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Abstract

Autotetraploid rice is a useful germplasm with high biomass production; however, low fertility

is the main barrier in commercial utilization. In our previous study, differential expression of

meiosis-related miRNAs was found to be involved in the pollen sterility of autotetraploid rice.

However, genome-wide DNA variations and methylomes associated with low fertility of

autotetraploid rice are still poorly understood. Here, we measured both global DNA varia-

tions and the methylome and compared them with the transcriptome during pollen develop-

ment in autotetraploid rice by high-throughput sequencing. A total of 34416 SNPs, 6993

InDels, 1003 SVs and 25 CNVs were detected, and 11367 and 41117 differentially methyl-

ated regions showed hypermethylation and hypomethylation in 02428-4x. In total, 1110

genes displayed differentially expression in 02428-4x during meiosis, of these six harbored

CNVs, including four upregulated genes with gain CNVs, such as LOC_Os11g38620. We

identified 122 genes by comparing with the previous data that might be associated with low

fertility during pollen development in 02428-4x. Of the 122 gens, 98 were displayed methyla-

tion and differential expression, including OsMADS98, CYP703A3 and OsABCG26. The

downregulation of these three genes were confirmed by qPCR during meiosis of 02428-4x,

which played pivotal roles in pollen fertility. These results indicate that the low fertility of

autotetraploid rice is not only caused by the differential expression of genes involved in pol-

len development, but also by sequence variation and differential methylation, suggesting

that the reason for pollen sterility in autotetraploid rice is complex and might be affected by

multiple factors.
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Introduction

As important speciation mechanisms, whole-genome duplication (WGD) events are wide-

spread in plant evolution. Autopolyploids show different phenotypes compared to their dip-

loid progenitors, which might be caused by the duplicated genes retaining, losing, or acquiring

new functions [1,2]. Though autopolyploidy may be advantageous for some agronomic traits,

it also comes with challenges during meiosis due to the increase in chromosome numbers

[3,4].

Autotetraploid rice is a useful germplasm resource generated by chromosome doubling;

however, autotetraploid rice presents low fertility, which becomes the main bottleneck for its

utilization. Partial pollen sterility is one of the main reasons for the low fertility of autotetra-

ploid rice [5]. Cytological observations have revealed that abnormal chromosome behavior

and microtubule patterns act synergistically in the pollen sterility of autotetraploid rice [6].

Transcriptome analyses have revealed that irregularity of some pivotal genes, such as

Os11g0146800 (OsDMC1B) and Os09g0506800 (PAIR2), may cause abnormal meiosis and lead

to low pollen fertility of autotetraploid rice [7]. In addition, differentially expressed patterns of

miRNAs, phasiRNAs, and TE-siRNAs during development have been identified in autotetra-

ploid rice, and some meiosis-related miRNAs are involved in low pollen fertility [8,9]. How-

ever, genome-wide DNA variations and methylomes associated with low fertility in

autotetraploid rice are still poorly understood, and little information is available concerning

comprehensive analyses combined with DNA polymorphism, methylome and transcriptome

data from the same field.

Next-generation sequencing (NGS) technology represents a powerful tool that can be used

to discover abundant DNA polymorphisms, such as single nucleotide polymorphisms (SNPs)

and insertion–deletion polymorphisms (InDels), in mutated individuals [10–13]. Recently,

Yan et al. [14] reported that rice mutants exhibited abnormal spikelets or male sterility as well

as SNPs in important meiosis-related genes. Immunoprecipitation of methylated DNA by

monoclonal antibodies specific to 5-methylcytidine sequencing (MeDIP-Seq) can be used to

detect methylated DNA in whole genomes and has been utilized in rice, maize and poplar [15–

17]. Hypermethylation was identified in PA64S (sterile) rice compared to PA64S (fertile); and

1258 differentially methylated regions (DMRs) were identified between them [16].

To date, combinations of multiomic techniques have greatly promoted research in plants

such as Paulownia [18] and rice [19] and even in polyploids [20,21]. Asymmetrical changes in

small RNAs, transposons and gene expression between two resynthesized wheat allotetraploids

can explain the evolution of wheat allotetraploids [21]. Zhang et al. [22] found that the increas-

ing methylation of class II transposable elements (TEs) in autotetraploid rice could suppress

the expression level of nearby genes in response to genome dosage effects. In addition, by

using a multiomic analysis, Wang et al. [23] reported that rice interploidy crosses could disrupt

gene expression, epigenetic regulation, and even seed development. Hence, integrating multio-

mic results are useful in polyploid plant studies.

Although information on the cytogenetics and transcriptomes of autotetraploid rice is

available [7,9,24], no study has addressed how multiple factors affect pollen fertility in autotet-

raploid rice. Here, an autotetraploid rice, 02428-4x, and its diploid counterpart (02428-2x)

were used for resequencing via NGS to detect DNA methylation by MeDIP-Seq, to analyze the

differentially expressed genes by RNA sequencing, and then to reveal the male sterility-related

genes. Finally, comprehensive analyses of DNA polymorphisms, the methylome and the tran-

scriptome associated with sterility were carried out to identify the factors involved in the low

pollen fertility of autotetraploid rice.

Multiple factors cause pollen sterility in autotetraploid rice
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Materials and methods

Rice material

Autotetraploid rice, 02428-4x, was obtained from the chromosome doubling of 02428-2x

(Oryza sativa L. subsp. japonica) by colchicine and was self-crossed for more than 27 genera-

tions in our lab [9]. The plants were planted in an experimental field at South China Agricul-

tural University. The leaves of two-week-old seedlings of 02428-4x and 02428-2x were

collected for resequencing, and the genomic DNA was extracted by using the modified cetyltri-

methyl ammonium bromide (CTAB) method. Anthers at pollen meiosis stage were collected

from both lines and stored at -80˚C for transcriptome sequencing and methyl-DNA immuno-

precipitation sequencing (MeDIP-Seq). Anther at the premeiotic interphase and single micro-

spore stage were collected for digital gene expression profiling. Total RNA was isolated from

the anthers using a TRK1001 total RNA purification kit (LC Science, Houston, TX, USA) fol-

lowing the manufacturer’s procedure. The DNA of the anthers was also extracted by the CTAB

method.

