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Abstract. A dynamical model of the pathophysiological behaviors of IL18 and IL10 cytokines with their receptors is tested
against data for the case of early sepsis. The proposed approach considers the surroundings (organs and bone marrow)
and the different subsystems (cells and cyctokines). The interactions between blood cells, cytokines and the surroundings
are described via mass balances. Cytokines are adsorbed onto associated receptors at the cell surface. The adsorption is
described by the Langmuir model and gives rise to the production of more cytokines and associated receptors inside the cell.
The quantities of pro and anti-inflammatory cytokines present in the body are combined to give global information via an
inflammation level function which describes the patient’s state. Data for parameter estimation comes from the Sepsis 48 H
database. Comparisons between patient data and simulations are presented and are in good agreement. For the IL18/IL10
cytokine pair, 5 key parameters have been found. They are linked to pro-inflammatory IL18 cytokine and show that the early
sepsis is driven by components of inflammatory character.
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1. Introduction

Sepsis is defined as a life-threatening organ dys-
function caused by a dysregulated host response to
infection [1]. Septic shock is the most severe form of
sepsis in which hypotension persists despite adequate
volume resuscitation thus requiring the use of vaso-
pressors. Sepsis deeply perturbs immune homeostasis
by inducing a complex response that varies over time,
with the concomitant occurrence of both pro- and
anti-inflammatory mechanisms. Schematically, the
opening tremendous systemic inflammatory response
(aka cytokine storm) may lead to multiple organ fail-
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ure while the anti-inflammation process may lead
to delayed immunosuppressed status [2,3]. However,
exact chronology of these processes remains unclear.
As sepsis represents a major healthcare problem
worldwide (e.g, first cause of mortality in Intensive
Care Units (ICU) [4]), the World Health Organization
(WHO) recognized sepsis as a global health priority
by adopting a resolution to improve the prevention,
diagnosis and management of this deadly disease [5].
Indeed, despite significant advances in the under-
standing of the pathophysiology of sepsis, to date,
no therapeutic intervention targeting host response
has specifically been approved.

Several studies have shown that the first hours after
septic shock are decisive in the evolution of the dis-
ease and therefore for patient’s care and outcome
[6,7]. At this step, the host response is very complex
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because a tremendous number of mediators, receptors
and cells are involved in the whole body, both activa-
tors and inhibitors [8], thus the dynamical modeling
approach is an interesting solution to better describe
early dynamics in septic shock. In particular, mech-
anistic modelling based on principles of chemical
engineering may help to build the complex models
necessary to describe the immune system [9–12].

Many dynamical models have appeared in the lit-
erature to describe the immune system in the context
of sepsis. They are based on ordinary differential
equations (ODE) with classical kinetics used in biol-
ogy such as Michaelis-Menten kinetics, Hill function,
inhibitory functions [13–24].

A discussion about reduced and large models for
immunology and their help with respect to qualitative
and quantitative behavior in order to improve diag-
nosis and treatment is proposed in Vodovotz et al.
[25].

Some reduced models are used to analyze the
asymptotic behavior of ODE models with respect
to key parameters, such as kinetic constants, and
show that, depending on parameter values, different
immune system scenarios can be represented, as in
Kumar et al. [13].

Numerous models are used to simulate the immune
system for better understanding, [14, 16, 17, 19, 22,
24, 26, 27]. The authors have different modeling
approaches, but, currently, the principal limitation is
the availability and complexity of experimental data
for validation.

Some models are used as the foundation for sim-
ulations for testing therapy strategies [21, 23, 26,
28–30].

Finally, in Yiu et al. [8], based on the 2006
Clinical Trial of TGN1412, the authors propose an
eighteenth-order, linear, time-invariant dynamic sys-
tem to simulate the behavior of nine interacting
cytokines based on data obtained from six healthy
volunteers that experienced severe inflammatory
response during five days. An identification proce-
dure of 90 parameters is performed from cytokine
level measurements. The model reveals plausible
cause-and-effect relationships among the cytokines
showing how each cytokine induces or inhibits others.

For now, the work to model the immune system is
only at its beginning. The complexity of the system
and the lack of experimental data are the main bar-
riers to advancement. To our knowledge, no article
presents a model tested against transcriptomic data.

Microarray-based expression profiling provides an
interesting opportunity to gain knowledge on sepsis.

This was done in the case of the study on twenty-eight
patients in septic shock, called “Sepsis 48h” and con-
ducted in 2009 by the laboratory LCR SEPSIS HCL
and bioMerieux [7]. In this study, a blood sample was
taken every 6 hours for 48 hours and a sample was
taken after 6 days for some patients. For each sample,
a complete genomic study was performed.

By virtue of the “Sepsis 48h” databank, it is there-
fore possible to build an original model that can be
validated experimentally against both genetic expres-
sion and cell count.

The objective of this study is to propose a patho-
physiological dynamical model capable of describing
the evolution of inflammation in case of septic shock
based on the “Sepsis 48h” data. The chosen cytokines
are IL18 and IL10 as well as their associated recep-
tors IL18 R and IL10RA. This choice is motivated by
the simplicity of the production mechanisms of this
pair of cytokines with their associated receptors.

In Section 2 we set out the way we selected the
training data among the large available dataset. In
Section 3 we present the assumptions and the model.
In Section 4 we describe parameter estimation based
on the “Sepsis 48h” data. Finally, in Section 5 we
discuss the estimated model, the results obtained and
we also propose a qualitative validation of the model
on the basis of the “Sepsis 48h” data.

