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Introduction: The objective of this study was to determine the NF-kappaB pathway,

hub genes, and transcription factors (TFs) in monocytes implicated in the progression of

neurovascular-related sepsis-induced cardiomyopathy (SIC) as well as potential miRNAs

with regulatory functions.

Methods : Sepsis-induced cardiomyopathy—and heart failure (HF)-related differentially

expressed genes (DEGs) between SIC and HF groups were identified separately by

differential analysis. In addition, DEGs and differentially expressed miRNAs (DEmiRNAs)

in monocytes between sepsis and the HC group were identified. Then, common DEGs

in SIC, HF, and monocyte groups were identified by intersection analysis. Based on

the functional pathways enriched by these DEGs, genes related to the NF-kB-inducing

kinase (NIK)/NF-kappaB signaling pathway were selected for further intersection analysis

to obtain hub genes. These common DEGs, together with sepsis-related DEmiRNAs,

were used to construct a molecular interplay network and to identify core TFs in

the network.

Results : A total of 153 upregulated genes and 25 downregulated genes were obtained

from SIC-, HF-, and monocyte-related DEGs. Functional pathway analysis revealed

that the upregulated genes were enriched in NF-κB signaling pathway. A total of

eight genes associated with NF-κB signaling pathway were then further identified

from the 178 DEGs. In combination with sepsis-related DEmiRNAs, HDAC7/ACTN4

was identified as a key transcriptional regulatory pair in the progression of SIC

and in monocyte regulation. hsa-miR-23a-3p, hsa-miR-3175, and hsa-miR-23b-

3p can regulate the progression of SIC through the regulation of HDAC7/ACTN4.

Finally, gene set enrichment analysis (GSEA) suggested that HDAC7/ACTN4

may be associated with apoptosis in addition to the inflammatory response.
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Conclusion : hsa-miR-23a-3p, hsa-miR-3175, and hsa-miR-23b-3p are involved in SIC

progression by regulating NF-κB signaling signaling pathway-related HDAC7/ACTN4

in monocytes and cardiac tissue cells. These mechanisms may contribute to sepsis-

induced neurovascular damage.

Keywords: neurovascular, biomarkers, HDAC7, ACTN4, microRNA, NF-kappaB (NF-κB), sepsis-

induced cardiomyopathy (SIC)

INTRODUCTION

Sepsis is a life-threatening organ dysfunction resulting from
a dysregulated response of the organism to infection (1).
Cardiac dysfunction caused by sepsis is defined as sepsis-induced
cardiomyopathy (SIC) (2). The incidence and progression of
SIC involve inflammatory responses, mitochondrial disorders,
and metabolic changes (3). Impaired cardiac function occurs
in approximately 60% of patients with septic shock within 3
days of admission (4). Patients with SIC have a poor prognosis
and high morbidity and mortality rates (5). The mortality rate
for patients with sepsis without cardiovascular compromise is
20% (6). However, the mortality rate increases for patients
with SIC (7, 8). Severe toxic symptoms cause abnormal energy
metabolism and myocardial damage in patients with sepsis,
induce myocardial cell dysfunction, and eventually lead to
severe events such as HF, which may endanger the patient’s
life (9–11). In recent years, SIC has also been found to cause
dysfunction of the vascular nerve unit, which can lead to
neurovascular dysfunction (12, 13). However, there is a lack
of biomarkers and studies on the association of SCI with
neurovascular diseases.

Researchers have found that the degree of cardiac dysfunction
is a major factor in predicting mortality and morbidity in
sepsis (14). The growing body of research confirms that
signaling between the brain and circulatory system is essential to
maintaining homeostasis during sepsis (15, 16). In patients with
sepsis, endotoxin damages the cardiac and nervous systems (17).
Endotoxins activate neutrophils excessively in sepsis, resulting
in abnormal activation of the NF-kappaB signaling pathway;
this interferes with the signaling communication between the
brain and the immune system, contributing to vascular nerve
damage associated with sepsis (12, 15). NF-kappaB-related
signaling pathways are activated in the cardio-cerebral system;
however, their molecular biological mechanisms need to be
further elucidated (18). The NF-kappaB pathway can specifically
block the proinflammatory and proapoptotic signaling caused
by sepsis in the heart and brain, which can save other organs
from the negative effects of sepsis (18, 19). Investigating the
process of SIC and SIC-related neurovascular damage in the
presence of the NF-kappaB-related signaling pathway is the focus
of this study.