Semi-thin sections

Florets of 02428-4x and 02428-2x were collected and fixed in FAA solution (50% ethanol:acetic

acid:methyl aldehyde = 89:6:5) for 48 hours, rinsed several times with 50% ethanol and dis-

sected to remove the anthers. The anthers were dehydrated in a series of ethanol solutions

(70%, 80%, 90% and 95% ethanol) for 30 min each. The dehydrated anthers were then embed-

ded by a Leica 7022 historesin embedding kit (Leica, Nussloch, Germany) following the manu-

facturer’s recommended protocol and polymerized at normal temperature. The transverse

section of the anthers was sectioned by a Leica RM2235 manual rotary microtome with a

thickness of 3 μm. Finally, the sections were stained with 1% toluidine blue O and sealed with

neutral balsam, after which they were imaged with a Motic BA310 system.

Genomic resequencing

The genomic DNA of leaves was randomly fragmented by sonication, and the desired lengths

of the DNA fragments were gel purified. The DNA fragments were ligated to adapters for

library construction. Finally, resequencing was performed using an Illumina HiSeq 2500 plat-

form (Biomarker, Beijing, China). The raw data with adapter sequences and low-quality reads

(base quality value less than 20) were filtered using FastQC software. After filtration, the clean

data were aligned to the Nipponbare reference genome (MSU V7.0) by Burrows-Wheeler

Aligner (BWA) software [12]. Single nucleotide polymorphisms (SNPs) and insertions and

deletions (InDels) were detected by GATK software and then annotated using SnpEff. The

structural variations (SVs) and copy number variations (CNVs) were analyzed by Break-

Dancer [25] and FREEC [26], respectively; those with a read depth less than 10 were removed.

Transcriptome sequencing

The quantity and purity of the total RNA were analyzed with a Bioanalyzer 2100 and RNA

6000 Nano LabChip Kit (Agilent, Palo Alto, CA, USA) with a RIN number> 8. Approximately

10 μg of total RNA (anthers in meiosis) was subjected to isolate poly (A) mRNA with poly-T

oligo attached magnetic beads. Following purification, the mRNA was fragmented into small

pieces using divalent cations under elevated temperature. The cleaved RNA fragments were

then reverse-transcribed to construct a final cDNA library according to the manufacturer’s

instructions of the mRNA-Seq sample preparation kit (Illumina, San Diego, CA, USA). Finally,

we performed paired-end sequencing with an average insert size of 300 bp (±50 bp) on an
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Illumina HiSeq 2000 platform (LC Sciences, Hangzhou, China) following the manufacturer’s

recommended protocol. After sequencing, the low-quality reads, reads containing sequencing

adaptors, reads containing sequencing primers, and reads containing nucleotides with quality

scores lower than 20 (Q<20) were removed. The clean reads were subsequently aligned to the

Oryza sativa genome (MSU V7.0) using the TopHat package. The aligned reads were then

used to assemble transcripts of each sample independently using the Cufflinks program [27].

The aligned reads were further processed by Cufflinks, which uses the normalized RNA-Seq

fragment counts to measure the transcript relative abundances. The measurement unit of frag-

ments is per kilobase of transcript per million fragments (FPKM). Genes with P-values < 0.05

and |log2 (fold change ratio)| >1 were considered differentially expressed genes.

The total RNA (~10 μg) of the anther in the premeiotic interphase and single microspore

stage were used to generate cDNA according to the Illumina protocol (Illumina, San Diego,

CA, USA) for digital gene expression profiling. The products were single-end sequenced on an

Illumina HiSeq 2000 (LC Sciences, Hangzhou, China) following the vendor’s recommended

protocol. After the raw reads filtration, the clean reads mapped to the Oryza sativa genome

(MSU V7.0) using Bowtie, with only one base pair mismatch allowed [28]. The expression of

candidate genes was normalized as reads per kilobase of exon model per million mapped reads

(RPKM). Genes with P-values < 0.05 and |log2 (fold change ratio)| >1 for the comparison

samples (02428-2x vs 02428-4x) were considered differentially expressed.

Methyl-DNA immunoprecipitation sequencing

Before carrying out MeDIP-Seq, we followed the method described by Sati et al. [29]. First, we

sonicated anther DNA to produce random fragments ranging in size from 150 to 800 bp using

an AIR™ DNA Fragmentation Kit (Bioo Scientific, Austin, Texas, USA). Based on the Illumina

manufacturer’s recommended protocol, we then end-repaired, phosphorylated and A-tailed

the fragmented DNA and ligated the adapters. The adaptor-ligated DNA was subsequently

subjected to MeDIP enrichment using a MethylMiner™ Methylated DNA Enrichment Kit (Life

Technologies, New York, USA). The efficiency of enrichment was checked by real-time quan-

titative PCR. Then, PCR amplification was performed, and target bands were excised from the

gel to produce libraries; these libraries were quantified using an Agilent 2100 analyzer. Finally,

MeDIP-Seq was performed on an Illumina HiSeq 2000 platform (LC Sciences, USA). The raw

data of low-quality reads were filtered after sequencing, and clean data were mapped and

assembled onto a reference genome (MSU V7.0). The CpG enrichment (CpG coverage� 5X)

and differentially methylated region (DMRs with a P-value < 0.01 and |log2 (fold change

ratio)| >1) analysis were performed using the MEDIPS software package [30]. RPKM (reads

per kilobase of exon model per million mapped reads) was used to measure the reads. The

CpG islands (CGIs) followed the three basic characteristics described by Sati et al. [29]: length

greater than 200 bp, GC content> 50% and observed/expected CpG > 0.6. Different types of

DMRs were classified based on gene structure (promoter, exon, intron and intergenic regions),

repetitive elements (BLASTed to RepeatMasker) and CGIs and CGI shores (~2 kb near the

CpG islands).

Functional analysis of the genes

Gene Ontology (GO) analysis of the genes was performed using AgriGO2 [31]. Significance

was expressed when the P-value< 0.05, and protein-protein interaction networks were deter-

mined using STRING [32].
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Verification analysis

PCR was used to amplify the polymorphic loci in a 20 μL volume containing 30 ng of DNA

template, 0.15 μmol/L primer pairs, 1.0 μL of dNTPs (2.0 mmol/L each), 1 U of Taq polymer-

ase, and 1× PCR buffer (50 mmol/L KCl, 10 mmol/L Tris-HCl [pH 8.3], 1.5 mmol/L MgCl2,

0.01% gluten). The PCR was done according to Liu et al. [12]. The PCR products were exam-

ined by agarose gel electrophoresis and sequenced by Sanger sequencing. The Sanger sequenc-

ing results were assembled by DNAMAN software and further aligned to the reference

genome sequences to validate the variations in polymorphic loci using ClustalW software. The

total RNA obtained from rice anthers was reverse-transcribed using a PrimeScript™ RT reagent

kit (Takara, Otsu, Shiga, Japan). Real-time PCR was performed using SsoAdvanced Universal

SYBR Green Supermix (Bio-RAD, Hercules, CA, USA) for amplification of the PCR products.