2. Experimental dataset: Sepsis 48h

The “Sepsis 48h” dataset includes clinical charac-
teristics of twenty-eight patients at the onset of septic
shock and admitted to two ICUs of a university hos-
pital (see Cazalis et al. [7] for a detailed description
of patient characteristics and data treatment). Briefly,
a blood sample was taken every 6 hours for 48 hours.
The transcribed RNA was extracted from each sam-
ple and the gene expressions were measured using
microarrays from Affimetrix (GeneChip® Human
Genome U133 Plus 2.0). The full data set has not yet
been released but data from initial samples and those
taken after 24 and 48 hours is available on the GEO
DataSets site under accession number GSE57065.
So, for each blood sample, data is available in the
form of 54675 X-ray fluorescence intensity values.
Furthermore, twenty-five control samples have been
obtained from healthy volunteers. A statistical com-
parison of the genetic expressions of samples from
healthy and sick patients highlighted 71% of the
human genome affected by a septic shock [7].
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In addition to this transcriptomic data, a detailed
cell count was performed for each sample for the
major leukocytes. The main cells of innate immunity
were measured: neutrophils, basophils, eosinophils,
and monocytes. The main types of lymphocytes were
also counted as described in Venet et al. [31].

2.1. Biological selection of the probesets

The first step of this work was to select the probe-
sets that were related to cytokines and their receptors
from the available dataset. First, a global approach
was taken, with the selection of all the probesets that
were potentially important in describing the varia-
tion of the cytokines and their receptors. The probeset
references were translated from the microarray out-
put into standard genetic nomenclature found in the
literature. For this purpose, the DAVID database
(Database for Annotation, Visualization and Inte-
grated Discovery) tool to convert gene identifiers
from one type to another was used [14, 32].

The genes relating to cytokines and their receptors
were then selected with keyword filters: “inter-
leukin”; “TNF”; “IFN”; “TGF” leading to a first
reduction of the dataset to 329 probesets of interest.
Then, the objective being to describe the inflam-
mation mechanistically and without considering
intracellular reactions and intermediates, a deeper
analysis of these probesets was made. Data which
could not be exploited because it was below the
microarray detection limit was removed and, where
more than one microarray output referred to the
same biological entity, only the most intense sig-
nal was selected. Proteins which were unrelated to
cytokines and their receptors according to the litera-
ture were also removed [33]. This allowed selection
of 53 probesets related to well-known cytokines and
their receptors, all of which are involved in endotoxin
tolerance or pathogen recognition.

Here, the strategy is to propose a simplified model
based on an immune system of one pair of cytokines
with their receptors and the average quantity of leuko-
cytes. It is intended that this be extended in future
work. Further consideration of the probesets nar-
rowed down the number of potential cytokines for
modelling to 14, each of which has data available for
both receptors and cytokine (about 30 probesets) :
IL1A, IL1B, IL2, IL3, IL4, IL6, IL10, IL11, IL12A,
IL13, IL16, IL18, IL24 and IL27. Of these, IL1, IL4,
IL6, IL10, IL18 have been strongly associated with
sepsis [7, 34–40], with 1L1, IL6 and IL18 being pro-
inflammatory and IL4 and IL10 anti-inflammatory.

Fig. 1. Mean X-ray fluorescence signal measured for IL18 and
IL10 cytokines at 0, 24 h and 48 h after septic shock. The cor-
responding signals obtained for the healthy volunteers are also
reported as control data. The bars correspond to the standard devi-
ation (n = 28 and 25 for sick and healthy patients, respectively).

From this set of 5 cytokines, IL18/IL10 was identi-
fied as the optimal pair for modelling. This cytokine
pair is characterized by two cytokines, one with pro-
and the other with anti-inflammatory action.

Both IL18 and IL10 cytokines are very often
described in the literature dedicated to sepsis [41–43]
and Eidt et al. [44] found mortality directly propor-
tional to IL18 plasma levels, which did not occur with
other inflammatory mediators whilst Mierzchala-
Pasierb et al. [45] found that IL18 can be used to
differentiate sepsis and septic shock status better
than other biomarkers. IL10 is the anti-inflammatory
cytokine. Indeed, the intensities of IL10 and IL18
probesets were strongly detected by the microarrays
and significantly increased after septic shock as indi-
cated by t-test (p-value<0.05, results not shown).
The mean X-ray fluorescence signal measurements
are given in Fig. 1. Moreover, it is well-known that
IL10 and IL18 each adsorb onto only one specific
receptor [46]. These receptors were constructed from
two proteins (denoted IL10RA and IL10RB for IL10
and IL18R1 and IL18RAP for IL18) that were each
described by a single probeset.

As IL10RA is specific to IL10 receptor whilst
IL10RB is also engaged by other receptors, the vari-
ation of IL10RA is followed. IL18R1 and IL18RAP
are both specific receptors of the IL18 cytokine [46].
Here, we considered these two parts as equimolar
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Table 1
List of the selected probesets related to the selected cytokines and

their receptors

Cytokine/ Cytokine receptor Probeset

IL10 207433 at
IL10RA 204912 at
IL10RB 209575 at
IL18 206295 at
IL18R1 206618 at
IL18RAP 207072 at

in the receptor structure. This allowed the quantity
of receptors to be monitored using only the limiting
probeset. The selected cytokines and their receptors
are presented in Table 1 with their corresponding
probeset.

