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Abstract

The enumeration of the interaction partners of the cellular prion protein, PrPC, may help clarifying its elusive molecular
function. Here we added a carboxy proximal myc epitope tag to PrPC. When expressed in transgenic mice, PrPmyc carried a
GPI anchor, was targeted to lipid rafts, and was glycosylated similarly to PrPC. PrPmyc antagonized the toxicity of truncated
PrP, restored prion infectibility of PrPC-deficient mice, and was physically incorporated into PrPSc aggregates, indicating that
it possessed all functional characteristics of genuine PrPC. We then immunopurified myc epitope-containing protein
complexes from PrPmyc transgenic mouse brains. Gentle differential elution with epitope-mimetic decapeptides, or a
scrambled version thereof, yielded 96 specifically released proteins. Quantitative mass spectrometry with isotope-coded
tags identified seven proteins which co-eluted equimolarly with PrPC and may represent component of a multiprotein
complex. Selected PrPC interactors were validated using independent methods. Several of these proteins appear to exert
functions in axomyelinic maintenance.
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Introduction

The cellular prion protein, PrPC, is required for susceptibility to

prion infections [1,2], for prion toxicity [3], and for prion

transport within the body [4]. PrPC is a conserved glycoprotein

that is anchored to the cell surface through a covalently attached

glycosyl phosphatidyl inositol (GPI) residue [5]. PrPC undergoes a

complex biogenesis encompassing co-translational secretion into

the lumen of the endoplasmic reticulum, cleavage of an N-

terminal signal peptide, addition of complex N-linked carbohy-

drate chains at two sites [6], addition of a preformed GPI anchor

at its very C-terminus (Ser230), and removal of a C-terminal

oligopeptide.

Despite the detailed chemical knowledge described above, the

molecular details of the process by which PrPC is converted into a

disease-associated homologue, PrPSc, are unclear [7]. Likewise, the

chain of events emanating from prion infections and leading to

neurodegenerative changes and clinical signs is unknown. Lastly,

the physiological function of PrPC is unclear [8]. Most of the above

processes may require interactions with proteins other than PrP,

yet the nature of such interaction partners is largely unknown. The

present study was initiated as an approach to discovering the

functionally relevant interaction partners of PrPC.

Several diverse approaches have been used in the past to

achieve the latter goals. In some instances, however, the

techniques employed were not sufficiently sensitive or were

fraught with other problems. Classical two-hybrid screens, in

which fusion proteins leads to biological readouts in the cytosol of

yeast, tend to produce when applied to membrane proteins like

PrPc. The same holds true for cross-linking experiments, in which

proteins resident in the same micro-environment may become

linked together even if they do not functionally interact with each

others.

In order to avoid the problems described above, and to

minimize any interference with the conditions existing in vivo, we

isolated native protein complexes containing PrPC and character-

ized them by mass spectrometry. The addition of epitope tags, for

which high-affinity antibodies are available, has proven instru-

mental for the study of many supramolecular complexes. The

engineering of appropriate tags into the proteins of choice yields

‘‘molecular handles’’ through which multi-component complexes

can be immunoprecipitated and highly purified. PrPC lends itself

to this approach as a particularly attractive bait, as its high-

resolution structure is known [9] and thereby allows for the

rational design of tags. If the precipitating antibodies are directed

against linear, non-conformational epitopes within the tag,

epitope-mimetic peptides can release the protein complexes in a

highly specific way under non-denaturing conditions. The

introduction of a tag is also a promising starting point for

identifying functionally relevant complexes since it preserves
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protein interactions that occur in the same region of an anti-PrP

antibody.

GFP-PrPC fusion proteins have proved useful for determining

the subcellular distribution and trafficking of normal and mutated

prion protein [10,11,12]. However, the suitability of GFP to the

proteomic approach delineated above is limited. GFP is a bulky,

highly structured and rigid tag whose molecular weight exceeds

that of PrPC. Therefore we reasoned that GFP may distort the

composition of any native multiprotein complex that encompasses

PrPC.

In the present study, we have tagged the C-terminus of mouse

PrPC with the human ‘‘myc-tag’’. The resulting chimaeric protein,

termed PrPmyc, was used to immunoprecipitate and characterize

the supramolecular complex containing the prion protein from

transgenic mice. Using immunoprecipitation and mass spectrom-

etry, we have identified a set of proteins associated with PrPmyc.

Since the conversion of cellular prion protein PrPC into the

proteinase K-resistant isoform PrPSc is the central pathogenic

process in prion diseases, we investigated whether PrPmyc can be

converted into PrPSc. Our results indicate that C-terminally myc-

tagged prions can contribute to prion infectivity and to

neurotoxicity. Therefore, myc tagged PrPSc may also allow for

identification of proteins interacting with PrPSc.

Results

Transgenic mice expressing C-terminally tagged PrP
We tagged the murine prion protein by introducing a human

myc epitope tag (EQKLISEEDL) at its C terminus next to Ser230

and amino proximally to the C-terminal signal sequence for the

GPI anchor (Fig. 1A). As the minimal myc epitope tag consists of

only 10 amino acids, we reasoned that it might not interfere with

the geometry and proper folding of PrPC, and with its function.

The human myc epitope tag was detectable by both monoclonal

anti-myc antibodies 9E10 and 4A6 [13]. To guarantee correct

GPI linkage of this fusion protein, the sequence comprising Ser230

and its four immediately preceding N-proximal amino acids was

duplicated after the tag. The resulting fusion molecule was termed

PrPmyc.

Preliminary analyses of PrPmyc transfected cells indicate that the

biosynthesis, processing, and trafficking of the resulting fusion

protein were indistinguishable from those of endogenous PrPC

(data not shown).

To generate transgenic mice expressing C-terminally tagged

PrP, PrPmyc was ligated into the ‘half-genomic’ phgPrP backbone,

driven by the endogenous Prnp promoter [14]. Pronuclear

injections of linearized purified DNA were performed into

fertilized oocytes derived from a B6D2F16B6;129S5-Prnpo/o

mating. Four founder mice were identified by PCR analysis using

primers TAP 20 (59- CCG ATG TGA AGA TGA TGG AGC)

and myc 22 (59- CCG TCG ATC GGA TTC AGA TCC) specific

for the myc-tag amplicon. The two highest-expressing lines,

termed Tg(PrPmyc)940Zbz and Tg(PrPmyc)941Zbz (henceforth

Tg940 and Tg941 for brevity) were chosen for further propagation.