Abbreviations: SIC, Sepsis-induced cardiomyopathy; GEO, Gene Expression

Omnibus; DEGs, Differentially expressed genes; DEmiRNAs, Differentially

expressed microRNAs; DEmRNAs, Differentially expressed mRNAs; GO, Gene

Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene set

enrichment analysis; scRNA-seq, Single-cell RNA sequencing.

The activation of NF-kappaB signaling pathways is closely
associated with monocytes in SIC (20). Monocytes are involved
in various biological pathways that are crucial for the progression
and prognosis of a disease. In addition, these pathways play a
key role in the onset and progression of SIC. Monocytes are
crucial regulators of inflammation. In response to inflammatory
stimuli, monocytes are activated and migrate to the sites of
inflammation to participate in the progression of inflammation
(21). The inflammatory response causes upregulation of gene
expression to trigger a massive release of inflammatory factors
such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α,
leading to the incidence of SIC (2). Monocytes are also involved
in oxidative stress (22). Intracellular over-activation of oxidative
stress plays an important role in SIC (23). There are two
immune responses in the course of sepsis, a hyperinflammatory
response and immunosuppression (24). Death in patients with
sepsis often occurs in the late immunosuppressive phase of
the disease. The low expression of monocyte human leukocyte
antigen-DR (mHLA-DR) is a universally recognized marker of
an immunosuppressed state and is widely used in the treatment
of sepsis (25–27). Therefore, identification of altered pathways
in SIC and monocytes is essential to monitor the prognosis of
patients with SIC.

microRNAs play a crucial regulatory role in the progression

of various diseases (28–31). A study found that miR-21-3p
is involved in the onset and progression of SIC (32). The
miR-144-3p/NF-kB signaling pathway can regulate SIC injury
(33). Furthermore, miR-133a-3p, miR-23b, and miR-155 are

associated with SIC, suggesting that miRNA is a potential target
for SIC therapy (34). In addition, miRNAs play a role in
inflammation, oxidative stress, and apoptosis (35, 36), and these
processes are also involved in SIC progression (37, 38).

Advancements in bioinformatics have enabled in-depth

research into disease diagnosis and treatment from the
perspective of big biological data (39–42). A large number
of gene expression profiles can be easily obtained from

RNA-sequencing (RNA-seq) data (43–46). High-throughput-
based gene sequencing and functional pathway analysis allow
bulk access to differentially expressed genes (DEGs) to examine

the key pathways involved in disease progression (47, 48).
This study aimed to identify the key pathways, hub genes,
and TFs in monocytes and potential miRNAs with regulatory
functions involved in the progression of SIC. In addition, we

aimed to screen for targets and related neurovascular damage

mechanism associated with the progression, diagnosis, treatment,
and recurrence of SIC to monitor risks and eventually improve

the prognosis of patients with SIC.
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MATERIALS AND METHODS

Data Acquisition and Pre-Processing
First, the keywords “Sepsis,” “Sepsis-induced cardiomyopathy
(SIC),” “Septic cardiomyopathy (SCM),” and “Heart failure
(HF)” were searched in the Gene Expression Omnibus (GEO)
database. Datasets were filtered for bioinformatic analyses
according to the following criteria: (1) data collected from
human tissues; (2) single-cell RNA-sequencing (scRNA-seq) data;
(3) sepsis and healthy control data; and (4) inclusion of at
least 3 samples per group in the bulk RNA-seq transcriptome
dataset. The GSE94717 (49), GSE101639, GSE79962 (50), and
GSE167363 (51) datasets were eventually included. GSE94717
and GSE101639 contain miRNA transcript data obtained from
the blood samples of 15 (12 patients with sepsis and 3
healthy controls) and 9 (6 patients with sepsis and 3 healthy
controls) subjects, respectively (49). These datasets were used
to screen for sepsis-related DEmiRNAs. GSE79962 is a dataset
consisting of mRNA transcript data obtained from the heart
tissue samples of 51 subjects (20 patients with HF, 11 healthy
controls and 20 patients with SIC). Transcriptomic data from
the GSE79962 dataset were used to identify SIC- and HF-
related (differentially expressed genes) DEGs (50). Finally, to
explore disease-related gene transcription patterns at the single-
cell level, we obtained scRNA-seq data of 5 subjects (2 healthy
controls and 3 patients with sepsis) from the GSE167363 dataset
for differential analysis of gene expression at the single-cell
level (51).

