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Background: The lack of explanations for the decisions made by deep learning algorithms 
has hampered their acceptance by the clinical community despite highly accurate results on 
multiple problems. Attribution methods explaining deep learning models have been tested on 
medical imaging problems. The performance of various attribution methods has been 
compared for models trained on standard machine learning datasets but not on medical 
images. In this study, we performed a comparative analysis to determine the method with the 
best explanations for retinal OCT diagnosis.
Methods: A well-known deep learning model, Inception-v3 was trained to diagnose 3 
retinal diseases – choroidal neovascularization (CNV), diabetic macular edema (DME), 
and drusen. The explanations from 13 different attribution methods were rated by a panel 
of 14 clinicians for clinical significance. Feedback was obtained from the clinicians regard-
ing the current and future scope of such methods.
Results: An attribution method based on Taylor series expansion, called Deep Taylor, was 
rated the highest by clinicians with a median rating of 3.85/5. It was followed by Guided 
backpropagation (GBP), and SHapley Additive exPlanations (SHAP).
Conclusion: Explanations from the top methods were able to highlight the structures for 
each disease – fluid accumulation for CNV, the boundaries of edema for DME, and bumpy 
areas of retinal pigment epithelium (RPE) for drusen. The most suitable method for a specific 
medical diagnosis task may be different from the one considered best for conventional tasks. 
Overall, there was a high degree of acceptance from the clinicians surveyed in the study.
Keywords: explainable AI, deep learning, machine learning, image processing, optical 
coherence tomography, retina, diabetic macular edema, choroidal neovascularization, drusen

Introduction
Retinal diseases are prevalent among large sections of society, especially amongst 
the aging population and also those with other systemic diseases such as diabetes.1 

It is estimated that the number of Americans over 40 years with a diabetic retino-
pathy (DR) diagnosis will rise threefold from 5.5 million in 2005 to 16 million in 
2050.2 For each decade of age after 40, the prevalence of low vision and blindness 
increases by a factor of three.3 Long wait times in the developed world and lack of 
access to healthcare in the developing countries lead to delays in diagnosis and in 
turn deteriorated vision and even irreversible blindness. This leads to financial 
burden (and psychological burden) on patients as well as the healthcare system 
due to higher treatment costs in the later stages. Tackling such challenges and 
providing efficient health services requires advanced tools to help health care 
professionals.
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Artificial intelligence (AI), especially deep learning 
which is modeled after the human neural system4 has 
produced promising results in many areas including 
ophthalmology. These are used for tasks like disease 
detection,5 segmentation,6 and quality enhancement7 of 
optical coherence tomography (OCT) and fundus photo-
graphs. The convolutional neural networks (CNN) are the 
most common form of deep learning algorithms used for 
image classification tasks like retinal disease detection and 
have shown promising results.8–10

Even though these algorithms show performance com-
parable to that of clinicians, the applications of DL meth-
ods in ophthalmology are limited. A major barrier to 
adoption is the “black-box” nature of these algorithms 
since they cannot explain how the algorithm arrived at 
that particular decision unlike a clinician. The other chal-
lenges include medico-legal and technical issues which 
could involve new legislation, user-centric systems, and 
improved training.11

Various explainability methods have been developed 
and applied to different areas including medical imaging.12 

Most of the explainability methods evaluate the contribu-
tion of each pixel of the image to the model output and 
hence are called attribution methods. Almost all the stu-
dies, especially the ones for ophthalmic diagnosis utilize a 
single explainability method and do not provide compar-
isons with alternatives.13,14 We argue that an explainability 
method that performs the best on standard computer vision 
datasets may not be the most suitable for OCT images 
which have a different data distribution than real-world 
images. Previously,15,16 we have compared multiple 
explainability methods quantitatively for their ability to 
highlight the part of the image which had the most impact 
on the model decision. We did an exploratory qualitative 
analysis using ratings from 3 optometrists and the results 
showed the need for a more detailed analysis to judge 
these methods.16

In this study, we compare and evaluate 13 explainable 
deep learning methods for diagnosis of three retinal con-
ditions – choroidal neovascularization (CNV), diabetic 
macular edema (DME), and drusen. These methods were 
rated by a panel of 14 eye care professionals (10 ophthal-
mologists and 4 optometrists). Their observations regard-
ing the clinical significance of these methods, preference 
regarding AI systems, and suggestions for future imple-
mentations are also analyzed herein.

Methods
In this section, we discuss the deep learning model used to 
detect the diseases along with a brief overview of the 
explainability methods used to generate the heatmaps of 
the regions the model considered for making the decisions.