Southern blot analysis revealed that Tg940 and Tg941 mice

harbored 6 copies and 1 copy of the transgene per haploid

genome, respectively (Fig. 1B). Northern blot analysis performed

on total RNA from brains of PrPmyc mice confirmed transcription

of transgenic PrPmyc (Fig. 1C). Transgenic mice expressing PrPmyc

did not show any anatomical or behavioral abnormalities, survived

in health for .700 days, and did not show any neurohistological

changes. We monitored weight and food uptake until adolescence.

Transgenic mice had shiny fur indicative of good general health,

and reproduced with frequency and litter sizes comparable to

wild-type mice (data not shown). We did not recognize any

difference in locomotor activity from wild-type mice over a period

of .2 years.

To obtain transgenic strains that only expressed PrPmyc yet no

endogenous PrP, both transgenic founders Tg940 and Tg941 were

crossed twice to Prnpo/o mice. Transgene expression in brain and

spleen of these mice was analyzed by Western blotting using anti-

PrP antibody POM1 [15], and mouse monoclonal anti-myc

antibody 9E10. Tg940 mice lacking PrPC (henceforth termed

Tg940 PrPo=o
myc) expressed 1.6 fold more of PrPmyc protein in brain

than wild-type mice (Fig. 1D), but had lower expression levels of

the transgene in spleen (about 0.5 fold of Prnp+/o mice, data not

shown). Expression of PrPmyc in Tg941 PrPo=o
myc was approximately

0.33 fold in brain and 2-fold in spleen of PrPC expression in Prnp+/o

mice (data not shown). Tg940 and Tg941 exhibited a three-banded

pattern very similar to PrPC glycoforms (37–25 kDa) in wild type

mice (Fig. 1E).

PrPmyc is localized within detergent resistant membranes
(DRMs)

We isolated DRMs from Tg940 brain tissue by gradient

centrifugation [16]. A series of fifteen individual fractions was

carefully removed from the tubes after centrifugation of typical

DRM preparations from mouse cerebella of Tg940 PrPo=o
myc, and

analyzed by Western blotting. The quality of the preparations was

monitored using the control proteins flotillin 2 is known to reside

in DRMs [17,18]. PrPmyc was found to reside in the same fractions

as these proteins, confirming its localization in these specialized

membrane domains (Fig. 1F). Therefore, the subcellular localiza-

tion of PrPmyc was similar to that of endogenous PrPC.

Testing the functionality of PrPmyc

Tg940 PrPo=o
myc were crossed with the TgF35 line of mice

expressing N-proximally truncated PrP, henceforth referred to as

PrPDF. PrPDF mice suffer from degeneration of the cerebellar

granular layer, leukoencephalopathy, and death at about 100 days

of age [19,20,21]. This phenotype is dose-dependently counter-

acted by endogenous or transgenic co-expression of wild-type

PrPC, presumably because of a competing activity supplied by

PrPC.

If the tagged protein PrPmyc is functional and appropriately

localized, it should also rescue PrPDF mice from neurodegenera-

tion. Indeed, Tg940 PrPo=o
myc expressing PrPDF survived for

551673 days (n = 5; Fig. 1G) and maintained a normal weight

throughout their lifetime. Mice were examined twice per week for

neurological symptoms and scored as described [19], yet did not

show clinical signs of CNS disease at any time. Furthermore, they

did not develop histopathological changes in brain or other organs

(data not shown), suggesting that PrPmyc is functional in vivo. Age

and sex-matched PrPDF siblings died between 12 and 14 weeks of

age (mean survival: 9567 days, n = 5; Fig. 1G).

In contrast, double-transgenic mice of the lower expressing line

(Tg941) were not completely rescued and began to show first signs

of illness around day 280. Some animals had to be sacrificed at the

age of 12 months due to hind leg paresis (mean survival

391657 days, n = 9; Fig. 1G). As Tg941 PrPo=o
myc mice express

about one-third of the PrPmyc found in brains of Tg940 PrPo=o
myc

mice, this indicates that the action of PrPmyc, like that of PrPC, is

dose-dependent.

Neuropathology in inoculated PrPz=o
myc mice

To assess whether PrPmyc can be converted into myc-tagged

protease-resistant PrPSc
myc, PrPz=o

myc and PrPo=o
myc mice from lines

Interactome of Myc-Tagged PrP
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Tg940 and Tg941 were inoculated with mouse-adapted sheep

prions (RML strain, passage 5). After low dose intraperitoneal (ip)

inoculation with 103 IU or intracerebral (ic) inoculation with 300

IU of RML5 brain homogenate, Tg940 PrPz=o
myc mice showed signs

of CNS dysfunction at 250692 (n = 5/5) and 236676 (n = 6/6)

days post inoculation (dpi), respectively (Fig. 2A and B). Mice

expressing less PrPmyc in brain (Tg941) developed signs of CNS

dysfunction and terminal scrapie disease more slowly, at 316620

(n = 4/4) days after low-dose intracerebral inoculation (Fig. 2B and

Table S1).

Brain homogenates prepared from terminally sick Tg940

PrPz=o
myc mice were inoculated ic into tga20 mice overexpressing

PrPC [14] to test for infectivity in an in-vivo mouse assay. All of the

tga20 mice developed neurological signs of terminal scrapie at

around 80 dpi (Table S1). Prion infection was confirmed by

immunochemical and histopathological analysis in all terminally

sick mice. PrPz=o
myc mice developed neurological dysfunction and

terminal disease significantly earlier than Prnp+/o mice: the mean

incubation time was 27669 days for Prnp+/o (n = 6) and

226613 days for Tg940 PrPz=o
myc mice (n = 8) after high dose ic

inoculation (Fig. 2C and Table S1). Therefore, PrPmyc contributes

to, rather than interfering with, prion pathogenesis in Prnp+/o

mice.

In all terminally sick PrPz=o
myc mice tested we detected proteinase

K (PK) resistant material in brain and spleen after ic or ip

inoculation with RML prions. To distinguish between wild-type

PrPSc and PrPSc
myc we stained Western blots of brain homogenates

with an anti-myc antibody (Fig. 2D). PK-resistant PrPSc
myc was

clearly detectable under these conditions, indicating that PrPmyc

itself is convertible, and suggesting that this phenomenon

contributed to the shortened incubation periods in PrPz=o
myc mice.

Comparison of immunohistochemically stained brain sections of

terminal Prnp+/o and Tg940 PrPz=o
myc mice did not reveal any

striking differences in the extent and topography of reactive

astrocytic gliosis, vacuolar degeneration and PrP aggregates

(Fig. 2E–K).