Quality Control and Integration of
ScRNA-Seq Data
As described in previous studies, RNA-seq data obtained from a
total of 31,909 single cell from 5 samples were subjected to quality
control using the “Seurat” package (52–55). The inclusion criteria
for cells were as follows: (1) samples with 200–6,000 DEGs;
(2) RNA counts > 1,000; (3) mitochondrial gene expression <

20%; and (4) hemoglobin-related gene expression < 1% (51).
In addition, the inclusion criteria for cell characteristics were
set as expression in at least 3 cells. A total of 30,091 cells and
20,597 characteristics were included in the subsequent single-cell
analysis. Finally, the scRNA-seq data were integrated using the
“SCTransform” function.

Cell Clustering and Annotation
After integration of the scRNA-seq data, the “RunPCA” and
“RunUMAP” functions were used to extract characteristics
and reduce the dimensionality of single-cell transcripts. The
“FindNeighbors” function was used to cluster the cells based on
the default top 30 principal components (PCs), and the uniform
manifold approximation and projection (UMAP) was used to
visualize the cell clusters (56). Subsequently, the SingleR (version:
1.4) R package was used for cell cluster annotation based on the
Monaco reference dataset (36). We calculated the number of cell
types in each category as a percentage of the total number of cells
in each sample.

Differential Analysis of DEGs
At the level of scRNA-seq, monocytes were isolated to calculate
monocyte-related DEGs in patients with sepsis (SP group) and
healthy controls (HC group). The “FindMarker” function was
used to identify monocyte-related DEGs, and the “ComBat”
function was used to remove batch effects from different datasets
before calculating DEmiRNAs. At the level of bulk-RNA analysis,
the “limma” R package was used to identify SIC-related DEGs
in the SIC and HC groups, HF-related DEGs in the HF and
HC groups, and sepsis-related DEmiRNAs in the SP and HC
groups at the individual level (57). p-Value < 0.05 was set as the
threshold for DEG identification, and fold change values were
used to identify upregulated and downregulated DEGs.

Intersection Analysis
After identifying monocyte-, SIC-, and HF-related DEGs,
intersection analysis was performed to identify common
DEGs. Specifically, the analysis was performed separately for
upregulated and downregulated DEGs, yielding co-upregulated
or co-downregulated DEGs associated with monocytes, SICs,
and HFs. Finally, the “VennDiagram” R package (https://
cran.r-project.org/web/packages/VennDiagram/index.html) was
used to draw a Venn diagram to present the results of the
intersection analysis.

Functional Pathway Analysis and Gene Set
Enrichment Analysis
Common DEGs were subjected to the functional pathway
analysis to identify pathways in which these dysregulated
genes may be involved. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) analyses were
performed using the “clusterProfiler” R package (58). GO terms
are classified as biological process (BP), cellular component (CC),
and molecular function (MF). We performed functional pathway
analyses for co-upregulated and co-downregulated DEGs
separately. Based on the “c2.cp.v7.2.symbols.gmt [Curated]”
reference gene set, gene set enrichment analysis (GSEA) was
performed to identify functional pathways enriched by the hub
genes as reported in previous studies (55, 59).

Downloading of Genes Associated With
NF-κB Signaling Pathway
The results of the functional pathway analysis suggested that
the NF-kB-inducing kinase pathway (NIK)/NF-kappaB signaling
pathway (GO: 0038061) was upregulated in the monocytes of
patients with sepsis, SIC, and HF. Therefore, we further retrieved
and collected a list of 144 genes associated with this pathway from
the Molecular Signatures Database (MSigDB) (59–62). Genes in
this gene set were subjected to intersection analysis with common
DEGs to obtain DEGs associated with NF-κB signaling pathway.

Construction of a Molecular Interaction
Network
From TRRUST (v2), a list of TF and target genes with
corresponding expression levels was downloaded and used to
predict TF-target gene pairs in DEGs. Then, miRWalk (<http://
mirwalk.umm.uni-heidelberg.de/>), based on the identified
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sepsis-related DEmiRNAs, was used to identify predicted
TF-target gene pairs (63). Among the predicted miRNA–
mRNA interaction pairs, only those molecular pairs that were
dysregulated in the opposite direction were retained. We then
visualized the molecular interaction network using Cytoscape
3.5.1 based on these predicted TF-target genes and miRNA–
mRNA pairs (64).