Model
A CNN called Inception-v317 is used for many computer 
vision tasks including the diagnosis of retinal images was 
used to classify the data from the UCSD OCT dataset18 

into 4 classes – CNV, DME, drusen, and normal. This data 
set has OCT images taken from adult cohorts during the 
routine clinical care, retrospectively selected for the diag-
nosed conditions including CVN, DME, drusen and nor-
mal from electronic medical record database between the 
period (July, 2013 and March, 2017) at various eye care 
centers. Only horizontal foveal cross-section OCT were 
extracted in standard format. The model was trained on 
84,000 images and tested on 1000 images (250 from each 
class). This resulted in a test accuracy of 99.3%. The 
confusion matrix showing the relationship between true 
and predicted classes is shown in Table 1. It compares 
the predicted label (diagnosis) by the model on the X-axis 
with true labels (ground truths) on the Y-axis.

Explainability with Attributions
The attribution methods used in this study can be categor-
ized into 3 types apart from the baseline occlusion which 

Table 1 Confusion Matrix for the Model on the Test Set of 1000 Images

Predicted Label

CNV DME Drusen Normal Total

True Label CNV 249 0 1 0 250

DME 1 249 0 0 250

Drusen 3 0 247 0 250
Normal 0 0 2 248 250
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involves covering parts of the image to see the impact on 
the output. There are many methods to explain the deep 
learning models and we chose the 13 most common ones 
that were applicable to the underlying Inception-v3 model. 
The function-based methods derive attributions directly 
from the model gradients and include Gradient and 

Smoothgrad.19 The signal-based methods analyze the 
flow of information (signal) through layers of neural net-
work and include DeConvNet,20 Guided BackPropagation 
(GBP),21 and Saliency.22 The methods based on attribu-
tions completely include Deep Taylor,23 DeepLIFT,24 

Integrated Gradients (IG),25 input times gradient, 

Figure 1 Heatmaps for scans with the larger pathologies – (top) choroidal neovascularization (CNV) and (bottom) diabetic macular edema (DME). For each case - Row 1: 
Input image, DeConvNet, Deep Taylor, DeepLIFT. Row 2: Gradient, GBP, Input times gradient, IG. Row 3: LRP – EPS, LRP – Z, Occlusion, Salience. Row 1: Input image, 
DeConvNet, Deep Taylor, DeepLIFT. Row 2: Gradient, GBP, Input times gradient, IG. Row 3: LRP – EPS, LRP – Z, Occlusion, Salience. Row 4: SHAP Random, SHAP 
Selected, SmoothGrad. The scale in the bottom right shows that the parts highlighted in magenta color provide positive evidence regarding presence of a disease while those 
in blue color provide a negative evidence indicating that the image is closer to normal. DeepTaylor, GBP perform the best, SHAP highlights partial but precise regions. The 
fluid accumulation for CNV and the edges of the edema for DME were highlighted by better performing methods.
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Layerwise Relevance Propagation26 with Epsilon (LRP 
EPS) and Z rules (LRP Z), and SHAP.27 SHAP and 
Deep LIFT are considered as state-of-the-art on standard 
machine learning datasets and have superior theoretical 
background while IG is commonly used for retinal 
images.13,14

The heatmaps for 3 correctly and 1 incorrectly classi-
fied example of using the attribution methods are shown in 

Figures 1 and 2. It must be noted that certain methods such 
as DeepTaylor and Saliency provide only positive evi-
dence. Those providing both positive and negative evi-
dence have some high-frequency noise (negative 
evidence) that can be removed in practice but retained 
here to compare original outputs.

The heatmaps generated by the 13 methods for 20 
images from each disease category were evaluated by the 

Figure 2 Heatmaps for 2 scans with drusen, the smaller pathology. Top: Correct diagnosis, Bottom: Incorrect diagnosis. The pathological structures are smaller than the 
previous two and as a result most of the methods highlight regions outside too. SHAP is the most precise here in. In the incorrect case there is higher negative evidence 
(blue), especially with occlusion. The performance of the methods can be observed in terms of positive highlights of the bumpy RPE.
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14 clinicians. The group had a median experience of 5 
years in retinal diagnosis, including 4 years with OCT 
imaging. The average number of images rated per week 
was approximately 40 with all the clinicians having prior 
experience analyzing retinal SD-OCT images. They rated 
the explanations from 0 (not relevant) to 5 (fully relevant). 
The scores of each clinician were normalized by subtract-
ing the respective mean and then rescaling between 0 
and 5.

Results
Here we provide quantitative and qualitative results of this 
study. The ratings from clinicians and the survey used to 
collect the feedback are available on request.