Neuropathology in inoculated PrPo=o
myc mice

To investigate whether PrPmyc can be converted into myc-

tagged PK-resistant PrPSc
myc even in the absence of a wild-type PrP

allele, we inoculated PrPo=o
myc mice with RML prions. No PrPSc was

detected in brain and spleen at 50 to 100 days after ic or ip

inoculation, yet 8 of 34 (23%) PrPo=o
myc mice eventually developed a

progressive neurological syndrome clinically indistinguishable

from scrapie after RML inoculation (Table S2). Brain homogenate

from these sick mice was then used to inoculate a second

generation of Tg940 PrPo=o
myc mice. Western blot analysis of brain

homogenate from these second-passage ic-inoculated Tg940

PrPo=o
myc mice revealed PK-resistant PrP; these mice had clinical

signs of scrapie and developed vacuolation in the neuropil, intense

astrogliosis, and abundant PrP aggregates (Fig. 3A–C). For

control, Tg940 PrPo=o
myc mice were inoculated with non-infectious

brain homogenate. These mice showed no evidence of vacuolar

degeneration or nerve cell loss, and only mild astrogliosis when

aged (Fig. 3D–F).

As an additional method to distinguish between PrPSc derived

from wild-type PrP and PrPmyc we performed histoblot analysis of

cryosections of terminal Tg940 PrPo=o
myc mice and Tg940 PrPz=o

myc

mice (Fig. 3G–I). Using anti-PrP (POM1) and anti-myc (4A6)

antibodies, we could specifically detect PK-resistant PrP in

terminal C57BL/6 mice, Tg940 PrPo=o
myc and Tg940 PrPz=o

myc mice.

This technique allowed us to map the distribution of PrPSc in

different transgenic mice.

We then investigated whether PrPmyc infectivity would increase

upon serial transmission, as frequently observed in strain

adaptation [22]. Brain homogenate derived from RML-inoculated

Tg940 PrPz=o
myc mice was passaged into Tg940 PrPo=o

myc mice which

all got sick after 590656 days (n = 3) (Table S3). One of these

second-passage mice was used as a source for a third passage into 5

Tg940 PrPo=o
myc mice. All of them show similar neurological signs as

in the second passage, but with a shorter incubation period of

367638 (n = 5), which is suggestive of strain adaptation (Table S3).

We then tested whether deposition of PrPSc accompanies prion

replication, defined as increase in prion infectivity. Samples from

Tg940 PrPo=o
myc mice after the second passage were used to infect

the PK1 subclone of N2a neuroblastoma cells in the Scrapie cell

assay in endpoint format (SCEPA [23]). As shown in the Fig. 3 J

the titer for the PrPSc
myc is the same as the standard RML.

Identification of PrPmyc -containing protein complexes
Crude brain homogenates from Tg940 PrPo=o

myc mice were

subjected to immunoprecipitation (IP) experiments with paramag-

netic microbeads coupled to mouse monoclonal anti-myc antibody

(4A6, Upstate, USA). Release of myc-containing protein com-

plexes from beads was carried out by exposing the beads to an

excess of the synthetic epitope-mimicking myc peptide described

above. Control experiments were carried out to verify the

specificity of the eluted proteins, and included (1) incubation of

beads with 129S2/SvPas wild-type brains followed by elution with

the myc peptide, as well as (2) incubation of beads with Tg940

PrPo=o
myc homogenate followed by elution with a scrambled version

of the myc peptide. In the eluates from 4A6-coupled beads

Figure 1. Molecular characterization of the PrPmyc transgenic mouse lines Tg940 and Tg941. (A) Scheme of the PrPmyc transgene. SP:
secretory signal peptide, cleaved after sorting of the precursor to endoplasmic reticulum; repeats: five repeats of eight amino acids; CC: charge
cluster; HC: hydrophobic core; H1, H2, H3: a-helices of the globular carboxy-proximal domain; MYC: human myc epitope tag (EQKLISEEDL); MA:
membrane anchor of precursor protein, replaced during maturation with glycosyl phosphatidyl inositol anchor. (B) Southern blot analysis of lines
Tg940 PrPmyc (lanes 1, 2, 6) and Tg941 PrPmyc (lanes 3, 5, 7). Lane 4: Tg941 PrPo=o

myc mouse co-expressing N-proximally truncated PrPDF. Lane 8: PrPDF

mouse. The bands diagnostic for PrPmyc and PrPDF were 3039 and 2709 bp, respectively. Numbers of transgenic copies per haploid genome, as
determined by quantitation of Southern blot signals against the respective Prnpo genomic band, revealed higher copy numbers in Tg940 PrPmyc (#6)
than in Tg941 PrPmyc mice (#1). (C) Northern blot analysis of individual Tg940 PrPmyc and Tg941 PrPmyc brains using a Prnp probe. Mice homozygous
for the transgenic allele PrPmyc (lanes 2, 3, 4 from Tg940 and lanes 8, 11 from Tg941) showed higher levels of PrPmyc mRNA than hemizygous mice
(lanes 1 and 5 from Tg940 and lanes 6, 9, 10 from Tg941). An actin probe was used as a loading control (lower panel). (D) Similar expression levels of
transgenic protein from Tg940 PrPo=o

myc, and full-length PrP from 129S2/SvPas wild-type mice, analyzed by Western blotting of total brain homogenate
using anti-PrP antibody POM1. (E) Similar glycosylation pattern of full-length PrP from 129S2/SvPas wild-type and PrPmyc from Tg940 PrPo=o

myc mice.
Brain homogenates were subjected to PNGase F treatment as indicated, and analyzed by Western blotting using POM1 antibody to PrPC. (F)
Detergent-resistant membrane preparations from cerebella of Tg940 PrPmyc transgenic mice showed PrPmyc in lipid rafts. PrPmyc was detectable by
Western blotting in fractions with 5–30% Optiprep. PrPmyc resided in the same fractions as flotillin (48 kDa) confirming its localization in DRMs. (G) A
genetic in vivo assay for the function of the PrPmyc protein. Survival curves of mice expressing PrPDF in absence of full length PrPC and in presence of
PrPmyc from two transgenic lines. Toxicity of PrPDF was counteracted by PrPmyc, leading to a longer survival and suggesting that PrPmyc has retained at
least some of the function of PrPC. Line PrPDF, Tg940 and Tg941 consisted of 5, 5, and 9 individuals, respectively.
doi:10.1371/journal.pone.0004446.g001
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Figure 2. Survival and neuropathology of PrPz=o
myc mice after prion inoculation. (A) Survival curves of Tg940 PrPz=o

myc mice and Prnp+/o mice
low dose ip inoculated with RML5 prions. Groups Tg940 PrPz=o

myc ip Prnp+/o ip consisted of 5 and 2 individuals, respectively. (B) Survival curves of
Tg940 PrPz=o

myc , Tg941 PrPz=o
myc , and Prnp+/o mice inoculated low dose ic with RML5 prions. Group Tg940 PrPz=o

myc comprises 6, group Tg941 PrPz=o
myc 4,

and Prnp+/o 3 individuals, respectively. (C) Survival curves of Tg940 PrPz=o
myc mice and Prnp+/o mice high dose ic inoculated with RML5 prions. Line