Receiver Operating Characteristic Curve
Analysis
The receiver operating characteristic (ROC) curve tool was used
to assess the diagnostic capability of hub genes. In the horizontal
and vertical coordinates of the curve, sensitivity was set on the
y-axis, whereas “1-specificity” (i.e., false-positive rate) was set on
the x-axis. Thereafter, the area under the ROC curve (AUC) was
calculated to quantify the diagnostic capability. As an indicator of
diagnostic capability, the AUC value should be usually between
1.0 and 0.5, with a value closer to 1.0, indicating a more accurate
diagnosis. In addition, the ROC curve was plotted using the
“pROC” package (65).

Statistical Analysis
In this study, statistical analyses were performed and graphical
plots were created using R (version 4.0.2). All tests were two-
sided, and a p-value < 0.05 was considered significant.

RESULTS

Quality Control and Integration of
Single-Cell Data
The distribution of key cell features, including feature counts,
RNA counts, percentage of mitochondria (pMT), and percentage
of hemoglobin (pHB), before quality control of the single-
cell data, is shown in Figure 1A. Subsequently, the single-cell
data were filtered with reference to the filtering conditions
set in the original study from which the scRNA-seq data
were obtained (Figure 1B) (51). The distribution of features
of the filtered single-cell data is shown in Figures 1C–F.
Subsequently, scRNA-seq data from five samples were integrated.
Finally, UMAP showed that the batch effects among the five
samples were removed, and the single-cell data were well
integrated (Figures 1G,H). With the above quality control
process, the quality of the data was assessed and low-quality cells
were removed.

Seven Cell Types Identified by Cell
Clustering and Annotation
To examine the effects of optimal resolution on single-cell
clustering, a range of resolution gradient values was selected
(Figure 2A). Based on the relationship between the number of
clusters and resolution, a final resolution of 0.3 was selected for
clustering, which resulted in 11 cell clusters (Figure 2B). The
distribution of RNA features, RNA count, and pMT in these 11
cell clusters is shown in Figure 2C. The features of different cell
clusters were different, suggesting possible heterogeneity among
the clusters. Subsequently, using the Monaco reference dataset,
these cell clusters were identified as seven major cell populations,

including monocytes, natural killer (NK) cells, T cells, B cells,
dendritic cells, CD4+ T cells, and CD8+ cells (Figure 2D). The
proportion of monocytes fluctuated from 22.82 to 49.65% in
the five samples (Figure 2E). In the SP group, there were more
monocytes than in the HC group (37.5 vs. 24.9%, respectively).

Common DEGs Associated With
Monocytes, SICs, and HFs
The differential expression analysis of DEGs associated with
monocytes between the SP and HC groups yielded 4,429
upregulated and 380 downregulated DEGs (Figure 3A), which
were named monocyte-related DEGs. SIC- and HF-related DEGs
are shown in volcano plots (Figures 3B,C). The Venn diagram
showed that a total of 153 genes were co-upregulated (Figure 3D)
and 25 genes were co-downregulated in the monocyte, SIC, and
HF groups (Figure 3E). These common DEGs were identified as
hub genes involved in the progression of SIC. In addition, they
were found to be dysregulated in monocytes during the onset and
progression of sepsis. Therefore, these dysregulated genes may be
the hub genes involved in the progression of SIC.

DEGs Associated With NF-κB Signaling
Pathway
The functional pathway analysis showed that the identified co-
upregulated genes were mainly enriched in NF-κB signaling
pathway and pathways related to the regulation of cell shape
(Figure 4A). The co-downregulated genes were mainly enriched
in pathways associated with proteasome, Parkinson’s disease, and
pertussis (Figure 4B). Among these pathways, NF-κB signaling
pathway is associated with various biological processes including
immunity, inflammation, stress response, B-cell development,
and lymphoid organogenesis. The intersection analysis of
common DEGs and genes associated with NF-κB signaling
pathway revealed eight dysregulated genes (e.g., ACTN4,
DICER1,DLG1,HDAC7,NFAT5, PPP4C, TERF2IP, and TRIM44)
(Figure 4C). The expression of these eight genes among the SIC,
HF, and HC groups is shown in Figure 4D. These genes were
upregulated in both SIC andHF groups, suggesting that they may
be the hub genes involved in the progression of SIC via NF-κB
signaling pathway.