Real-time PCR conditions were conducted following the instructions of the manufacturer

(Bio-RAD). Ubiquitin was used as an internal reference. All qRT-PCR amplifications were car-

ried out in triplicate, and the results are presented as the means ± standard deviations. The rel-

ative expression of genes was calculated by the 2–ΔΔCT method [33]. All the primers used for

PCR and qRT-PCR were developed by Primer 5.0 software, checked by NCBI Primer-BLAST,

and are listed in S1 and S2 Tables.

Results

The anther development in autotetraploid rice as observed by semi-thin

sections

Low pollen fertility was found in 02428-4x compared to 02428-2x (Fig 1). The development of

the anthers of 02428-4x (Fig 2) was similar to that of 02428-2x (S1 Fig). The anther develop-

ment could be divided into eight different stages: pollen mother cell formation (Fig 2A), pollen

mother cell meiosis (Fig 2B–2H), the early microspore stage (Fig 2I), the middle microspore

stage, the late microspore stage, the early bicellular pollen stage (Fig 2J), the late bicellular pol-

len stage and mature pollen (Fig 2K). However, many abnormalities (~36%) were observed in

02428-4x during anther development (S3 Table). An abnormal anther locule (~6%) with one

degenerating locule and a double vascular bundle (Fig 3) was found. In addition, abnormal

tapeta (~30%) were found, including giant tapetal cells (Fig 4A) and giant tapetal cell preva-

cuolation (Fig 4B) during premeiotic interphase; redundant tapetal cells (Fig 4C) and thinned/

degenerate tapeta along the middle layer (Fig 4D and 4E) during meiosis; unbalanced tapetal

size after meiosis (Fig 4F and 4G); and tapetal cytoplasm with no concentration (Fig 4H and

4I), degenerated tapetum (Fig 4J) and abnormal tapetal proliferation (Fig 4K) during the

microspore stages. Moreover, arrested microspores and larger endothecia were found in the

mature pollen stage (Fig 4L).

Detection and distribution of DNA variations in autotetraploid rice

In total, 113 million and 111 million clean reads were obtained in 02428-2x and 02428-4x by

resequencing, respectively (S4 Table). Approximately 96% of the clean reads were mapped to

the Nipponbare reference genome (MSU v7.0) by BWA software, and the average depth and

coverage were more than 36x and 94%, respectively (S4 Table), which suggested that high qual-

ity clean reads could be used for further analysis.

Different types of variations were identified in 02428-2x and 02428-4x when compared to

the reference genome (S2 Fig). A total of 459416 and 459327 SNPs, and 117296 and 117278

InDels were identified in 02428-2x and 02428-4x, respectively (S5 Table). Chromosomes 8 and

11 exhibited the greatest SNP rate (1 change for every 379 bases and 520 bases, respectively)
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between 02428-2x and the reference genome; same results were observed in 02428-4x (S3 Fig).

A similar distribution of the InDel rate was detected in both 02428-2x and 02428-4x (S3 Fig).

Approximately 70% of the SNP base substitutions were transitions in 02428-2x and 02428-4x;

this percentage was greater than that for the transversions (S3 Fig). The most frequent length

of insertions and deletions was 1 bp, and 71.80% and 71.84% of InDels had a length of 1–3 bp

in 02428-2x and 02428-4x, respectively (S3 Fig). Seventy-five polymorphic loci related to 21

genes were selected for PCR verification (S1 Table). The PCR results showed that the varia-

tions in the sequence were consistent with the resequencing data, which demonstrated the

accuracy of the samples used in this study. In addition, the resequencing results were generally

similar to previous resequencing results of the materials in 2013, indicating that the materials

were stable.

To further investigate the variants in 02428-4x, we compared the variants to 02428-2x at

depths�5 and� 100. A total of 41409 polymorphic loci, including 34416 SNPs and 6993

InDels, were identified between 02428-4x and 02428-2x (S4 Fig). The densities of SNPs and

InDels were 9.31 and 1.85, respectively, at 100 kb (S6 Table). According to the position and

annotation of the reference genome, 62.71% of the polymorphic loci were classified in inter-

genic, downstream and upstream regions, while only a few (18.75%) were located in exons.

The number of nonsynonymous coding SNPs was 3645; 174 frame shift InDels and 76 codon

insertion/deletion InDels were also detected (S7 Table). Most of the polymorphic loci were

heterozygous, and only 185 variations (0.45%) were homozygous, including 78 SNPs and 107

Fig 1. Cytological observations of pollen morphology. (A) Anther phenotypes of diploid (left) and autotetraploid

(right) rice. (B and C) 1% I2-KI staining of the pollen grains of diploid and autotetraploid rice. Bar = 200 μm.

https://doi.org/10.1371/journal.pone.0201854.g001
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InDels (S8 Table). Of these homozygous and heterozygous variations, a total of 1303 genes

were associated with missense mutations, whereas 202 genes were related to major impact

mutations (such as frame shifts and nonsense mutations) (S8 Table). Finally, eight genes asso-

ciated with homozygous polymorphisms between 02428-4x and 02428-2x were documented

(Table 1), including LOC_Os03g06260, LOC_Os05g10440,LOC_Os08g24060 and LOC_Os11
g36880, which are associated with major impact mutations, and LOC_Os01g37780,

LOC_Os09g37270,LOC_Os11g27670 and LOC_Os11g35756, which are associated with mis-

sense mutations. Of these genes, six were related to transposable elements, one was annotated

as an expressed protein (LOC_Os01g37780) and one was LOC_Os09g37270 (OsRacGEF1,

ATROPGEF7/ROPGEF7). No Gene Ontology (GO) enrichment results were found for the

eight genes. Promoter region mutations may increase or decrease the gene expression levels

Fig 2. Semi-thin sections showing anther development in 02428-4x. (A) Premeiotic interphase, (B-H) meiosis stage, (I-J) single

microspore stage, (K, L) mature pollen. Ep, En, ML and Ta indicate the epidermis, endothecium, middle layer and tapetum,

respectively. The red arrow indicates the degenerated middle layer. Bars = 50 μm.

https://doi.org/10.1371/journal.pone.0201854.g002
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[34–36]. We focus on the upstream region that within 2000 bp, and found 45 genes associated

with the homozygous variations between 02428-4x and 02428-2x (S8 Table).