Tg940 PrPz=o
myc comprises of 8 and line Prnp+/o of 6 individuals, respectively. (D) PrPmyc was converted into myc-tagged proteinase K-resistant PrPSc

myc

in presence of a wild-type PrP allele. Western blot analysis using brain homogenate from an inoculated, terminally sick PrPz=o
myc mouse. Antibodies

Interactome of Myc-Tagged PrP
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incubated with 129S2/SvPas wild-type brain homogenates, PrPC

was not detected, whereas only traces of PrPC were detected in the

scrambled-peptide eluate from IPs of Tg940 PrPo=o
myc brain

homogenates (Fig. 4A).

Inspection of silver-stained gels revealed more protein bands in

the specific than in the unspecific elution fraction (Fig. 4B), in

particular the PrPmyc band exclusively present in the myc-specific

eluates from Tg940 PrPo=o
myc brain homogenates. The correspond-

ing lanes were cut into slices, proteins were extracted, and tryptic

peptides were identified by liquid chromatography followed by

tandem mass spectrometry (LC-MS/MS). As a further quality

control, we verified that the identified proteins originated from the

gel area corresponding to their predicted molecular size. Table S4

lists those proteins that were coprecipitated with PrPmyc from

transgenic brains, yet were not detected in material immunopre-

cipitated from wild-type brains and unspecific elution under the

same conditions. While 442 individual proteins were detected in

both the specific and the nonspecific eluates, and 277 proteins

were uniquely present in the nonspecific eluate, 96 proteins were

present in the specific eluate but absent from the nonspecific

eluate.

We then sought to determine the relative abundance of PrP and

the interacting proteins in the specific and unspecific peptide

elution fractions by using cleavable isotope-coded affinity tags

(cICAT) as a quantitative mass spectrometric technique. In the

classical cICAT approach the two labeled fractions contain the

same amount of protein. Since this is not the case for the specific

and unspecific IP elution fractions, we could only determine the

relative ratio of PrP between the specific and the unspecific elution

fractions.

The two elution fractions derived from immunoprecipitations of

PrPmyc and wild-type brains were labeled with the ‘‘heavy’’

(cICAT-13C9) and ‘‘light’’ (cICAT-12C9) cICAT tags, mixed, and

mass/charge (m/z) elution profiles were determined by mass

spectrometry. Sequest [24], PeptideProphet [25] and XPRESS

were used to identify the proteins and to access the cICAT ratios

(Fig. 4C, Table S5). Of the 157 peptide pairs that could be

assigned to a heavy/light ratio between 0.1 and 100, seven

proteins were found to have a comparable ratio to PrP and, at the

same time, were identified as specific proteins by the gel-based

approach (Table 1). Any ratios below 1 are indicative of proteins

more abundant in the scrambled elution than in the myc-specific

elution. Proteins displaying a similar abundance in both samples

would yield a ratio of 1, which most probably indicates nonspecific

binding to and elution from the beads. The ratio for PrP was about

14, and the proteins listed in Table 1 represent values between 4

and 15.

We then sought to confirm the results of mass spectrometric

analyses by immunochemical analyses of selected proteins. Indeed,

the identity of PrP, 29,39-cyclic nucleotide 39-phophodiesterase,

M6-a and Neurofascin was unambiguously confirmed by Western

blot analysis. Fig. 4D shows the characteristic double band of

CNPase after myc-peptide elution and a low-intensity band for the

scrambled-peptide elution. Western blot analysis with antibodies

to Neurofascin 155 and M6a revealed specific bands for the

specific-peptide elution but in none of the negative controls

(Fig. 4E–F). The signal for M6a from the specific elution shows

two strong bands most probably originating from alternative

splicing. For both Neurofascin and M6a, the protein expression

level in wt and Tg940 PrPo=o
myc brain were approximately the same

as illustrated in Fig. 4E–F.

Discussion

Our understanding of the function of PrPC and its conversion

into PrPSc continues to be sketchy. Genetic experiments have

helped defining the domains of PrPC necessary for prion

propagation [21] and, with some limitations, for PrPC function

[19,26,27,28], yet have failed to identify any further proteins that

may be required for this process. However, progress in this field

may crucially benefit from enumerating and/or manipulating the

PrP-interacting proteome. Towards the latter goals, we have

studied the biogenesis, localization in vitro and in vivo of a C-

terminally myc-tagged version of PrPC (PrPmyc). Since the

physiological function of PrPC is unknown, we used a well-

established approach of reverse genetics [14] to assay the

biological activity of PrPmyc. This approach is so far the most

proximal surrogate to study the function of PrP. We found PrPmyc

to be fully functional and substitute dosage-dependently for

endogenous PrP in rescuing the neurodegenerative phenotype

induced by PrPDF.

Conversion of cellular prion protein PrPC into the disease-

causing isoform PrPSc is the central pathogenic process in prion

diseases [29]. Therefore, any claim of the biological authenticity of

a modified PrP protein should be substantiated by its ability to

sustain prion replication. We approached this important question

in a variety of paradigms. Whereas direct intracerebral inoculation

of PrPo=o
myc transgenic mice with prions rarely induced scrapie, we

found that in the presence of a wild-type Prnp allele PrPmyc is

converted into a PK-resistant isoform (PrPSc
myc). The disease of

prion-infected PrPz=o
myc mice was transmissible by ic inoculation of

brain homogenates to wild-type mice and also, importantly, to

PrPo=o
myc mice. Since it is known, that PrPSc levels do not necessarily

correlate with infectivity titers, we decide to evaluate the infectivity

titers by SCEPA and compare to RML, and also in that paradigm

PrPmyc behave as normal RML. The latter finding establishes

beyond any doubt that PrPmyc supports prion replication and

scrapie pathogenesis.