In reality, cytokines such as IL18 and IL10 have
pro- or anti- inflammatory actions through complex
networks involving feedbacks [42, 47–49]. Here, we
are limited to a single cytokine pair. So, prior to the
modeling part, the two following assumptions have
been made to describe both the adsorption and pro-
duction mechanisms of IL10 and IL18 cytokines:

i) the cytokines adsorb specifically onto their
receptor (IL10RA and IL18 R, respectively)
and no interaction occurs with other receptors
and

ii) the pro-inflammatory cytokine (IL18) stim-
ulates the production of both pro- and
anti-inflammatory species while IL10 only
stimulates the production of anti-inflammatory
ones (as reported in Fig. 2).

2.2. Conversion of X-ray fluorescence data into
concentration

In order to be able to apply the model to patient
data, it was necessary to convert the X-ray fluo-
rescence intensities into concentrations. Indeed, the
material balances were made on species in molar
quantities.

However, no calibration curve was available.
Indeed, the transcribed RNA cannot be rigorously
correlated to the amounts of the expressed proteins:
many steps subsequent to the formation of the RNA
are necessary before obtaining an effector protein.
Correlating the X-ray fluorescence to the concen-
tration is therefore an over-evaluation of the protein
concentration in the medium, but is necessary at first.

All the probeset intensities are numerically treated
so that they can be compared relative to each other
[7]. A calibration curve between X-ray fluorescence
intensity and protein concentration can be con-
structed from measured protein concentrations and
the probesets.

During sepsis, protein production is strongly mod-
ified: the calibration curve is therefore constructed
from control values only. These 22 probesets for
healthy individuals make it possible to set maximum
ranges of expression values which are correlated with
ranges of protein volume concentrations from the lit-
erature [50, 51].

To try and improve accuracy, two other widely
measured protein concentrations have been added:
S100A8 and S100A9 [52]. These S100 alarmin

Fig. 2. Schematic representation of adsorption and production mechanisms related to IL18 and IL10 cytokines.



J. Tallon et al. / Dynamical modelling of cytokines in septic shock 105

Fig. 3. Calibration curve for protein concentration from Average
X-ray fluorescence values in healthy patients.

biomarkers are secreted by leukocytes and are
involved in various inflammatory diseases. This data
was used to create the calibration curve shown in
Fig. 3, relating the protein concentration in mol.m−3

to the X-ray fluorescence intensity. Linear regression
was used to obtain the following relation:

Protein concentration = 1.27x10−9 X-ray fluores-
cence intensity

So, finally, the experimental training data, which
will be used for parameter estimation, is the concen-
trations of IL10, IL10 R, IL18, IL18 R and the white
blood cell count (leukocytes).

3. Modeling

The model is based on chemical reaction engineer-
ing principles with the following assumptions:

• The blood system is an open system (mass
balances based on fluxes), described with two
phases: a fluid phase (blood), and leucocyte
cells. It has interactions with surroundings
through source terms of cells coming from bone

marrow and source terms of cytokines and recep-
tors coming from organs. The blood system is
represented in Fig. 4.

• The blood volume is assumed to be constant.
• The cells are uniformly dispersed in the fluid

phase and represent average leucocyte cells.
• The receptors are described as being only on the

surface of the cells. They are said to be uniformly
distributed.

• The adsorbed anti-inflammatory IL10 cytokines
(B) on their receptors IL10RA (RB) directly trig-
ger the chemical production of IL10 (B) and
IL10RA (RB). The adsorbed pro-inflammatory
IL18 cytokines (A) on their receptors IL18 R
(RA) trigger the chemical production of all
cytokines and receptors. The production kinet-
ics of both cytokines and receptors are assumed
to be of order 1 with respect to the adsorbed
cytokines.

• The linear driving force model is used to rep-
resent the transfer of cytokines from the cell to
the blood and the transfer of cytokines from the
blood to receptors [53]. This model relates the
average adsorbate concentration inside the cell
directly with the concentration in the fluid phase.

• The cytokines in the blood are adsorbed on
receptors. This adsorption is already described
in some existing pharmacokinetic models [24].
Langmuir equilibrium is assumed for the adsorp-
tion [54]. So the expressions of the adsorbed
concentrations onto the surface of cells are given
below (see Nomenclature section for definition
of variables):

Aads = RAKAAint

1 + KAAint

, Bads = RBKBBint

1 + KBBint

Table 2
Fixed parameters and their values

Mass transfer Death kinetic Kinetic constants for
coefficients (min) constants (min) receptor production (min)

Parameter 1
kintA

la

, 1
kintB

la

1
kcA

la

, 1
kcB

la

1
kA

d

, 1
kB

d

1
kc

d

1
kRA

, 1
kRB

1
kA

RB

Value 0.001 0.001 30 1470 90 90

Table 3
List of the estimated parameters

Langmuir Kinetic constants for Proportion of receptors Kinetic constant for
coefficients cytokines production produced or cell production
(m3.mol−1) (min) destroyed (-) (min.mol.m−3)

KA KB
1

kA

1
kB

1
kBA

k1 k2
1
kc



106 J. Tallon et al. / Dynamical modelling of cytokines in septic shock

Table 4
List of the estimated source terms

Source terms for:

Pro-inflammatory Anti-inflammatory Cells
cytokines (mol.min−1) cytokines (mol.min−1) (min−1)

SA SB Sc

The inflammation comes from the variation of the
cytokines, which can stimulate or inhibit leucocyte
production.