In addition, 2974 and 2868 structural variations (SVs) were found in 02428-2x and 02428-

4x after threshold selection (20�read numbers�100). The Venn diagram results revealed 91

SVs that were similar between 02428-2x and 02428-4x, whereas 2883 and 2777 SVs were spe-

cifically detected in 02428-2x and 02428-4x, respectively (S5 Fig). In total, 1033 and 1003 SVs

were located in exons of 02428-2x and 02428-4x, and 1110 genes were associated with these

variations. Moreover, a total of 43 regions showed differential copy number variations (CNVs)

in 02428-4x compared to 02428-2x, whereas 18 and 25 CNVs were specifically related to

02428-2x and 02428-4x, respectively (S5 Fig). A total of 965 genes were associated with these

differential CNVs between 02428-4x and 02428-2x. Furthermore, we found 1386, 978 and 853

genes specifically related to SNPs and InDels, SVs and CNVs by the Venn diagram analysis,

respectively (S6 Fig; S9 Table).

Low pollen fertility, abnormal tapeta and abnormal chromosome behaviors were observed

in 02428-4x. Therefore, we focused on the polymorphic genes that may be associated with

pollen development compared with pollen/meiosis/tapetum genes or meiosis stage-specific

genes reported in rice, polyploid rice and Arabidopsis [7,37–41]; 127 genes were ultimately

detected (S10 Table). Of these 127 genes, 7 were harbored homozygous SNPs/InDels in pro-

moter, including LOC_Os05g46390 (OsFBX175—F-box domain containing protein) and

LOC_Os12g12260 (diacylglycerol kinase 1). Notably, one meiosis gene, LOC_Os03g44760
(OsAM1, SWI1), which carries SV, was found. Two tapetum genes, including LOC_
Os05g47446 (OsPDCD5, expressed protein), which have CNVs, and LOC_Os10g03660
(OsADF, F-box domain-containing protein), which carries heterozygous SNPs/InDels, was

Fig 3. Abnormal anther locule during anther development of autotetraploid rice. (A) Premeiotic interphase, (B-C)

meiosis stage, (G) single microspore stage, (H) mature pollen, (B) double vascular bundle (VB). (D, E, F, I, J) abnormal

anther locule of each stage. The red arrow indicates the abnormal anther locule. Bars = 50 μm.

https://doi.org/10.1371/journal.pone.0201854.g003
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also detected. In addition, 45 genes, including 22 and 23 associated with anthers and ovaries,

were detected in high fertility neo-tetraploid rice, respectively. A total of 105 polymorphic

genes showed a relationship with rice megagametogenesis: 23 were involved in embryo sac

mother cell (EMC) premeiotic interphase, 34 were related to the EMC meiosis process, and 48

were associated with nuclear proliferation and maturation of embryo sacs [42,43]. One of

these 105 genes, LOC_Os09g37270 (OsRacGEF1), carries homozygous SNPs that cause mis-

sense mutation.

Differentially expressed genes (DEGs) during meiosis in autotetraploid rice

More than 6 million clean data of the meiosis anthers were obtained by transcriptome

sequencing (S11 Table). A total of 1110 genes displayed differential expression during PMC

meiosis between 02428-4x and 02428-2x. Moreover, 1729 and 2476 differentially expressed

genes (DEGs) were detected in the premeiotic interphase (PMA) and single microspore stage

(SCP) during pollen development in 02428-4x compared to 02428-2x, respectively (S12

Table). The Venn diagram results showed that 1421 DEGs (990 up- and 431 downregulated

genes) were specifically detected in PMA (sDEGs-PMA), whereas 1927 DEGs (921 up- and

1006 downregulated) were specifically associated with SCP (sDEGs-SCP). Furthermore, 313

and 352 genes specifically showed upregulation and downregulation during meiosis (sDEGs-

MA) in 02428-4x (S7 Fig; S13 Table).

Of the DEGs that occurred during pollen development in 02428-4x, 39 GO enrichment

pathways were found, including those associated with the nucleolus, flower development,

Fig 4. Abnormal tapetum during anther development in autotetraploid rice. (A, B) Giant tapetal cells (A) and

prevacuolation of giant tapetal cells (B) during premeiotic interphase. (C-E) Redundant tapetal cells (C) and tapetum

degenerating along with the middle layer (D, E) during meiosis. (F, G) Unbalanced tapetum size after meiosis. (H, I)

Tapetum cytoplasm that is not deeply stained at the microspore stage. (J, K) Degeneration of the tapetum (J) and

abnormal proliferation (K) during the microspore stage. (L) Arrested microspores and larger endothecium in the

mature pollen stage. En, ML and Ta indicate the endothecium, middle layer and tapetum, respectively. The red arrow

indicates the abnormalities. Bars = 50 μm.

https://doi.org/10.1371/journal.pone.0201854.g004
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response to abiotic stimulus and carbohydrate metabolic process (S8 Fig). In total, eight prom-

inent categories were associated with upregulated sDEGs-MA, such as response to stimulus

and catalytic activity. In addition to upregulated sDEGs-MA, transcription factor activity was

identified in downregulated sDEGs-MA (S9 Fig; S13 Table). A KEGG analysis indicated that

the up- and downregulated DEGs during meiosis were enriched in five and eight pathways,

respectively (S14 Table). Among the upregulated DEGs, eight were related to the plant hor-

mone signal transduction pathway. In contrast, the downregulated genes were enriched in

photosynthesis antenna proteins, porphyrin and chlorophyll metabolism, and photosynthesis

pathways associated with photosynthesis metabolism in 02428-4x. Some important DEGs dur-

ing meiosis were verified by qPCR, including five meiosis genes (LOC_Os09g32020, LOC_
Os03g58600, LOC_Os11g40150, LOC_Os02g37850and LOC_Os12g24140), four meiosis stage-

specific genes (LOC_Os04g21590, LOC_Os01g68560,LOC_Os11g38620and LOC_Os11g38630),

two pollen sterility genes (LOC_Os03g07250and LOC_Os08g03682) and three tapetum genes

(LOC_Os06g40550, LOC_Os09g27620 and LOC_Os10g35180). The expression patterns of more

than 90% (20/22) of the genes were similar to that of the transcriptome, demonstrating that

the sequencing data is reliable (S10 Fig).