Role of HDAC7/ACTN4 Regulation in
Monocytes in the Progression of SIC
To examine the molecular regulatory network that may play a
crucial role in the progression of SIC, a molecular interaction
network was constructed for sepsis-related DEmiRNAs and
NF-κB signaling pathway-related DEGs. In this regulatory
network, HDAC7 was found to be the transcriptional regulator
of ACTN4. Figure 5A shows the expression profiles of 11
DEmiRNAs that may regulate ACTN4 and HDAC7. The results
revealed 11 hub miRNAs, which, along with the HDAC7/ACTN4
regulatory pair, constitute the key molecular interaction network
involved in SIC progression (Figure 5B). A total of four miRNAs
had negative regulatory effects on HDAC7, whereas seven
miRNAs had negative regulatory effects on ACTN4. The p-
values and fold change distributions of the differential analysis
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FIGURE 1 | Quality control and data integration of single-cell datasets. (A) Scatter plot showing the relationship between cell characteristics in the single-cell data

before data filtering. (B) Scatter plot showing the relationship between cell characteristics, mitochondrial proportions (pMT), and RNA counts. The red line represents

the threshold used in performing cell mass filtering. (C–F) Violin plots showing the distribution of cellular features in each sample after data filtering. (G,H) UMAP

showing the overlaps and distribution of single-cell data after integration. These plots show the removal of batch effects.

of HDAC7 and ACTN4 were shown in the volcano plot
(Figures 3B,C). In addition, UMAP showed that the expression
of HDAC7 and ACTN4 in blood was mainly concentrated in
monocytes (Figure 5C) and was higher in the SP group than in
the HC group (Figures 3A, 5D). Therefore, we hypothesized that
HDAC7/ACTN4 regulation in monocytes may play a crucial role
in the progression and recurrence of SIC.

Establishment of an MiRNA–TF–MRNA
Regulatory Axis With ACTN4/HDAC7 as the
Core
Based on the HDAC7/ACTN4 regulatory pair, three significant

DEmiRNAs regulating HDAC7, including hsa-miR-23a-3p,

hsa-miR-3175, and hsa-miR-23b-3p, were further identified
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FIGURE 2 | Cell clustering and annotation. (A) Diagram showing the cell clustering process. (B) UMAP showing the distribution of cell clusters, 0–11 indicate different

subgroups of cells. (C) Cellular characteristics exhibited by each cell cluster. (D) UMAP showing the annotated cell types in HC and SP. (E) Relative proportion of each

cell type between the five samples.

(Figure 6B). The AUC values of HDAC7 and ACTN4 as
the biomarkers for SIC diagnosis were 0.859 and 0.755,
respectively (Figures 6C,D). For the diagnosis of HF/HC group,
the AUC values for HDAC7 and ACTN4 were 0.809 and

0.705, respectively (Figures 6E,F). These results suggest that
HDAC7 and ACTN4 have good predictive ability for the
diagnosis of SIC and HF. Finally, three potential miRNAs
regulating HDAC7 were identified with HDAC7/ACTN4 as
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FIGURE 3 | Genes co-differentially expressed. (A) The differentially expressed genes associated with monocytes in sepsis. (B) Volcano plot showing differentially

expressed genes associated with SIC. (C) Volcano plot showing differentially expressed genes associated with HF. (D,E) Venn diagram showing the identified

differentially expressed genes which are either (D) upregulated or (E) downregulated and are common in septic monocytes, heart failure, and septic cardiomyopathy;

(D,E) shows 153 and 25 shared genes, respectively.

the core, and the corresponding miRNAs–HDAC7-ACTN4 axis
was established.

Role of HDAC7/ACTN4 in Inflammatory
Response and Apoptosis
Gene set enrichment analysis was performed to examine the
potential role of dysregulated HDAC7 in the progression of
SIC based on the bulk RNA transcript data of patients with
sepsis. The results showed that the neutrophil degranulation, IL
signaling, VEGFA–VEGFR2 signaling, and apoptosis modulation
pathways were upregulated in samples with upregulated HDAC7
(Figure 6G). In samples with elevated ACTN4 expression
levels, the interleukin signaling, neutrophil degranulation,
and apoptosis modulation pathways were also upregulated
(Figure 6H). Therefore, in addition to the inflammatory

response, HDAC7/ACTN4 upregulation may also be involved
in several pathways including apoptosis. Alterations in these
pathways may be associated with the progression of SIC and HF,
thus affecting patient prognosis.