3.1. Cytokine material balances in the fluid, at
the cell/fluid interface and in the cells

In chemical reaction engineering it is usual to
construct balances over a defined volume based on
conservation of mass. This can be for any individual
component or the sum of all the species present. The
mass balance takes into account the consumption,
production and accumulation of the species under
consideration as well as mass flows into and out of
the defined volume [55].

The material balances in mol.min−1 for A
(pro-inflammatory cytokine IL18) and B (anti-
inflammatory cytokine IL10) in the fluid, at the
interface of the cells and in the cells, are given
in Equations (1)–(6). Equation (1) is for the pro-
inflammatory cytokines in the blood volume. They
arrive from the cell interior and a source, such as
an inflamed organ or mucus, and are transferred to
receptors on the cell membrane. There is also a term

for cytokine consumption because they have a fixed
lifetime. Equations (2) and (3) respectively, are the
balances on the cytokine quantities at the cell mem-
brane and inside the cell. The amount of cytokine
interior to the cell depends on the mass transfer rate
from the cell to the blood volume, the consump-
tion rate due to the fixed lifetime and the production
of cytokine due to adsorption onto the cell surface.
Equations (4) to (6) represent the anti-inflammatory
cytokine behaviour. It is identical to that of the pro-
inflammatory cytokine except adsorbed quantities of
both pro- and anti- inflammatory cytokines are used
to determine the cytokine quantity inside the cell.

dVlA

dt︸ ︷︷ ︸
Accumulation
of A in blood
(mol.min−1)

= Vc(kint A
la (Aint − A)︸ ︷︷ ︸
Transfer of A
from blood→

cell surface

+ kcA
la (Ac − A))︸ ︷︷ ︸
Transfer of A
from inside

cells to blood

+ Vlk
A
d A︸ ︷︷ ︸

Consumption
of A in blood

+ SA︸︷︷︸
A into blood
from source

(1)

dVcAads

dt︸ ︷︷ ︸
Accumulation
of A at cell

surface
(mol.min−1)

= −Vck
intA
la (Aint − A)︸ ︷︷ ︸

Transfer of A
from blood to

cell surface

(2)

Fig. 4. Representation of the blood system.
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Fig. 5. Estimated parameter distributions by number of patients, Np for KA, KB, kA, kB, kBA, k1, k2, kc.
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Table 5
Mean parameter values and calculated parameter values for four Patients (1 woman and 3 men) with their 95% confidence intervals (CI)

Parameters KA KB kA kB kBA k1 k2 kc

(m3.mol−1) (m3.mol−1) (min−1) (min−1) (min−1) (-) (-) (min−1)

Total mean value for all patients (n = 19) 0.0062 0.1750 0.0055 1.3996 2.1222 1.2328 1.0501 1.9016
living woman 0.0132 0.8984 0.0099 1.7205 0.2124 1.1939 0.9978 1.1097
CI for living woman ±0.006 ±14 ±0.006 ±0.55 ±33 ±0.047 ±0.028 ±2.51
dead man (1) 0.0018 0.0009 0.0098 0.9778 2.4406 1.0732 1.031 0.198
CI for dead man (1) ±1 10−5 ±3.2 ±1 10−5 ±1169 ±3412 ±1 10−5 ±0.1 ±7.7
living man 0.0024 0.3862 0.0035 0.4868 2.7062 1.3686 0.871 0.6541
CI for living man ±0.19 ±44 ±0.29 ±56 ±273 ±0.79 ±0.4 ±45
dead man (2) 0.0019 0.3086 0.004 2.05 0.0945 0.4882 1.2208 4.1631
CI for dead man (2) ±1 10−5 ±0.014 ±0.0247 ±51 ±20 ±0.19 ±0.133 ±248

dVcAc

dt︸ ︷︷ ︸
Accumulation
of A in cell
(mol.min−1)

= VckAAads︸ ︷︷ ︸
Production of

A in cell

− Vck
cA
la (Ac − A)︸ ︷︷ ︸

Transfer of A
from inside

cells to blood

− Vck
A
d Ac︸ ︷︷ ︸

Consumption
of A in cells

(3)

dVlB

dt︸ ︷︷ ︸
Accumulation
of B in blood
(mol.min−1)

= Vc(kintB
la (Bint − B)︸ ︷︷ ︸

Transfer of B
from blood to

cell surface

+ kcB
la (Bc − B))︸ ︷︷ ︸
Transfer of B
from inside

cells to blood

− Vlk
B
d B︸ ︷︷ ︸

Consumption
of B in blood

+ SB︸︷︷︸
B into blood
from source

(4)

Table 6
Mean source term values and source term values calculated for four
Patients (1 woman and 3 men) with their 95% confidence interval

(CI)

Source terms SA SB SC

(mol.min−1) (mol.min−1) (min−1)

Living woman 0.14 0.10 0.0008
CI for Living woman ±0.07 ±0.04 ±0.0002
Dead man (1) 0.09 0.07 0.0046
CI for Dead man (1) ±0.40 ±0.30 ±1 10−5

Living man 0.05 0.07 0.0010
CI *for Living man ±0.11 ±0.12 ±0.0003
Dead man (2) 0.10 0.10 0.0014
CI for Dead man (2) ±0.03 ±0.22 ±0.0001

Fig. 6. Cytokine source terms, SA and SB, relative to cell source term, Sc. Black dots indicate deceased patients and grey dots represent
survivors.
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Fig. 7. Parameter value distributions by number of patients for KA, KB, kA, k1, k2.