By comparing the miRNAome of pollen development between 02428-4x and 02428-2x [9],

158 DEGs were associated with differentially expressed miRNAs (DEM) in 02428-4x (S15

Table). MicroRNAs could modulate plant gene expression by gene silencing through inhibi-

tion of target mRNAs, so we focus on the negative regulation between miRNAs and genes.

During PMA, 26 DEG-DEM pairs were found, 15 of these displayed negative regulation pat-

terns, including LOC_Os02g53830 (MTD1) and LOC_Os04g01570 (invertase/pectin methyles-

terase inhibitor family protein), which were specifically downregulated during PMA in 02428-

4x; additionally, their regulator osa-miR164e_R-3 showed specific upregulation. A total of 37

DEG-DEM pairs were found in the SCP in 02428-4x. Of these, 22 exhibited negative regula-

tory patterns, including LOC_Os04g59430 (OsARF13, auxin response factor), which showed a

specific downregulation pattern and was targeted by the upregulated osa-miR160a-5p_R-
1_1ss20CT. During MA, 26 DEG-DEM pairs were detected; among these, 14 showed negative

regulatory patterns, including the specific downregulated genes, LOC_Os08g23880 (no apical

meristem protein) and LOC_Os10g30150 (universal stress protein domain-containing pro-

tein), whose expressions were regulated by the upregulation of gma-miR6300_R+3 and osa-
miR3979-5p_R+1, respectively.

Among the DEGs in meiosis of 02428-4x, 446 depicted relationship with pollen fertility by

comparing with pollen/meiosis/tapetum genes or meiosis stage-specific genes reported in rice,

polyploid rice and Arabidopsis [7,37–41] (S16 Table). After comparing the DEGs to PMC-spe-

cific or meiosis stage-specific genes, 166 genes were found. Interestingly, 49 of 166 genes,

which showed meiosis stage-specific expression in the report by Fujita et al. [38], generally dis-

played downregulation in 02428-4x compared to its diploid counterpart. Seven meiosis genes

were found, and of those genes, LOC_Os03g12414 (OsSDS, cyclin), LOC_Os03g58600 (MEL1)

and LOC_Os11g40150 (RAD51A1, DNA repair protein Rad51) were upregulated in 02428-4x,

whereas LOC_Os09g32020 (OsDFR, ubiquitin fusion degradation protein) was downregulated

in 02428-4x. In addition, five downregulated genes were associated with pollen sterility,

including LOC_Os08g03682 (CYP703A3, cytochrome P450) and LOC_Os08g38810 (RAFTIN,

BURP domain-containing protein), which showed specific expression patterns during meiosis

in 02428-4x. Six tapetum genes were detected in the meiosis DEGs in 02428-4x; among them,

five showed downregulation patterns, including LOC_Os04g39470 (OsMYB80, MYB family

transcription factor), LOC_Os09g27620 (PTC1, PHD-finger domain-containing protein),

LOC_Os06g40550 (OsABCG15, ABC-2 type transporter domain-containing protein),

LOC_Os03g18480 (OsTDF1, MYB family transcription factor) and LOC_Os10g35180
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(OsABCG26, white-brown complex homolog protein 11). Furthermore, 87 (40 upregulated

and 47 downregulated genes) DEGs were associated with the anther-related genes of neo-tetra-

ploid rice (high fertility).

Differentially methylated regions (DMRs) associated with meiosis in

autotetraploid rice

During meiosis, the anthers of 02428-4x and 02428-2x were subjected to MeDIP-Seq to iden-

tify differentially methylated regions (DMRs), particularly those related to meiosis-related

genes in 02428-4x. We obtained more than 20 million clean reads and the mapped reads were

more than 95% (S11 Table). In total, 52484 regions displayed differential methylation between

02428-4x and 02428-2x, which were spread throughout the genome. Of these DMRs, 11367

and 41117 showed hypermethylation (high methylation levels) and hypomethylation (low

methylation levels), respectively, in 02428-4x compared to 02428-2x (S17 Table). In total, 607

CpG islands (CGI) and 1475 CGI shores (~2 kb near the CpG islands) showed differential

methylation in 02428-4x. Most of the CGI and CGI shores were enriched in transcription start

sites (TSSs) and were hypermethylated, whereas higher numbers of intragenic CGI shores

showed hypomethylation in 02428-4x (S11 Fig). Additionally, we further categorized the

DMRs based on gene-body structure. Of the hypermethylated DMRs, 4170 were located in

promoter regions that were more than the other regions in 02428-4x. In contrast, hypermethy-

lated DMRs were spread in whole genome (promoter, exon, intron and intergenic), and pro-

moter DMRs exhibited a little higher number than other regions (S11 Fig).

Interestingly, 2870 DMRs related to repetitive elements (simple repeats and low complexity

repeats) with 25.02% hypermethylation and 74.98% hypomethylation were identified in

02428-4x (S12 Fig). In addition, 3448 transposable element (TE) genes were corresponding to

9147 DMRs, including 1994 (21.39%) and 7153 (78.61%) hypermethylated and hypomethy-

lated regions, respectively (S17 Table). Only 27 of 3448 TE genes showed homozygous SNPs/

InDels between this resequencing data and previous dataset (2013). Based on the RepeatMas-

ker annotation of whole-genome TEs, 22.34% of the DNA transposons (Class II) were associ-

ated with differential methylation in 02428-4x, and 19.21% of retrotransposons (Class I) were

related to differential methylations. The hAT family of DNA transposons and LINE family of

retrotransposons was dominant in the hypermethylation regions, whereas Stowaway family of

DNA transposons and SINE family of retrotransposons showed a higher proportion in the

hypomethylation regions (Fig 5).