DISCUSSION

In this study, bioinformatic analyses revealed the neurovascular-
related NF-κB signaling pathway as the main pathway enriched
by SIC-, HF-, and monocyte-related DEGs. NF-κB signaling
pathway and genes in this pathway were screened from the
enriched functional pathways. In addition, HDAC7 and ACTN4
were identified as the key genes involved in the progression of SIC
via NF-κB signaling pathway. hsa-miR-23a-3p, hsa-miR-3175,
and hsa-miR-23b-3p were identified as the possible regulators
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FIGURE 4 | Functional pathway analysis and genes associated with the NIK/NF-kappa B signaling pathway. (A) Pathways associated with upregulated genes;

molecular function (MF), cellular component (CC), and biological process (BP). (B) Pathways related to upregulated and downregulated genes. (C) Intersection of the

differentially expressed genes and genes involved in the NIK/NF-kappa B signaling pathway. (D) Heatmap showing the intersecting genes in each group.

of SIC progression, which act by regulating HDAC7/ACTN4.
Finally, HDAC7 and ACTN4 were subjected to GSEA, which
suggested that HDAC7/ACTN4 were involved in apoptosis as
well as inflammation.

A previous study found that the NF-kB signaling pathway
regulates SIC injury (33). In the early stages of sepsis, bacterial
stimulation can cause significant changes in the NF-kB-inducing
kinase (NIK) pathway (66). The inflammatory factor IL-33
can increase pyroptosis levels in macrophages and mortality
in septic mice by activating the NF-kB signaling pathway
(67). Moreover, NF-kB affects the inflammatory process in
various diseases such as asthma and kidney diseases (68–
70). In addition, oxidative stress generated by NF-kB-induced
iNOS and COX-2 signaling pathways can impair myocardial
function in patients with sepsis (71, 72). NF-kB mediates the

transcription of several proinflammatory genes and induces
the release of inflammatory factors such as ILs and TNF-α,
which leads to myocardial dysfunction and accelerates the
progression of SIC (73). Drugs targeting NF-kB inhibition can
help to improve cardiac function in patients with SIC and hence
improve their prognosis (73). Therefore, NF-kB pathway-related
genes may play a crucial role in the onset and progression of
SIC. Dysregulated monocytes may produce large amounts of
inflammatory cytokines, resulting in widespread inflammation,
organ failure, and even death (51). Furthermore, monocytes
are involved in the release of inflammatory mediators (24).
Circulating monocytes in HF are also pathologically activated
through enhanced NF-κB activity (74–76). Therefore, monocytes
are closely associated with the progression of SIC and the onset
of HF.
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FIGURE 5 | Construction of the molecular interaction network. (A) Heatmap showing the expression of miRNAs in the molecular interaction network between HC and

SP groups. (B) Molecular interaction network showing HDAC7 as the core TF and ACTN4 as the gene regulated by HDAC7. The diamond represents TFs, the round

rectangle represents mRNAs, the V-shaped icon represents miRNAs, red bars indicate upregulated genes, and blue bars indicate downregulated genes. (C) Figure

showing the expression of HDAC7 and ACTN4 between HC and SP groups. (D) Expression distribution of HDAC7 and ACTN4 between individual samples in

single-cell data analysis.

In this study, HDAC7 and ACTN4 were identified, for the
first time, as the hub genes involved in the progression of
SIC via NF-κB signaling pathway. In addition, HDAC7/ACTN4
was upregulated in monocytes in patients with sepsis. A
previous study reported a significant elevation in HDAC7
mRNA expression in the monocytes of patients with coronary
artery disease (77). In addition, mCRP-treated monocytes
have upregulated ACTN4 (78). The extracellular ACTN4-
derived fragment has monocyte chemotactic activity and can
promote monocyte maturation (79). Monocytes are involved

in various biological processes such as inflammatory responses,
oxidative stress, and immunosuppression (21, 25, 58), and these
processes also influence the progression of SIC (23, 24, 37,
38, 59). We hypothesized that NF-κB-induced upregulation
of HDAC7/ACTN4 in monocytes may be associated with the
progression of SIC.