In many paradigms, expression of heterologous PrP molecules

which differ from the endogenous PrP by as little as one amino

acid can profoundly interfere with the overall accumulation of

PrPSc [30,31], suggesting that precise homotypic interactions

between PrP molecules are important for PrPSc accumulation

[31,32]. However, when inoculated with the same dose of prions,

PrPz=o
myc mice developed disease faster than Prnp+/o mice, implying

that PrPmyc cooperates, rather than interfering, with PrPC in

disease pathogenesis. This was unexpected in view of the many

instances of interference that have documented to occur even

between naturally occurring PrP alleles [12]. If one accepts that

interference is brought about by disturbances of the replicative

interface of prions, one might speculate that the carboxy terminus

of PrPC does not participate to such an interface.

POM1 to PrP and 4A6 to myc were used for detection. Samples were treated with PK as indicated, revealing the presence of protease resistant PrPmyc

in the brain of inoculated Tg940 PrPz=o
myc mice. (E–G) Similar neuropathological changes in hippocampus of a RML inoculated Prnp+/o mouse and (H–

K) a RML-inoculated Tg940 PrPz=o
myc mouse. (E, H) Hematoxylin-eosin stains showing vacuolar degeneration and nerve cell loss. The dashed lines

indicate the magnified area shown in F,G,J and K. Scale bar = 500 mm. (F, J) GFAP immunohistochemistry for the detection of reactive astrocytes and
(G, K) mAb SAF84 for PrP aggregates. Scale bar = 200 mm. The small inserts represent the low magnification pictures of the GFAP and SAF84 stained
sections consecutive to E and H. Scale bar = 500 mm.
doi:10.1371/journal.pone.0004446.g002
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The latter conclusion, however, is tempered by another

observation. When PrPo=o
myc mice were inoculated with RML

prions, only few animals developed clinical signs of scrapie. This

suggests that the C-terminally modified prion protein presents a

‘‘prion transmission barrier’’ to mouse-adapted sheep prions,

analogously to the species barriers seen in many natural and

experimental prion diseases [33]. The similarities between the

amino acid sequence of donor PrPSc and recipient PrPC play a

crucial role in the species barrier [34,35], but the structural

understanding of these constraints is still very sketchy. In the

PrPmyc transgenic model, the species barrier exists if wild-type

prions are transmitted into PrPo=o
myc animals, but can be overcome if

brain homogenates from terminally sick PrPz=o
myc mice containing

PrPSc
myc is passaged into PrPo=o

myc transgenic mice.

The successful production of myc-tagged, self-propagating and

disease-causing prions paves the way to many studies in vitro and in

vivo by taking advantage of the high-affinity reagents available to

the myc epitope. For example, the myc-tagged prion inoculum

may allow for investigating the fate of inoculated prions in vivo,

since PrPmyc can be detected and traced by tag-specific antibodies

which do not recognize endogenous PrP. In the present study, we

provide evidence that PrPmyc is useful for probing the PrPC-

associated proteome. We have established a novel method for the

specific elution of multiprotein complexes containing PrPmyc. We

have exploited this method for identifying several candidate

proteins which appear to interact with PrPC in vivo. The specificity

of these interactions was validated by comparison to wild-type

brain eluates and elution with a scrambled peptide. Some of the

PrP-interacting proteins describe before and summarized in recent

reviews [36,37], including for instance Tubulin, Hsp60 and

Laminin, were detected in the specific as well as unspecific elution

fraction of our approach and therefore not included into the list of

possible candidates.

We utilized a quantitative MS technique, isotope-coded affinity

tagging (ICAT), to determine the relative abundance of PrP and

other proteins in the various samples, so to identify proteins that

might exist in an equimolar complex with PrPC. Such PrPmyc-

interacting proteins would display an ICAT ratio of specific/

unspecific signals similar to that of PrPC. Based on this mass

spectrometric approach, we found a small number of protein

candidates equimolarly associated with PrPmyc in native brain

homogenates.

There are some caveats to the equimolarity filter described

above. Supramolecular complexes encompassing PrPC may

contain superstoichiometric amounts of accompanying molecules,

in which case the ICAT ratios may be skewed. Conversely, if PrPC

exists in a free form as well as in a complex, or in several different

complexes, the partner proteins may appear to be substoichio-

metric in an immunoprecipitate. Therefore, even if the seven

proteins identified here represent promising candidates, the

remaining hits detailed in Table S4 should not be dismissed

because of their non-equimolar ICAT ratios.

Two of the latter seven proteins (Q80U89 clathrin linked;

Q01853 translational ER ATPase) are not well-characterized and

no antibodies to them appear to be available. Chondroitin sulfate

proteoglycan core protein was described to strongly inhibit neurite

outgrowth of central and peripheral neurons [38]. It was also

reported that neurite outgrowth is modulated – at least in culture

models – by interactions between PrPC, NCAM and STI-1, which

can lead to activation of intracellular signalling pathway [39].

Several PrPmyc interactors belong to the families of neuronal

glycoproteins and myelin-associated proteins. These include the

neuronal membrane glycoprotein M6-a, Neurofascin, and 29,39-

cyclic nucleotide 39-phophodiesterase (CNP). P0 glycoprotein of

compact PNS myelin, myelin-associated glycoprotein (MAG), and

others have well-defined roles in the formation, maintenance and

degeneration of myelin sheaths [40]. Myelin proteins also appear

to mediate signals between the myelin-forming cell and the axon

[41]. Current research suggests that CNP is required for

maintenance of axon-glial interactions at the nodes of Ranvier

in the CNS [42]. The interaction between PrP and CNP may

underlie the myelin damage observed in old Prnpo/o mice [43] and

in various transgenic PrP deletion mutants age [19,20,21]. In

support of this hypothesis, recent studies suggest that myelin

integrity may be maintained by a constitutively active neuro-

trophic protein complex involving PrPC [19].

A possible functional relation between neurofascin and PrPC is

particularly intriguing in view of the lethal phenotype of transgenic

mice expressing PrP deletion mutants, which display extensive

central and peripheral myelin degeneration [19]. Neurofascin 186

(NF186) is expressed prenatally on dorsal root ganglia neurons and

it may modulate their adhesive interactions with Schwann cells,

which express NF155 postnatally and require it for development of

axon–glial paranodal junctions. The major isoform of NF186

inhibits cell adhesion, and this activity may be important in

formation of the node of Ranvier [44].

Another enticing candidate for functionally relevant interactions

is M6-a, a membrane glycoprotein involved in neuronal

differentiation as part of a Ca2+ channel [45]. The lack of the

cellular prion protein was shown to affect Ca2+ homeostasis in

neurons [46], and therefore it is thinkable that PrPC and M6-a are

involved in a complex possessing an ion channel-like function.

In addition to identifying the interactors described above, the

tools introduced here may allow for studying supramolecular

complexes containing the disease-associated prion protein PrPSc.