A total of 13701 genes, corresponding to the 52484 DMRs, were detected. The expressions

of genes were repressing/silencing by the DNA methylation in promoter and first exon regions

[44,45]. In total, 1774 and 491 genes (2340 unigene) were associated with hypermethylation in

promoter and first exon regions, respectively, whereas 11028 genes were hypomethylated on

gene-body (promote, intron and exon) (S18 Table). Venn diagram showed that 475 genes

were associated with differential methylation levels on different region in same gene, such as

LOC_Os03g44760, which showed hypomethylation in promote region and displayed hyper-

methylation in exon region (S13 Fig). Meanwhile, 10553 and 1865 genes were specifically asso-

ciated with hypomethylation and hypermethylation in 02428-4x, respectively (S13 Fig). Of the

10553 hypomethylated genes, 18 GO pathways were identified, including those related to the

regulation of gene expression (epigenetic), reproduction and nucleotide binding (S14 Fig). 13

significant pathways were related to the hypomethylated genes, including 36 hypomethylated

genes related to ribosome biogenesis in eukaryotes and 28 associated with nucleotide excision

repair (S19 Table). No enrichment in GO and KEGG pathways was identified for the hyper-

methylated genes.
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In total, 944 DMRs were found to be related to pollen/meiosis/tapetum genes and meiosis

stage-specific genes by comparing with previous researches [7,37–41], 128 displayed hyper-

methylation, and 816 showed hypomethylation (S20 Table). Of the 128 hypermethylated

genes, 43 were rice PMC-specific or meiosis stage-specific genes, such as LOC_Os08g20200
(male sterility protein) which showed promoter hypermethylation. One tapetum gene,

LOC_Os12g36030 (Pms3, annotated as an expressed protein); and seven meiosis genes, includ-

ing LOC_Os02g04080 (SMC3, chromosome segregation protein sudA), LOC_Os02g32570
(RAD5a, SNF2 family N-terminal domain-containing protein), LOC_Os03g01590 (PAIR1),

LOC_Os06g04190 (OsRAD1, rad1), LOC_Os07g16224 (AGO9, piwi domain-containing pro-

tein), LOC_Os08g44350 (AHP2, histidine-containing phosphotransfer protein) and

LOC_Os09g35000 (OsGEN1, flap endonuclease), were found. In addition, 24 genes were related

to anther of neo-tetraploid rice (high fertility), which showed hypermethylation in 02428-4x.

Identification and functional annotation of low fertility-related genes with

variations in autotetraploid rice

By combining the high-throughput sequencing results, we acquired multiple candidate genes

showing variations during meiosis in autotetraploid rice. A total of 16 genes showed

Fig 5. Distribution of methylated transposable element genes in 02428-4x.

https://doi.org/10.1371/journal.pone.0201854.g005
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differential expressions and had sequence variations, but differential methylation regions were

not found, and defined as Group I. 249 genes displayed differential expressions and differential

methylations, but sequence variations were not detected, and defined as Group II. A total of

536 genes had differential methylation regions and sequence variations, but differential expres-

sions were not identified, and defined as Group III (S21 Table). Additionally, combined with

the DNA sequence variations, DNA methylation and DEGs, five genes (Group IV) were

detected in 02428-4x. Six DEGs having CNVs in 02428-4x were found, of which, five showed

positive relation between DEGs and CNVs, including four upregulated genes with gain CNVs

and one downregulated gene with loss CNV (Table 2). 254 genes contained differential meth-

ylation regions, of which, 109 DEGs showed negative regulation with differential methylation,

including 19 genes showed downregulation and hypermethylation, and 90 genes displayed

upregulation and hypomethylation.

Of the Group I genes (16), five were related to pollen development, meiosis or tapetum

and showed upregulation in meiosis in 02428-4x (S21 Table), including LOC_Os11g03300
(NAC domain transcription factor) and LOC_Os11g10590 (expressed protein) that upregu-

lated during meiosis of Taichung65-4x [7]; LOC_Os04g01690 (pyridoxal-dependent decar-

boxylase protein) and LOC_Os11g37360 (an expressed protein) that the anther-related genes

of high fertility neo-tetraploid rice [39]; LOC_Os11g44420 (an expressed protein) and

LOC_Os11g38630 (an expressed protein) that the meiosis stage-specific genes [37,40].

Table 2. Differentially expressed genes associated with copy number variations in autotetraploid rice.

Gene Type Annotation Differential

expression

Methylation Sequence

variations

Description Reference

LOC_Os07g07860 Group

I

LTPL76—

Protease

inhibitor/

seed

storage/

LTP family

protein

precursor

Specific

down-

regulation

loss CNVs

LOC_Os01g04350 Group

I

hsp20/alpha

crystallin

family

protein

Specific up-

regulation

loss CNVs

LOC_Os11g44420 Group

I

expressed

protein

Specific up-

regulation

gain

CNVs

meiosis

stage-

specific

Tang et al.

2010 [40]

LOC_Os11g38630 Group

I

expressed

protein

up-

regulation

gain

CNVs

meiosis

stage-

specific

Deveshwar

et al. 2011

[37]

LOC_Os11g38620 Group

IV

expressed

protein

up-

regulation

Hypomethylation

(Promoter)

gain

CNVs

meiosis

stage-

specific

Tang et al.

2010 [40]

LOC_Os11g38640 Group

IV

expressed

protein

up-

regulation

Hypomethylation

(Exon, Intron)

gain

CNVs

anther-

related in

neo-

tetraploid

rice

Guo et al.

2017 [39]

Group I indicated the genes showed differential expressions and had sequence variations, but did not have differential

methylation regions. Group IV indicated the genes showed DNA sequence variations, DNA methylation and

differential expressions.

https://doi.org/10.1371/journal.pone.0201854.t002
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Of the Group II genes (249), 98 were associated with pollen development, meiosis or tape-

tum (S21 Table). Three genes displayed downregulation and hypermethylation during meiosis

in 02428-4x, including LOC_Os02g05000 (expressed protein), which is specific in PMCs [40];

LOC_Os10g33350 (endo-beta-N-acetylglucosaminidase) and LOC_Os11g47840 (OsRhmbd18

putative rhomboid homolog) which were associated with anther in neo-tetraploid rice (high

fertility) [39]. Furthermore, 38 genes were upregulated and hypomethylated in 02428-4x.

Among these, 19 were related to upregulated genes in Taichung65-4x [7], and 14 were associ-

ated with PMC-specific or meiosis stage-specific expression patterns in rice [37.40], including

LOC_Os01g57610 (OsGH3.1, probable indole-3-acetic acid-amido synthetase) that targeted by

osa-miR1436_L+3_1ss5CT. One gene, LOC_Os06g08380 (GSL5, 1,3-beta-glucan synthase com-

ponent domain-containing protein), which is related to male sterility, was also found in

02428-4x.