dVcBads

dt︸ ︷︷ ︸
Accumulation
of B at cell

surface
(mol.min−1)

= −Vck
intB
la (Bint − B)︸ ︷︷ ︸

Transfer of B
from blood to

cell surface

(5)

dVcBc

dt︸ ︷︷ ︸
Accumulation
of B in cell
(mol.min−1)

= VckBBads︸ ︷︷ ︸
Production of
B in cell due
to adsorbed B

+ VckBAAads︸ ︷︷ ︸
Production of
B in cell due
to adsorbed A

−Vck
cB
la (Bc − B)︸ ︷︷ ︸

Transfer of B
from inside

cells to blood

− Vck
B
d Bc︸ ︷︷ ︸

Consumption of
B in cells

(6)
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Table 7
Parameter and source term values determined from the whole set of patients (mean values, n = 19 and individually for four patients (1 woman

and 3 men) with their 95% confidence interval (CI)

Parameters KA KB kA k1 k2 SA SB SC

(m3.mol−1) (m3.mol−1) (min−1) (-) (-) (mol.min−1) (mol.min−1) (min−1)

Total Mean Value for all patients 0.0082 0.2132 0.0085 1.4676 1.0830 N/A N/A N/A
Living woman 0.0233 0.9000 0.0170 1.197 0.989 0.135 0.100 0.0007
CI for Living woman ±0.008 ±0.051 ±0.008 ±0.031 ±0.035 ±0.013 ±0.03 ±0.0001
Dead man (1) 0.0018 0.0009 0.0098 0.9778 2.4406 1.0732 1.031 0.198
CI for Dead man (1) ±3.8 ±0.018 ±20 ±0.25 ±0.24 ±0.23 ±0.22 ±0.0008
Living man 0.0020 0.4996 0.0034 1.3274 0.9192 0.0596 0.0760 0.0010
CI *for Living man ±6 ±6 ±10 ±0.55 ±0.27 ±0.058 ±0.13 ±0.0003
Dead man (2) 0.0018 0.2134 0.0038 0.5071 1.2221 0.0888 0.0996 0.0014
CI for Dead man (2) ±0 ±2.9 ±0.023 ±0.19 ±0.12 ±0.1 ±0.2 ±0.0001

Table 8
Parameter and source term values determined from the whole set of patients (mean values, n = 19) and individually for four patients (1

woman and 3 men) with their 95% confidence interval (CI)

Parameters KA (m3.mol−1) kA (min−1) k1 (-) SA (mol.min−1) SA (mol.min−1)

Total Mean Value for all patients 0.0082 0.0085 1.4676 N/A N/A
Living woman 0.0799 0.0368 1.1990 0.1467 0.0007
CI for Living woman ±0.0064 ±0.0064 ±0.0597 ±0.0150 ±0.0002
Dead man (1) 0.0006 0.0031 1.0686 0.0730 0.0046
CI for Dead man (1) ±0.0007 ±0.0007 ±0.2963 ±0.0424 ±0.0018
Living man 0.0026 0.0039 1.3300 0.0666 0.0010
CI *for Living man ±0.00001 ±0.0029 ±0.3463 ±0.0212 ±0.0003
Dead man (2) 0.0036 0.0044 0.5492 0.0884 0.0014
CI for Dead man (2) ±0.00001 ±0.0008 ±0.2530 ±0.1350 ±0.0002

Fig. 8. Parameter value distributions by number of patients for KA, kA, k1 and the intervals corresponding to all dead patients.
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Equations (7) and (8) give the mass balances on
the cytokine receptors which are found on the outside
surface of the cell membrane.

The terms k1V 1cV l
dNc
dt

RA and k2V 1cV l
dNc
dt

RB

respectively allow the receptor density of A and B at
the cell surface to be managed. For k1 and k2 equal
to 1, A and B receptor concentrations are maintained
constant with respect to cell number. For k1 and k2
greater than 1, A and B receptor densities increase,
while for k1 and k2 lower than 1, they decrease. In
the particular case where k1 and k2 are equal to 0, the
quantity of A and B receptors remains constant.

dVcRA

dt︸ ︷︷ ︸
Accumulation

of A
receptors

(mol.min−1)

= VckRAAads︸ ︷︷ ︸
Production

of A
receptors

+ k1V1cVl

dNc

dt
RA︸ ︷︷ ︸

A receptor
density term

(7)

dVcRB

dt︸ ︷︷ ︸
Accumulation

of B
receptors

(mol.min−1)

= Vck
A
RBAads︸ ︷︷ ︸

Production
of B

receptors
due to

adsorbed A

+ VckRBBads︸ ︷︷ ︸
Production

of B
receptors

due to
adsorbed B

+ k2V1cVl

dNc

dt
RB︸ ︷︷ ︸

B receptor
density term

(8)

3.2. Cell number balances

Equation (9) is the balance on the number of cells
in the blood volume with the inflammation function
given in Equation (10). This function combines the
quantities of pro- and anti- inflammatory cytokines to
give a numerical representation of the overall amount
of inflammation in the body. This function is cho-
sen with the variable parameter, �, adjusted such that
f = 0 for healthy volunteers, with the average IL18 and
IL10 concentrations taken as 3.87 and 4.09 nmol.m−3

respectively.

dVlNc

dt︸ ︷︷ ︸
Accumulation of
cells (number of

of leukocytes.min−1)

= VlfkcNc︸ ︷︷ ︸
Production

of cells

− Vlk
c
dNc︸ ︷︷ ︸

Consumption
of cells

+ Sc︸︷︷︸
Cells into blood

fromsource

(9)

f (t) = A − α ∗ B (10)

This model has the ability to evolve to an alter-
native homeostatic equilibrium in the case of septic
shock as shown in Tallon et al. [56].