The biophysical properties and aggregational state of PrPSc are

vastly different from those of PrPC, and there is reason to

hypothesize that the PrPSc interactome will only partially overlap

with that of PrPC. Since most prion strains are both neurotropic

and lymphotropic [47,48], and inflammatory conditions specify

Figure 3. Neuropathology of Tg940 PrPo=o
myc mice after prion inoculation. (A–C) Extensive astrogliosis and PrP aggregation in hippocampus of

an RML inoculated Tg940 PrPo=o
myc mouse compared to (D–F) Mock inoculated Tg940 PrPo=o

myc mouse: (A, D) Hematoxylin-eosin stains visualizing
vacuolar degeneration and nerve cell loss, (B, E) GFAP immunohistochemistry indicating reactive astrocytic gliosis, and (C, F) mAb SAF84 showing
PrPmyc aggregates. Scale bar = 500 mm. (G–I) Conversion of PrPmyc into myc-tagged PK-resistant PrPSc

myc in mice lacking both wild-type Prnp alleles.
Histoblot analysis of coronal slices from brains of mock and prion-inoculated mice blotted onto nitrocellulose membranes. (G) Mock-inoculated
C57BL/6 and Tg940 PrPo=o

myc mice. Brain homogenates were incubated with POM1 and 4A6 before or after PK treatment, and showed no PK-resistant
PrP. (H) Prion-inoculated Tg940 PrPo=o

myc and Tg940 PrPz=o
myc mice, treated with PK and incubated with POM1 and 4A6, showed PK-resistant material in

brain. (I) Prion-inoculated Prnp+/o, Tg940 PrPz=o
myc and Tg940 PrPo=o

myc mice treated with PK and untreated were stained with 4A6 anti-myc antibody and
show protease-resistant PrPmyc in the brain. A terminally sick Prnp+/o mouse was used to control for nonspecific 4A6 signals. (J) SCEPA of brain
homogenates of PrPo=o

myc and wild-type mouse. Three independent biological replicas of PrPSc
myc and 2 independent biological replicas for RML were

analyzed in tenfold dilution steps using 6–12 PK1-containing replica wells for each dilution. Data points indicate the number of infectious tissue
culture units per ml of brain homogenates.
doi:10.1371/journal.pone.0004446.g003
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the tropism of prions [49,50], the interactome of PrPC and PrPSc in

lymphoid organs will also be of interest. The inoculation of wild-

type animals with myc-tagged prions may help elucidating the initial

events that occur during infection of an animal with prions. Finally,

the successful conversion of PrPmyc into a protease-resistant moiety

may allow for the purification of native PrPSc-containing complexes

using the techniques described above for PrPC. The latter studies

may lead to the identification of the elusive chaperones involved in

prion propagation, strain barriers and strain adaptation, as well as

the crossing of prion species barriers.

Materials and Methods

Generation of myc-tagged PrPC

PCRs were performed in 50 ml volumes containing 10 ng of

template DNA phgPrP [14], 200 mM of each dNTP, 20 pmol of

Figure 4. Isolation of PrPmyc and PrPSc
myc from Tg940 PrPo=o

myc and Tg940 PrPz=o
myc brains. (A) Western blot analysis of the material used for IP of

PrPC. Equal amounts of brain homogenates from wild-type 129S2/SvPas and Tg940 PrPo=o
myc mice were used for immunoprecipitations. Specifically

eluted PrPmyc protein was detected with anti-PrP antibodies as well as 4A6 anti-myc antibody (data not shown). No signal for PrP in the specific
elution (s.e.) from the precipitation in 129S2/SvPas brain homogenate, and only weak signals from the elutions with unspecific peptide (u.e.), or with
PBS only (b.e.). (B) Silver stain of the material immunocaptured with anti-myc antibodies from total brain homogenate of Tg940 PrPo=o

myc and eluted
with myc and cym peptide. The gel was subsequently used for GeLC-MS/MS experiments. (C) Blot of peptide pair frequency against XPRESS-Ratios on
a logarithmic scale. Values of ratios where one of the two labeled peptide was not detected (1:0 or 0:1) were excluded from the dataset. The ratio of
the cystein-containing peptide pair of PrP heavy/light is indicated by the green circle. (D–F) Western blot analysis of those protein candidates listed in
Table 1 for which specific antibodies were available. (D) Western blot analysis of the specific and scrambled-peptide IP elution using anti-CNPase
antibody. (E–F) Western blot analyses of IP input material from wild-type 129S2/SvPas and Tg940 PrPo=o

myc mice and specific and unspecific peptide
elution using anti-M6 (M6-7) and anti-Neurofascin (NF155) antibodies.
doi:10.1371/journal.pone.0004446.g004

Interactome of Myc-Tagged PrP

PLoS ONE | www.plosone.org 9 February 2009 | Volume 4 | Issue 2 | e4446



each primer (Pml: 59-TTT TTT TTC ACG TGT GGA TGC

TCT AGC TAT CCC AGG TGG GA-39, ClaI: 59-TTT TTT

TTA TCG ATC GAC GGC AGA AGA TCG AGC AGC ACC

GTG CTT TTC TCC TCC CCT CCT GTC ATC-39, Xma: 59-

TTT TTT TTC CCG GGC AGG GAA GCC CTG GAG GCA

ACC GTT-39, ClaI: 59-TTT TTT TTA TCG ATC TTC TCC

CGT CGT AAT AGG CCT GGG ACT C-39), 1 ml of

’’Advantage II’’ polymerase (Clontech), 10 ml of 106 reaction

buffer supplied by the manufacturer (Clontech). Reaction mixtures

were kept at 94uC for 5 min in a thermocycler to inactivate the

blocking antibody, ,and cycled 30 times. The two PCR products of

PrP cDNA were cleaved with ClaI and ligated into the pGEM-T

easy vector system (TA cloning vector, Promega), generating

plasmid pGEM-PrP(Xma-Pml); ClaI. The final insert of pGEM-

PrP(Xma-Pml); ClaI consists of a mutated PrP cDNA fragment

extending from the XmaI restriction site of the PrP ORF to the

Pmli restriction site located 39 of the PrP coding region. The myc

tag was inserted into the unique ClaI site of pGEM-PrP(Xma-Pml);

ClaI. Two synthetic 59-phosphorylated oligonucleotides were

annealed (myc-fwd: 59-CGG AAC AAA AAC TCA TCT CAG

AAG AGG ATC TGA ATC; myc-rev: 59-CGG ATT CAG ATC

CTC TTC TGA GAT GAG TTT TTG TTC) to produce a

double-stranded DNA with 59-protruding, ClaI compatible ends

(myc-tag). The myc-fwd oligonucleotide sequence encodes the

human myc epitope, EQKLISEEDL. The myc-tag was ligated

into ClaI digested pGEM-PrP(Xma-Pml); ClaI generating pGEM-

PrP-myc(Xma-Pml); ClaI. Finally, the XmaI-PmlI fragment of

phgPrP [14] was replaced by the XmaI-PmlI fragment of pGEM-

PrP-myc(Xma-Pml); ClaI yielding plasmids phgPrP-myc and the

construct was verified by sequencing.