Of the Group III genes (536), only 17 were related to pollen development, meiosis or tape-

tum (S21 Table). Two tapetum genes, LOC_Os05g47446 (OsPDCD5) showed hypomethylation

and CNVs, and LOC_Os10g03660 (OsADF) showed heterozygous SNPs/InDels (missense) and

hypomethylation in 02428-4x. Nine genes were related to the rice PMC-specific and meiosis

stage-specific expression patterns [38,40], such as LOC_Os12g12260 (diacylglycerol kinase 1),

which had homozygous SNPs/InDels in promoter, and displayed hypomethylation in exon

and intron.

In addition, two genes related to meiosis were detected in the Group IV genes (5) by com-

paring with the previous researches [7,37–41] (S21 Table). LOC_Os11g38640 (an expressed

protein) showed upregulation, promoter hypomethylation and CNVs were related to the high

fertility neo-tetraploid rice. LOC_Os11g38620 (an expressed protein) that displayed upregula-

tion, exon and intron hypomethylation and CNVs were associated with meiosis stage-specific

expression. Additionally, the differential expression pattern of LOC_Os11g38620was con-

firmed via qPCR (S10 Fig). Taken together, 122 of 806 (Group I to IV) genes should be the low

fertility-related genes (LFG) in autotetraploid rice. Moreover, 27 of these 122 LFG were

involved in the protein-protein interaction network during meiosis in 02428-4x (Fig 6),

including LOC_Os10g35180 (OsABCG26) and LOC_Os08g03682 (CYP703A3), which inter-

acted with four and six genes, respectively.

Discussion

DNA sequence variations associated with meiosis might affect fertility in

autotetraploid rice

In the present study, various types of polymorphic loci were found in autotetraploid rice

compared with their diploid counterpart. These results suggested that next-generation

sequencing technology can be a powerful tool for mining DNA polymorphisms [46,47], even

in polyploid plants [48]. However, few homozygous SNPs/InDels (0.45%) were identified in

autotetraploid rice compared to the diploids, and only eight genes were related to major

impact mutations and missense mutations, which suggest that there are few homozygous

SNPs/InDels between autotetraploid rice and diploid rice after autopolyploidization. In addi-

tion, these eight homozygous polymorphic genes did not show distinct functions in the meio-

sis of autotetraploid rice, demonstrating that they might play other roles in autotetraploid rice,

except LOC_Os09g37270 (OsRacGEF1). OsRacGEF1 is involved in chitin-triggered immune

responses and resistance to rice blast infection [49], but its role not yet reported in fertility.

This gene, which was involved in megagametogenesis, showed missense mutation (arginine to

histidine) in autotetraploid rice, and SNP was monitored by Sanger sequencing. Does this

gene might affect the low fertility in autotetraploid rice? It requires further investigations.
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Moreover, most of the SNPs/InDels in autotetraploid rice were associated with heterozygosity.

This phenomenon may be due to the four chromosomes in autotetraploid rice having het-

erozygous loci in 1:3 or 2:2 distributions. It is unknown whether these heterozygous loci can

interact or not, regulate gene expression and play roles in autotetraploid rice; therefore, addi-

tional studies are needed. Beside, many low fertility-related genes associated with SVs/CNVs

in autotetraploid rice. Five genes showed positive correlation with CNVs and qPCR results

have revealed marked expression changes in these genes (i.e., LOC_Os11g38620 and

LOC_Os11g38630). The gained CNVs of these two meiosis stage-specific genes could change

their differential expression levels in 02428-4x, which implied that the CNV might affect auto-

tetraploid rice and cause undesirable traits. Therefore, we should focus on SVs/CNVs in fol-

low-up studies of autotetraploid rice.

The hypomethylation of DMR (differentially methylated regions) of

autotetraploid rice might cause genome instability or abnormal gene

transcription in anthers during meiosis

Zhang et al. [50] reported that the DNA methylation patterns were highly similar in three dif-

ferent ploidy (monoploid, diploid and triploid) rice lines, implying that ploidy may not have a

widespread influence on DNA methylation. These findings were different from those in our

study, in which ~80% of DMRs exhibited hypomethylation in autotetraploid rice compared to

diploid rice. The hypomethylated DMRs were spread in every region (promoter, exon, intron

and intergenic regions). Gene methylation serves to repress unintended transcription for

Fig 6. Protein-protein interactions of candidate meiosis-related genes in autotetraploid rice. Group 1 genes: genes

related to DNA polymorphisms and that exhibit differential expression patterns. Group 2 genes: genes related to DNA

methylation and that exhibit differential expression patterns. Group 3 genes: genes related to DNA polymorphisms

and DNA methylation.

https://doi.org/10.1371/journal.pone.0201854.g006
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efficient transcriptional elongation [51]. The hypomethylation in autotetraploid rice might be

associated with unintended transcription initiation, which hinders the successful transcription

of the gene. In Arabidopsis, ROS1 is a major DNA demethylase that erase DNA methylation

for gene transcriptional regulation [52]. We hypothesized that autotetraploid rice might have a

gene that function as ROS1 causing DNA hypomethylation after polyploidization. In addition,

a high number of hypermethylated DMRs were located in the promoter regions, which dem-

onstrated where the negative regulation of the gene transcribed starts and subsequently cause

lower expression levels of some important genes in autotetraploid rice, such as low fertility-

related genes. The relationship between the gene expression and methylation level was not lin-

ear in our study; 109 of 254 DEG-DMR pairs showed negative regulation. This result was con-

sistent with the previous MeDIP-seq studies [15,16], such as Hu et al. [16] found that down-

regulated genes did not show significant hypermethylation. The negative regulations of

DEG-DMR pairs might due to other regulatory mechanisms, such as DNA hypermethylation

of DNA methylation monitoring sequence (MEMS) in the promoter of the ROS1 could con-

comitantly increase ROS1 expression [53].