Fig. 9. Cytokine source terms, SA and SB, relative to cell source
term, Sc. Black dots indicate deceased patients and grey dots rep-
resent survivors.

4. Results and discussion

The estimation procedure was initiated from sim-
ulation data reported in the previous work [56]. For
the pair of cytokines under consideration, the model
has 21 parameters for 45 experimental data points
per patient (5 components multiplied by 9 sample
times) and there are 19 patients. It is thus impor-
tant to reduce the number of parameters to avoid
over parameterization and, to this end, ten of the
parameters (see Table 2) have been fixed at reason-
able values. These were chosen by sensitivity analysis
of the model, which revealed that, for all patients,
variation in the receptor production kinetic constants
(kRA, kRB, kA

RB) and the cytokine death kinetic con-
stants (kA

d , kB
d ) had little impact. Each of these was

therefore fixed at an estimated average value. The
kinetic constant for cell natural death was also found
not to be very sensitive and was fixed to be the same
as a typical cell lifetime, around 24 h. Finally, high
values were chosen for the mass transfer coefficients
so that mass transfer would not be a limiting factor.
This seems to be a reasonable assumption.

11 parameters were estimated from 45 data points
using the MATLAB non-linear least squares solver
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Fig. 10. Parity plots for calculated Nc, A, B, RA, RB fluorescence against measured data (each color corresponds to one patient). Pearsons
correlation coefficient values are 0.906 for Nc, 0.715 for A, 0.818 for B, 0.855 for RA and 0.874 for RB.

function, lsqnonlin, with the trust-region-reflective
algorithm [57]. The algorithm minimizes the objec-
tive function based on an input vector of differences
between the measured and calculated data. Calcu-
lated model results in the form of concentrations were
converted into fluorescence for parameter estimation.

Parameter significance levels and confidence lim-
its of the parameter vector, b, were determined from
the standard calculation method assuming that errors
in the data are normally distributed and bearing in

mind the nonlinearity of this model. The lsqnonlin
Jacobian output matrix, J, was used to estimate the
standard error, s (bi), for parameter, bi, from Equa-
tions (11) to (12) with �, n and p respectively the
sum of the squared errors, the numbers of data points
and the number of estimated parameters. HT

ii is the ith
diagonal element of HT . Hence the statistical signif-
icance of each parameter in Equation (13) was used
to calculate the confidence limits at αt% using the
t-distribution with variable t.
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Fig. 11. Calculated and measured pro-inflammatory cytokine A fluoresence versus time, markers indicate measured data, simulation results
are shown as lines.

H = JT J (11)

s (bi) =
√

�.HT
ii

(n − p)
(12)

bi ± s (bi) t (n − p; αt/2) (13)

4.1. Strategy for parameter estimation

Although 10 parameters have been fixed due
to their low variability, 11 parameters (8 physi-
cal parameters and 3 source terms) remained to be
estimated for a total of 45 data points. First the esti-
mation of all these parameters was performed for each
patient. From a global analysis of parameter sensitiv-
ity, the three least sensitive parameters were then fixed
and a second round of estimation was performed for
all patients. Then, three more parameters were fixed
and a third, final, estimation was carried out. In this

section, we present the results of the different steps
of this strategy.

4.1.1. First round of estimation: 11 parameters
for each patient

The estimated parameters are listed in Tables 3
and 4.

The distributions by number of patients for all the
estimated parameters listed in Table 3 are given in
Fig. 5. For each parameter, the estimated values for
all the patients were collated into 5 sets to smooth
the results and highlight the overall trend. Figure 6
gives the estimated values of the cytokine source
terms, SA and SB, plotted against the estimated cell
source term, Sc. This figure shows that the produc-
tion of cytokines is more or less independent of the
cell source term, except for the pro- inflammatory
cytokine source term SA which seems to decrease as
the cell source term increases. The bone marrow of
women appears to produce fewer cells than that of
men. Moreover, Fig. 6 shows that the relative rates
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Fig. 12. Calculated and measured recepetor of pro-inflammatory cytokine RA fluoresence versus time, markers indicate measured data,
simulation results are shown as lines.

of cytokine and cell production do not differ between
patients who survive and those who do not.

The mean parameter values (corresponding to the
first moment of the distribution) are listed in Table 5
with parameter values and 95% confidence intervals
for four patients (3 men and 1 woman including 2
patients who died). The source terms of cytokines
and cells are presented in Table 6.

Confidence intervals were calculated for the
nonlinear parameters. A wide confidence interval
suggests that there is insufficient identifiability struc-
ture in the model to determine the parameters from
the available measurements. The existence of super-
fluous parameters in the model may lead to a “rank
deficient” condition of the Jacobian matrix (when
gradient based methods are used for solution) and/or
inflated confidence intervals.

From the results presented in Table 5, it can
be seen that the confidence intervals of parameters
kB, kBA, kc were very wide. So, they were considered
non-sensitive and were set at the mean value obtained
from all patients and given in Table 5. The most sen-

sitive parameter for all patients, without exception, is
the source term SC corresponding to the production
of the cells by the bone marrow.