Generation and characterization of transgenic mice
The phgPrP-myc plasmid, driven by the endogenous Prnp

promoter in the context of the PrP ‘‘half-genomic’’ construct

(phgPrP) [14], was digested with NotI and SalI to remove its

prokaryotic backbone. Pronuclear injections were performed into

fertilized oocytes derived from a B6D2F16B6;129S5-Prnpo/o

mating.To obtain PrPmyc transgenic animals on a Prnpo/o knockout

background, the founders were backcrossed to homozygous

B6;129S5-Prnpo/o mice. To differentiate PrPmyc transgenic litter-

mates with Prnp+/o and Prnpo/o genotype the presence of the

endogenous Prnp+ allele was tested by PCR analysis using primers

Prnp intron 2 (59-ATA CTG GGC ACT GAT ACC TTG TTC

CTC AT) and P10rev (reverse complementary of P10 59-GCT

GGG CTT GTT CCA CTG ATT ATG GGT AC) amplifying a

352 bp product for the Prnp wild-type allele but no PCR product

for the Prnpo allele.

For Northern blot analyses, RNA was extracted using Trizol

(Invitrogen). A randomly 32P-labeled (Rediprime II Random

Prime Labelling System, Amersham Biosciences) restriction

fragment encompassing all of exons 1 and 2, all of the ORF and

a part of exon 3 (XbaI-fragment) was used as a PrP probe. This

probe hybridizes with all wild-type and tagged PrP mRNAs as well

as the ‘‘readthrough’’ RNA from the disrupted Prnp locus [51].

Southern blot analyses were performed using a 640 bp DNA

probe synthesized by incorporation of digoxigenin-11-dUTP

(Roche, Switzerland) during PCR using PrP-specific primers and

hybridization was performed following established protocols [52].

For the actin control the Northern blot was probed with an in-

house generated mouse beta-actin probe cloned from full-length

cDNA.

Rescue of Shmerling’s disease
PrPo=o

myc mice were crossed with PrPDF [19,21] mice to obtain

double transgenic animals with Prnpo/o genotype needed for the

experiment described in Fig. 1. Animals were examined twice each

week for symptoms of cerebellar dysfunction, including ataxia

[53], tremor, weight loss, rough hair coat, and kyphosis. Scoring of

neurological signs was performed according to a four-degree

clinical score system [19] and mice were euthanized within 3 days

of reaching a score of 3.5.

Western blot analyses
Homogenates of noninfectious brain and spleen (10% w/v) were

prepared in sterile PBS/0.5% Nonidet P-40 and protease

inhibitors (Complete; Roche, Switzerland) by repeated extrusion

through syringe needles of successively smaller size. Homogenates

of infectious brains were generated using a rhybolyzer in a

Table 1. Proteins found by GeLC-MS/MS and cICAT experiments.

UniProt accession
number Protein name and cICAT peptide sequences Gene Function/localization (ExPASy)

P16330 29,39-cyclic-nucleotide 39-phosphodiesterase,
(RPPGVLHCTTK, LDEDLAGYCRR)

Cnp Associated with membrane structures of brain white matter

Q62059 Chondroitin sulfate proteoglycan core protein 2
(Large fibroblast proteoglycan, PG-M),
(YHCKDGFIQR, YQCDEGFSQHR)

Cspg2 May play a role in intercellular signaling and in connecting cells with the
extracellular matrix. May take part in the regulation of cell motility, growth
and differentiation.

P35802 Neuronal membrane glycoprotein M6-a,
(KICTASENFLR)

Gpm6a Multi-pass membrane protein. Enriched in the granule cell layer of the
cerebellum but not in the molecular layer or white matter. Belongs to the
myelin proteolipid protein family.

Q810U3 Neurofascin, (RGTTVQLECR) Nfasc Single-pass type I membrane protein. Cell adhesion, ankyrin-binding
protein which may be involved in neurite extension, axonal guidance,
synaptogenesis, myelination and neuron-glial cell interactions

P04925 Major prion protein, (VVEQMCVTQYQK,
VVEQMCVTQYQKESQAYYDGR)

Prnp Cellular prion protein.

Q80U89 MKIAA0034 protein (clathrin, heavy polypeptide (HC)),
(YIQAACKTGQIKEVER, IHGCEEPATHNALAK)

Cltc Coated pits.

Q01853 Valosin containing protein, transitional endoplasmic
reticulum ATPase, (FGMTPSKGVLFYGPPGCGRK)

Vcp Necessary for the fragmentation of Golgi stacks during mitosis and for their
reassembly after mitosis

doi:10.1371/journal.pone.0004446.t001
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biosafety level 3 laboratory. After centrifugation for 10 min at

2’400 rpm at 4uC, supernatant was loaded onto 12% SDS-

polyacrylamide gels. Proteins were transferred to nitrocellulose

membranes (Schleicher & Schuell, Germany) by wet blotting, and

first exposed to mouse monoclonal anti-PrP antibody POM-1

[15], 1:10’000 or mouse monoclonal anti-myc antibody 4A6

(1:1000, Upstate, USA ), then to peroxidase-labeled rabbit anti-

mouse antiserum (1:10000; Zymed, CA, USA) and developed

using the ECL detection system (Pierce, USA). Antibody

incubations were performed in 1% Top Block (FLUKA,

Switzerland) in PBS-Tween for 1 hour at room temperature or

overnight at 4uC. The same protocol was applied to generate

Western blots shown in Fig. 4 D–F using anti-M6-7 antibody

(kindly provided by C. Lagenaur) diluted 1:5000, anti-CNPase

antibody (Abcam, Cambridge, UK) diluted 1:500 and anti-

Neurofascin 155 antidody (Chemicon) diluted 1:3000.