Studies reporting on the role of HDAC7/ACTN4 in sepsis or
SIC are limited. However, a previous study found that HDAC7
is involved in the regulation of apoptosis (80). The enzymatic
activity of HDAC7 is essential for TLR-induced production of
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FIGURE 6 | Establishment of the miRNA/TF/mRNA axis and gene set enrichment analysis (GSEA). (A) Volcano plot showing the differential expression of miRNAs that

regulate TF in molecular interaction networks. (B) Sankey diagram showing the core miRNA/TF/mRNA regulatory axis. (C,D) ROC curves showing the ability of (C)

HDAC7 (AUC:0.859) and (D) ACTN4 (AUC:0.755) to distinguish between SIC and HC. (E,F) ROC curves showing the ability of (E) HDAC7 (AUC:0.809) and (F)

ACTN4 (AUC:0.705) to distinguish between HF and HC. (G,H) GSEA results for (G) HDAC7 and (H) ACTN4.
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inflammatory mediators and is involved in the inflammatory
response (81). ACTN4 is involved in the inflammatory or
immune response in the lungs (82). ACTN4 phosphorylation also
mediates cell injury (83). Inflammatory response and apoptosis
are involved in the progression of SIC (23, 37, 38). Similar
to previous studies, the hub genes identified in this study,
HDAC7 and ACTN4, were found to be associated with the
inflammatory response.

By regulating the translation of HDAC7, hsa-miR-23a-3p, hsa-
miR-3175, and hsa-miR-23b-3p may influence the inflammatory
response in SIC and the extent of apoptosis. miR-23a-3p is
one of the abundant miRNAs in the myocardial tissue, which
attenuates apoptosis in myocardial cells during ischaemia–
reperfusion injury (84). It is closely related to the incidence of
myocardial lesions and HF (85). Downregulation of miR-23a-3p
expression in acute HF promotes polarization of macrophages
toward the repair phenotype (86). In addition, miR-23a-3p
reduces superoxide dismutase-induced oxidative stress injury
(49). Oxidative stress is an important biological process in the
progression of SIC (23). miR-23b inhibits SIC progression by
attenuating the inflammatory response, suppressing apoptosis,
and blocking NF-κB activation and is a potential target for
SIC therapy (34). Previous studies on miR-3175 have focused
on tumors (87, 88). However, miR-3175 is also involved in
oxidative damage of cells (89). Based on the results of this study,
we hypothesized that hsa-miR-23a-3p, hsa-miR-3175, and hsa-
miR-23b-3p play a regulatory role in the progression of SIC
by interfering with HDAC7/ACTN4 in monocytes and cardiac
tissue cells.

The neutrophil degranulation, IL signaling, VEGFA–VEGFR2
signaling, and apoptosis modulation pathways were upregulated
in samples with elevated HDAC7 expression levels. These
results suggest that in addition to the inflammatory response,
upregulation of HDAC7/ACTN4 may also be involved in some
apoptosis-related pathways. A previous study also reported
the involvement of apoptosis in the progression of SIC (90).
Therefore, HDAC7/ACTN4 may be involved in pathways related
to inflammatory response and apoptosis, thus influencing the
recovery, recurrence, and progression of SIC and affecting the
prognosis of patients with SIC. SIC-, HF-, and monocyte-related
DEGs are enriched in NF-κB signaling pathway. Moreover, hsa-
miR-23a-3p, hsa-miR-3175, and hsa-miR-23b-3p may influence
SIC progression by regulating HDAC7/ACTN4. These hub genes,
TFs, and miRNAs may be the potential targets related to the
progression, treatment, and recurrence of SIC. In addition,
they can be used to monitor the risk of SIC and to improve
the prognosis of patients with SIC. However, the results of
this study were not validated in clinical samples, and relevant
cellular and animal experiments were lacking. Moreover, we
did not examine the relationship between HDAC7/ACTN4 and
corresponding miRNAs in SIC further. Further studies are
required to investigate the regulatory role of HDAC7/ACTN4 in
the progression of SIC.

CONCLUSION

Sepsis-induced cardiomyopathy in blood mononuclear
cells and cardiac tissue cells is stimulated by serum
levels of biomarkers (hsa-miR-23a-3p, hsa-miR-317,
and hsa-miR-23b-3), which alter neurovascular-related
HDAC7/ACTN4 signaling pathways linked to the NF-
κB pathway. This study investigated the underlying
mechanisms of neurovascular dysfunction associated with SIC
and sepsis.
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