4.1.2. Second round of estimation: 8 parameters
for each patient

The same methodology as in Section 4.1.1 was
applied for this new estimation. The distributions
of parameters KA, KB, kA, k1, k2 by number of
patients are presented in Fig. 7. The estimated
cytokine source terms, SA and SB, considered rela-
tive to the cell source term, Sc, are not given because
the results were the same as those shown in Fig. 6.
Table 7 gives the mean parameter values and source
terms and also the parameter values and source terms
for the same four patients as previously with their
confidence intervals.

Since the confidence interval of parameter KB is
wide for most of the patients, it was set to the cor-
responding total mean value given in Table 7. From
Fig. 7 and Table 7, it can be seen that the mean value
of parameter k2 was close to 1 for most patients. The
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Fig. 13. Calculated and measured anti-inflammatory cytokine B fluoresence versus time, markers indicate measured data, simulation results
are shown as lines.

concentration of the associated receptor (RB) was
constant, meaning that the receptor concentration is
linked to the formation and death of cells. The vari-
ation of the cell number was not accompanied by a
proportional change in the number of receptors. So,
this parameter was fixed at one for the last estima-
tion. The source term related to the anti-inflammatory
components was less sensitive and remained rela-
tively constant for all patients (see Fig. 6). This latter
was thus also fixed to 0.0742 mol/min, i.e. the average
value calculated across all patients.

4.1.3. Third round of estimation: 5 parameters
for each patient

RB and k2 and KB being fixed, 5 parameters
remained to be estimated. In the following, the dis-
tributions of parameters KA, kA, k1, by number of
patients are presented in Fig. 8. Table 8 gives the
mean parameter values and source terms and also the
parameter values and source terms for the same four
patients as previously with their confidence intervals.

Figure 8 shows that the parameters of all patients
who died are to the left of the distribution, especially
for the adsorption of the pro-inflammatory cytokine,
IL18, onto its receptor, meaning a very slow adsorp-
tion. This slow adsorption could cause a slow cell
response to the inflammatory action of the system
and therefore lead to bad regulation of this aspect.

Figure 9 shows the same trends as Fig. 6 with the
pro-inflammatory cytokine source term decreasing as
the cell source term increases for females and no dif-
ferentiation between surviving and deceased patients.

Overall, the parameter values are of the correct
order and comparable with other values found in the
literature [58].

4.2. Model outputs

The parity plots in Fig. 10 compare the simulation
results directly against the experimental training data
described in Section 2: the number of white blood
cells (leukocytes), cytokines IL18 and IL10 (A and B)



116 J. Tallon et al. / Dynamical modelling of cytokines in septic shock

Fig. 14. Calculated and measured receptor of anti-inflammatory cytokine RB fluoresence versus time, markers indicate measured data,
simulation results are shown as lines.

and their receptors. Simulations were performed with
the final set of parameters and source terms (from the
estimation of 5 parameters for each patient). Cytokine
quantities are represented as fluorescence in all the
Figures in this section. The parity plots show a good
correlation between the calculated and measured data
with a Pearsons correlation coefficient of 0.906 for
the white blood cells and as follows for the cytokines:
0.715 for IL18, 0.818 for IL10, 0.855 for IL18 recep-
tors and 0.874 for IL10 receptors. The critical value of
Pearson’s correlation coefficient above which R indi-
cates a statistically significant correlation is 0.159 at
the 95% confidence level for 150 degrees of freedom.

For the four patients (1 woman and 3 men),
Figs. 11–15 give the calculated and measured values
of pro-inflammatory cytokine, A, pro-inflammatory
cytokine receptor, RA, anti-inflammatory cytokine,
B, anti-inflammatory cytokine receptor, RB and cell
number respectively for all blood samples.

Figure 11 compares the measured and calculated
values of fluorescence for IL18, the pro-inflammatory

cytokine. In each case, the calculated values follow
the trend of the data. However, there is no common
trend between the four cases shown. The profile of
the curve relating to the woman shows increasing
quantities of IL18 which would be expected at the
start of sepsis [8], whereas the curves for the men
have much less of a gradient. One drawback with
the data is that the first measurement is based on
the moment the patient arrived in the hospital and
not the actual onset of sepsis. So the initial condition
for the model is at an unknown time during the sep-
sis response. Another is that although the treatment
is standardized the cause of sepsis is not controlled.
Figure 12 shows the results for the pro-inflammatory
cytokine receptor. In all cases, except that of the
surviving man, the model represents the data well,
suggesting that the method of determining receptor
concentration from the quantity of cytokine at the
cell membrane is a useful one. Figure 13 compares
the measured and calculated values of fluorescence
for IL10, the anti-inflammatory cytokine. As men-
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Fig. 15. Calculated and measured cell number Nc versus time, markers indicate measured data, simulation results are shown as lines.

tioned earlier, the model was not very sensitive to the
parameters for the anti-inflammatory cytokine and
here we observe that, despite apparent trends in the
data, the model did not pick up this dynamic but
rapidly adjusted to a value close to the mean. Fig-
ure 14 compares the measured and calculated values
of the anti-inflammatory cytokine receptor fluores-
cence and, here, the receptor of anti-inflammatory
cytokine RB does not vary much experimentally and
the calculated values were constant. This low vari-
ation observed experimentally is almost definitely
the reason behind the low-sensitivity of the associ-
ated parameters (KB, kB, kBA). Also, the number
of data points is quite limited and the timing of the
data collection, in the first 48 h of sepsis, is during
a period of strong inflammation. This could partially
explain why the model was more sensitive to parame-
ters relating to the pro-inflammatory cytokine, IL18,
and why the calculated fluorescence for IL18 and
its receptor fit the measured data better than those
for IL10. Furthermore, in their work to model the

response of 9 cytokines to TGN1412 infusion, Yiu
et al. [8] demonstrated that IL10 concentrations have
a small but rapid response to IFN-� stimulus and, in
their model of cytokine dynamics during a cytokine
storm in mice, Waito et al. [27] showed that IL10 con-
centrations depend on at least six pro-inflammatory
cytokines. So, as more data becomes available and
more cytokines are included in the reaction network,
calculation of the anti-inflammatory response should
improve.