Furthermore, TEs associated with hypomethylation during meiosis in autotetraploid rice

anthers were identified in the present study. Polyploidization could increase genetic mutations

and changes in gene regulation due to the increases in TEs [54]. Hypomethylation of TEs may

cause transposable element mobilization in young panicles at meiosis stage of PA64S (rice ste-

rility line) [16]. Recently, we found that more than 80% of the differentially expressed 24 nt

TEs-siRNAs (siRNAs associated with TEs) exhibited downregulation during pollen develop-

ment of autotetraploid rice (same materials) and may activate TEs and induce genome destabi-

lization [9]. These findings suggest that the irregular TEs associated with hypomethylation and

downregulation of 24 nt TE-siRNAs results in an autotetraploid rice incompatibility response

to “genomic shock” by polyploidization and probably disturbs chromatin structure during

autotetraploid rice meiosis. However, we cannot detect the 3448 TEs genes’ expression levels

in transcriptome. We speculated that the TEs have already triggered from these TE genes and

transposed to other genes; or these TE genes were inactive in these materials. Zhang et al. [22]

also described that the methylation level of TEs is different between autotetraploid rice pani-

cles and those of their diploid counterpart; hypermethylated class II TEs have been reported in

autotetraploid rice. However, these results are drastically different from our results. This differ-

ence is probably due to the different subspecies (japonica vs. indica) and tissues (anthers vs.

panicles) in each experiment, and the WGD of rice needs to be further studied.

The important genes related to DNA sequence variations, DNA

methylations and differential expression patterns in autotetraploid rice

might be co-associated with pollen sterility

In the present study, 122 genes were found to be related to low fertility in autotetraploid rice

by comparing with the pollen/tapetum/meiosis-related genes and meiosis stage-specific genes

[7,37–41]. Here, 31 of 122 genes showed meiosis stage-specific expressions, which played

important role during pollen development of rice [37,38,40]. The abnormal changes of these

genes might affect anther development in autotetraploid rice, such as LOC_Os01g68560
(OsMADS98, MADS-box family gene with M-beta type-box) which displayed specific down-

regulation and hypomethylation (Promoter) in autotetraploid rice. MADS-box genes play piv-

otal roles in the process of anther and pollen development [55]. MIKCc-type box genes

(OSMADS3 and OSMADS58) are crucial for regulating floral meristem determinacy [56], and

dysfunctions of these genes cause severe abnormalities in floral meristem. MIKC�-Type

MADS box genes (MADS62, MADS63 and MADS68) required for pollen maturation [57], and
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knockdown or knockout lines showed severe defects in pollen maturation of rice. In addition,

OsMADS98 was also associated with the combined effect of polyploidy and pollen sterility loci

interactions (IPE) and down-regulated in autotetraploid rice hybrid, which cause meiosis

abnormalities and pollen sterility [41]. Here, the downregulation of OsMADS98 in autotetra-

ploid rice was confirmed by qPCR. These findings suggest that MADS-Box gene, OsMADS98,

is important in autotetraploid rice, and its abnormal expression might hinder the procession

of anther development in autotetraploid rice and cause male sterility.

Some important genes related to pollen sterility were also identified, including

LOC_Os08g03682 (CYP703A3), which was annotated as cytochrome P450 and was specifically

downregulated and hypomethylated (Promoter), and LOC_Os10g35180 (OsABCG26), which

encodes white-brown complex homolog protein 11 and displayed downregulation and hypo-

methylation (Exon and Intron) during meiosis of autotetraploid rice. CYP703A3 was highly

expressed in the tapetum and weakly expressed in the microspores from stage 8 to stage 10 of

anther development [58]. Although no apparent tapetum defect was found in the cyp703a3
mutant, the product of CYP703A3 serves as a backbone between the tapetum and pollen wall

and is important for anther cuticle development and sporopollenin synthesis in rice.

OsABCG26 protein is localized on the plasma membrane of anther wall layers and is responsi-

ble for the transport of wax and cutin precursors from the tapetum to the anther surface [59].

Abnormal tapetal cells, persistent middle layers, collapsed microspores, and deeply stained

debris in anther locules were identified in the osabcg26 mutants. Two genes were involved in

protein-protein interacted regulatory networks during meiosis in autotetraploid rice, and the

downregulation of these genes was confirmed by qPCR. Moreover, the tapetum genes,

LOC_Os10g03660 (OsADF) [60] and LOC_Os05g47446 (OsPDCD5) [61], also displayed DNA

polymorphisms, DNA methylation or differential expression patterns in autotetraploid rice.

Approximately 30% of abnormal tapeta were detected during autotetraploid rice anther devel-

opment compared to diploid rice by semi-thin sections. These results mirrored the abovemen-

tioned differential expression pattern of the tapetum genes, which demonstrated that

abnormal expression of tapetum genes might cause tapetum defects in autotetraploid rice.

Moreover, osa-miR2275 and 24 nt-phasiRNAs preferentially accumulate in the tapetum and

meiocytes of maize [62]. Downregulated 24 nt-phasiRNAs showing similar spatial-temporal

expression patterns as those of osa-miR2275d were found during meiosis in 02428-4x anthers

[9], which implied that abnormal tapeta and tapetum genes might lead to irregular 24 nt-pha-

siRNAs and aggravate pollen sterility in autotetraploid rice.

Moreover, LOC_Os11g38620and LOC_Os11g38630combined with gain CNVs exhibited

differential expression patterns in autotetraploid rice. Even though the function of these genes

is largely unknown, they showed stage-specific expression during meiosis in rice. The function

of these gene related to low fertility of autotetraploid rice should be further investigated. 122

genes could be elite male sterility genes that could be used for further studies about autotetra-

ploid rice. However, the changes in gene expression between methylation levels and DNA

polymorphisms are different and complex in autotetraploid rice. These changes might be regu-

lated by another mechanism or regulators, such as long noncoding RNAs or circular RNAs, to

respond to polyploidy effects.

Overall, a low seed set (~15%) as well as poor pollen fertility (~43%) and abnormal chromo-

somal behavior (~20%) in 02428-4x was reported in our previous study [9]. These phenomena

represent one reason for the low fertility caused by cytogenetics. Furthermore, abnormal tapeta

(~30%) detected during anther development in 02428-4x further intensified pollen sterility.

Various pollen/meiosis/tapetum-related genes and meiosis stage-specific genes were associated

with different regulatory mechanisms; some showed DNA variation, some displayed differen-

tial expression, and some exhibited methylation in autotetraploid rice, even regulated by small
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RNAs [8,9]. Abnormal variations/expressions/methylations of low fertility-related genes cause

sterile phenotype in autotetraploid rice. Taken together, these results showed that the low fer-

tility in autotetraploid rice might be cause by multiple factors simultaneously or successively.

Additionally, whether fertilization and endosperm development are normal or not and the ste-

rility of autotetraploid rice should be further studied (Fig 7).
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