recall 0.24 ± 0.09 0.20 ± 0.14 0.08 ± 0.11
AUC 0.41 ± 0.05 0.31 ± 0.06

PanIN Precision 0.04 ± 0.09 0.30 ± 0.06
Recall 0.02 ± 0.05 0.30 ± 0.11
AUC 0.52 ± 0.04

PDAC Precision 0.80 ± 0.02
Recall 0.91 ± 0.03
S
eptember 2021 | Volume
The AUC, precision and recall scores each pairwise classifier is listed here. It can be observed that classification accuracy of several pairwise classifiers built upon single MH index per
image is significantly poor.
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FIGURE 3 | Visualization of nuclei with large attention weights for three sample PDAC histopathology images (A–C). Red, green and blue colors indicate the three
types of labels - Epithelial, CTL and Treg, respectively. The cells with large attention weights likely belong to the interface of two or more cell types, indicating patterns
that govern the various class association.
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future studies. This would further help us in characterizing the state
of the disease micro-environment in a spatially informed manner
(43). The availability of this information can also help in deeper
analysis of phenotype relationships already postulated in previous
literature for related diseases.

While the proposed work uses only three different cell types for
disease class prediction, the CGAT framework is quite general and
can accommodate any number of cell types by appropriately
modifying the maximum size of the dictionary of embeddings in
the embedding layer. In an ideal scenario, it would be preferred to
have more than just three cell markers. This is reflected in our
analysis (see Table 1 in the Supplementary Material) with just two
markers - “Tumor” and “Immune”, i.e., both the CTL and Treg
Frontiers in Immunology | www.frontiersin.org 9
markers are masked as a single “Immune” marker. We show that
even with just these two markers, the reduction in performance of
the proposed CGAT architecture is not significant, indicating that
even in the absence of multiple cell markers, CGAT is capable of
distinguishing different pancreatic diseases better than the Morisita-
Horn index-based approach involving three different cell markers.
Due to the generalizability of the framework, its application can be
extended to other omics data as well, where spatial information is
available. A limiting factor in this study is the disproportionate
number of image data sets available from each cohort, biasing a
model towards the class with the larger membership. Application of
this framework on a more balanced data set would be the next step
to diminish this effect, and potentially gain a even higher
September 2021 | Volume 12 | Article 727610
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classification accuracy with better metrics. It is to be noted that even
with the disparity in the number of samples per diseases, our model
was still able to perform appreciatively well in discerning between
any two pairs of diseases.

In conclusion, this proposed and implemented cell-graph
based method for the classification of mIF image-derived point
patterns obtained from six different cohorts of pancreatic
diseases. Instead of focusing on expensive feature engineering,
we work with cell-graphs consisting of only one feature per node.
With only 3 phenotypes of cells segmented out in each image,
this method was able to display excellent classification metrics
between all possible pairs of the diseases. An extension of this
workflow on a more balanced dataset with a richer amount of cell
phenotypic information available would be warranted.
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