Figure 15 shows that the model gives a good
prediction of the variation of the number of leuko-
cyte cells, particularly for the woman in this case.
This depends on the parameters: kd, which fixes the
cell lifetime, Sc, which determines the quantity of
leukocytes entering the blood volume and f , the
inflammation function. Figure 16 shows the calcu-
lated and measured inflammation level function f

versus time for the four patients. This inflamma-
tion level doesn’t provide any general information
about the inflammatory state of the patient but
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Fig. 16. calculated and measured inflammation level function f versus time, markers indicate measured data, simulation results are shown
as lines.

only describes the amounts of A (pro-inflammatory
cytokine IL18) and B (anti-inflammatory cytokine
IL10) cytokine pair. The experimental data is
dispersed making its interpretation difficult. The sim-
ulation showed increasing inflammation in all cases
except for the surviving man and a greater increase
in the inflammatory level of the women relative to
the men. In fact, the curve for the woman is highly
reminiscent of those used by Hotchkiss et al. [3] to
describe the host inflammatory response in their com-
peting theories of the host immune response in sepsis,
with a rapid initial increase in inflammation over the
first two days which then plateaus before decreasing.

5. Conclusion

A dynamical model describing the physico-
chemical phenomena involved in homeostasis and
sepsis, has been proposed in Tallon et al. [56].
This dynamical model of the blood system consid-

ers interactions between cells and cytokines, with its
surroundings (organs, bone marrow) and introduces
the inflammatory level impact on homeostasis via
the function f. Data for the cytokine pair IL18 and
IL10 from the sepsis 48 H data base has been cho-
sen to validate this model. Since the model contains
21 parameters, 10 parameters (kinetic constants and
source terms) have been fixed and the others have
been estimated in three stages. All estimated kinetic
constant values are distributed with respect to the
number of patients. Finally, the more sensitive param-
eters are those related to pro-inflammatory cytokines
and cells. By the parity diagram, the model shows a
good agreement between the experimental and sim-
ulated data. At the beginning of sepsis, the simulated
patient response seems to be driven by the inflamma-
tory actors. The estimated adsorption coefficient of
the pro-inflammatory cytokine, IL18, on its associ-
ated receptor, IL18 R, is consistently below the mean
value of its distribution and, is particularly low in the
non-surviving patients, hinting that this could be a key
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Nomenclature

A, B
(
molm−3

)
Concentration in the blood of cyt.

A, B resp.
Ac, Bc

(
molm−3

)
Concentration in the cell of cyt.

A, B resp.
Aads, Bads

(
molm−3

)
Concentration of adsorbed cyt. A,

B resp.
Aint, Bint

(
molm−3

)
Concentration at the interface of

cyt. A, B resp.
f (molm−3 ) the inflammation level function
kA, kB

(
min−1

)
Production kinetic constant of

cyt. A, B in the cell from
adsorbed cyt. A, B resp.

KA, KB (m3mol−1 ) Langmuir coefficients

kBA

(
min−1

)
Production kinetic constant of

cyt. B in the cell from adsorbed
cyt. A

kcA
la

, kcB
la

(
min−1

)
Mass transfer coefficient between

blood and cell for cyt. A, B
resp.

kA
d
, kB

d
, kc

d

(
min−1

)
death constants of cyt. A, and of

cells resp.
kintA
la

, kintB
la

.
(
min−1

)
. mass transfer coefficient between

blood and interface for cyt. A,
B resp.

kRA, kRB

(
min−1

)
Production kinetic constant of

rec. A from adsorbed cyt. A, of
rec. B from adsorbed cyt. B
resp.

Production kinetic constant of
rec. B from adsorbed cyt. A

kA
RB

(
min−1

)
Production kinetic constant of

rec. B from adsorbed cyt. A
kc

(
m3mol−1min−1)

)
Adjustment parameter

k1, k2 (m3) Proportion of rec. A, B resp.
produced or destroyed induced
by the variation of the cell
number

Nc (m−3ofblood) number of cells in the blood RA, RB

(
molm−3

)
Concentration on the cell of rec.

A, B resp.
SA, SB

(
molmin−1

)
source terms of cytokine A, B

respectively
Sc

(
cellnumber.min−1

)
source terms of cells from the

bone marrow
Vc

(
m3

)
volume of cells Vl

(
m3

)
volume of the blood

α (-) Ratio A/B for healthy patient V1c

(
m3

)
volume of one cell

aspect in the dysregulation of the immune system in
sepsis and would be interesting to study with a larger
data set. This work has permitted us to confront a
preliminary model, based on chemical reaction engi-
neering principles, against a set of data taken from
real patients during the first 48 h of sepsis. The use of
mass balances means the model is quantifiable and
the future perspective of this work is to scale from a
single pair to a network of cytokines.
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