Comparison Between Methods
The violin plots of normalized scores of raters for all the 
methods across 60 scans are shown in Figure 3. The 
estimated probability density of each method is shown 
by the thickness of the violin plot. Table 2 gives the rating 
data for all conditions and methods. Deep Taylor with the 
highest median rating of 3.85 was judged as the best 
performing method. It is relatively simple to compute 
and involves Taylor series expansion of the signal at the 

neurons. It was considerably ahead of GBP, the next best 
method which was closely followed by SHAP with 
selected and then random background.

IG, commonly employed in the literature for generating 
heatmaps for retinal diagnosis13,14 received a median score 
of only 2.5. It is known to be strongly related and, in some 
cases, mathematically equivalent28 to LRP EPS which was 
also reflected in similar ratings. The Z rule of EPS was not 
found to make much difference and the simple to compute 
input times gradient performed reasonably well. 
DeepLIFT could not be tested in its newer Reveal Cancel 
rule due to compatibility issues with the model architec-
ture and the older Rescale rule had a below average 
performance. As expected, the baseline occlusion which 
used sliding window of size 64 to cover the pixel and then 
compute significance performed worse than the attribu-
tion-based methods.

Most of the methods have the majority of the values 
around the median indicating consistent ratings across 
images and raters. Both cases of SHAP and Saliency have 
particularly elongated distributions. For SHAP, the curve is 
widest around 4 indicating good ratings for many cases. 
However, the values around 2.5 due to lower coverage of 
pathology drive the overall median lower. In the case of 

Figure 3 Violin plots of normalized ratings of all methods. The breadth of the plot shows the probability density of the data and the median value is reported on top of the 
plots. Deep Taylor was rated the highest overall followed by GBP and SHAP.
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Saliency, the ratings are spread from about 4.5 to 1.5 with 
many of them around 3.25 and 1.75 marks. The former is due 
to larger coverage of the pathological region and the latter is 
due to the fact that it missed regions frequently. Hence, 
despite better median value, it is not as suitable as lower- 
rated methods such as IG where the bulk of the value is 
around the median.

Comparison Between Raters
The Spearman’s rank correlation was used to compare the 
ratings of the clinicians with each other. This non-para-
metric test assesses the relationship between two variables, 
in this case the ratings of images by two different clini-
cians. The correlations between the ratings of all 14 clin-
icians for the 60 images and 13 methods are shown in 
Figure 4. P1 to P10 are ophthalmologists while P11 to P14 
are optometrists.

Most of the values are around 0.5 indicating an overall 
moderate agreement between clinicians. The highest cor-
relation was of 0.76 between P10 and P13. A slight nega-
tive correlation was found between P1 and P11 as well as 
P2 and P11. The rater P11 had relatively less experience 
with OCT which could have resulted in a lower correlation 
with other clinicians. This indicates that the background 
and training (ie, prior experience) of clinicians affected 
their ratings of the system.

Qualitative Observations
In this section, the qualitative feedback given by the clin-
icians regarding the performance of the system, potential 

use cases and other suggestions are summarized. A survey 
was collected from the clinicians to seek their opinion post 
study. It is notable that 79% (11/14) clinicians who parti-
cipated in the study indicated a preference for having an 
explainable system assisting them in practice, reaffirming 
the need for such system to the clinical community. One of 
the ophthalmologists gave their feedback on the system as 
– “It is a definite boon to the armamentarium as far as 
screening and diagnosis is concerned on a mass scale or in 
a telemedicine facility.”

The clinicians noted an overall better coverage of the 
pathology by Deep Taylor as the reason for higher ratings, 
however, all methods except SHAP were found to be 
mainly detecting the boundaries. SHAP was observed to 
be identifying regions inside the edema also, though the 
partial coverage of the region lower score. The noise, 
(represented in blue) especially in the case of LRP, was 
found to be a distraction by some clinicians and can be 
removed for actual implementation.

Most of the clinicians identified telemedicine and ter-
tiary care centres as potential sites which can utilize this 
system. It was suggested that it can be used for screening in 
places with large number of patients without sufficient 
number of clinicians. It could help clinicians by categoriz-
ing the scans with suspect conditions and thus allow them to 
focus their attention on examining the areas of the images 
highlighted by algorithm. This can improve efficiency, save 
time and therefore optimize patient care. Another applica-
tion could be archival and data management where the 
heatmaps could be used for separating images faster.

Table 2 Median Ratings (with IQR) for Each Disease for All Attribution Methods. Deep Taylor (Bold) Had the Highest Ratings

Method Median Rating (IQR)

CNV DME Drusen All

DcNet 2.17 (1.71–2.61) 2.47 (1.74–3.09) 2.32 (1.71–2.61) 2.32 (1.71–2.82)

DTaylor 3.80 (3.22–4.05) 3.48 (3.09–3.99) 3.99 (3.58–4.56) 3.85 (3.23–4.07)
DLift-Res 2.44 (1.85–2.72) 2.44 (1.96–2.53) 2.53 (2.32–3.09) 2.47 (2.06–2.82)

Grad 2.32 (1.77–2.53) 2.47 (2.19–2.95) 2.44 (2.03–2.61) 2.44 (1.96–2.72)

GBP 3.23 (3.09–3.80) 3.26 (3.07–3.80) 3.71 (3.22–3.99) 3.29 (3.09–3.97)
I*Grad 2.50 (2.32–2.95) 2.47 (2.28–2.82) 2.53(2.44–3.04) 2.50 (2.32–2.95)

IG 2.50 (2.32–2.95) 2.47 (2.19–2.82) 2.57 (2.44–3.20) 2.50 (2.32–2.95)

LRP.E 2.50 (2.32–2.95) 2.50 (2.32–2.95) 2.53 (2.41–3.04) 2.50 (2.32–2.95)
LRP.Z 2.50 (2.32–2.95) 2.50 (2.32–2.95) 2.53 (2.41–3.04) 2.50 (2.32–2.95)

Occ64 1.71 (1.55–1.96) 1.71 (1.42–1.85) 1.71 (1.42–1.96) 1.71 (1.52–1.96)

Saliency 2.47 (1.74–3.29) 2.72 (1.74–3.29) 2.61 (1.74–3.29) 2.61 (1.74–3.29)
SHAP-R 3.23 (2.53–3.85) 3.23 (2.53–3.85) 3.58 (2.89–3.96) 3.23 (2.53–3.85)

SHAP-S 3.23 (2.53–3.85) 3.23 (2.53–3.85) 3.53 (2.61–3.96) 3.26 (2.53–3.96)

SmoothGrad 2.45 (1.85–2.95) 2.47 (1.96–3.09) 2.47 (1.85–3.04) 2.47 (1.93–3.04)
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Discussion
Along with a comparison of various available attribution 
methods to explain deep learning models, this study vali-
dated their results through ratings from a large panel of 
clinicians. Most of them were not involved in the design 
process but were generally positive about the utility of the 
system.

A method based on Taylor series expansion, known as 
Deep Taylor, received the highest ratings. Apart from 
highlighting the markers of the disease it also focussed 
on the structures that could indicate further proliferation, 
eg, RPE in the case of mild drusen. However, the methods 
with stronger theoretical foundations did not perform well 
when compared to Deep Taylor. It should be noted that the 
original goal of these techniques is to generate a true 
representation of the features learned by a model for a 
given task. Hence, the heatmaps generated are affected 
both by the model and the attribution method. It must be 
noted that a significant issue with GBP, the second highest 
rated method in this study is that it acts as an edge detector 
and not actually revealing the model’s decision-making 
process.29,30

The dataset used here labeled only primary diagnosis, 
however, the clinicians were able to identify secondary 

diagnosis for some images from their evaluation. Also, 
due to the nature of the dataset the study is limited to a 
single orientation of the OCT scan which might differ 
between the images. All clinicians preferred to have a 
presentation of scan position on fundus images in addition 
to OCT for a better understanding of the scanned area. A 
system that uses a combination of fundus images, OCT, 
and patient data (eg, Mehta et al31) could be useful in 
practice. Another application of explainability system 
could be as a tool for self-learning. The system can be 
further developed to encompass other diseases and fine-
tuned for the specific imaging modality, considering vari-
ables such as noise, illumination, field position, etc. 
Currently, OCT is not used in screening because they are 
expensive as well as bulky. Given recent advances in low- 
cost portable OCT devices,32 it is possible to integrate an 
explainable diagnosis system on a laptop or mobile device 
for teleophthalmology purposes and it would be invaluable 
to the clinical community.

Conclusion
This is to the best of our knowledge one of the first studies 
to look at qualitative comparison of various explainable AI 
methods performed by a large panel of clinicians. A 

Figure 4 Spearman correlation for clinician’s ratings.
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method based on Taylor series expansion, known as Deep 
Taylor, received the highest ratings outperforming the 
methods with stronger theoretical background and better 
results on standard datasets. A more detailed analysis of 
specific retinal structures highlighted by the algorithms in 
comparison to clinical evaluation is currently underway. In 
addition to highlighting the pre-existing pathology, it could 
also highlight markers for further proliferation. Positive 
feedback about the use of such system was received from 
the panel of clinicians. Future enhancements of the system 
could make it a trustable diagnostic assistant helping 
resolve the lack of access to ophthalmic healthcare.
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