Preparation of DRMs
Brain homogenates were extracted for 1 hour on ice in 1%

Triton X-100/25 mM MES/5 mM DTT/2 mM EDTA at

pH 7.0 [16] and protease inhibitors. Extracts (500 mg protein/

ml buffer) were mixed with 60% OptiprepTM (Nycomed,

Denmark) to reach a final concentration of 40% and overlaid in

a SW40 centrifugation tube (Beckman, CA, USA) with a step

gradient of 30 and 5% OptiprepTM in MES-buffer. After

centrifugation at 35’000 rpm (12 hrs), 9 fractions were collected

starting from the top. The raft fraction was obtained from the

interphase 5–30% OptiprepTM. Mouse monoclonal anti-PrP

antibodies (POM-1) and mouse monoclonal anti-flotillin 2 (BD

Transduction, USA) were used to characterize the OptiprepTM

fractions by Western blot.

Histopathology and Immunohistochemistry
Organs were fixed in 4% formaldehyde in PBS (pH 7.5) and

paraffin-embedded. Two mm brain sections were stained with

hematoxylin-eosin (HE). Immunohistochemistry was performed

for glial fibrillary acidic protein (activated astrocytes) using a

GFAP monoclonal antibody (DAKO, Carpinteria, CA, USA).

PrPSc aggregates were detected on paraffin sections using

monoclonal antibody SAF-84. For histological analyses anatomic

brain regions were selected according to standard strain-typing

protocols (Bruce, 1991, Fraser, 1968). Spongiosis was evaluated on

a scale of 0–5 (not detectable, mild, moderate, severe, and status

spongiosus). Gliosis and PrP immunoreactivity were scored on a

four-degree scale (undetectable, mild, moderate, severe). Histo-

logical analyses were performed by investigators blinded to animal

identification.

Histoblot analysis
Cryosections were transferred to a nitrocellulose membrane and

digested for 4 h with 20 mg/ml of proteinase K at 37uC. Blocking

of the sections was done in 5% TopBlock, incubation with primary

(POM1: 1:10’000, 4A6: 1:1000) and secondary antibodies (Dako

D0486, AP goat anti mouse, 1:1000) were done in 1% TopBlock,

respectively. The blots were incubated in BCIP/NBT in B3 buffer

(100 mM Tris, 100 mM NaCl, 100 mM MgCl2, pH 9.5 plus

tablets and levamisole) for 45–60 min.

Scrapie cell assay in endpoint format (SCEPA)
Prion-susceptible neuroblastoma cells (subclone N2aPK1) were

exposed to 300 ml brain homogenates in 96-well plates for 3 d.

Cells were subsequently split three times 1:3 every 2 days, and

three times 1:10 every 3 days. After they reached confluence, we

filtered 25,000 cells from each well onto the membrane of an

ELISPOT plate, treated them with PK (0.5 mg/ml for 90 min at

37uC), denatured, and detected individual infected (PrPSc-positive)

cells by immunocytochemistry using alkaline phosphatase-conju-

gated POM1 mouse anti-PrP and an alkaline phosphatase–

conjugated substrate kit (Bio-Rad). We performed serial tenfold

dilutions in cell culture medium containing healthy mouse brain

homogenate. Scrapie-susceptible PK1 cells were then exposed to

dilutions of experimental samples ranging from 1024 to 1029, the

same for RML, or to a 1024 dilution of healthy mouse brain

homogenate. Samples were quantified in endpoint format, by

counting positive wells according to established methods.

Immunoprecipitations
Brains were homogenized in 0.5% CHAPS and protease

inhibitors (Complete; Roche, Switzerland) as described above.

Mouse monoclonal anti-myc 4A6 antibody was cross linked to

Dynabeads M-280 Sheep anti-Mouse IgG (Dynal, Norway) as

recommended by the manufacturer. Four mg of total protein from

5% brain homogenates were diluted to a volume of 1.5 ml of 0.5%

CHAPS/NP-40. To precipitate the PrPmyc complex, 40 ml of

resuspended beads were added and incubated with rotational

mixing for 2 hours at 4uC and for 15 min at room temperature.

Beads were washed twice in PBS/0.5%CHAPS/NP-40 and twice

in PBS/1% CHAPS/NP-40 at 4uC. To elute the complex, beads

were incubated for 2 h at 4uC and another 10 min at room

temperature with the synthetic specific peptide (c-myc: H-

EQKLISEEDL-NH2, Roche Diagnostics, Basel, Switzerland)

and the scrambled nonspecific peptide (cym: H-IELQKELDES-

NH2, jct, Berlin, Germany) respectively. Peptides were added in

10-fold molar excess compared to the 4A6 antibody, in a final

volume of 380 ml of 1% CHAPS, 1% NP-40.

Tryptic in-gel digestion
Silver stained bands from 12% SDS PAGE were destained and

incubated for 1–3 h in 100 mM ammonium bicarbonate

(NH4HCO3, pH 8.0, Sigma) in 50% MeOH at 37uC. The

proteins were reduced in 2 mM tris(carboxyethyl)phosphine

(TCEPNHCl, Pierce, USA) in 100 mM ammonium bicarbonate

at 37uC for 40 min and alkylated with 20 mM iodoacetamide

(Fluka, Switzerland) for 30 min at room temperature in the dark.

Gel pieces were rinsed twice in 100 mM ammonium bicarbonate,

dehydrated in acetonitrile for 10 min, dried under vacuum for

10 min and reswell in 200–400 ng of sequence-grade modified

trypsin solution (Promega, Madison, WI, USA) for 15 min at RT.

Gel pieces were covered with sufficient amount of 100 mM

ammonium bicarbonate buffer containing 2 mM CaCl2 and

incubated overnight at 37uC. Samples were sonicated for 5 min

and supernatant was pooled with an additional peptide extraction

round with 50% acetonitrile/1% formic acid for 20 min at RT.

Samples were dried under vacuum and kept at 220uC whenever

they were not used immediately.

ICAT labeling and sample processing
The IP eluate was precipitated by ethanol precipitation and the

pellet was dissolved in 100 ml of cICAT labeling buffer (50 mM

Tris, pH 8.3; 8 M Urea; 5 mM EDTA; 0.125% SDS and 0.05%

RapiGest). The cICAT labeling procedures was performed as

described previously [54,55,56]. The control sample was labeled

with the light, the specific elution sample with heavy cICAT label

(Applied Biosystems, Foster City, CA, USA). Digestion with

trypsin (Promega, Madison, WI, USA) was performed at 37uC
over night and ICAT-labeled peptides were subsequently purified

according to the manufacturer’s instructions. ZipTip columns
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(C18, Millipore, Bedford, USA) were then used for further cleanup

of the affinity-purified fraction.

Capillary chromatography and mass spectrometric
analysis

Cleaned samples were resuspended in equilibration buffer (3%

acetonitrile/0.1 formic acid in MilliQ-water) and loaded onto a

microcapillary column constructed by slurry packing 8 cm of

reversed-phase (RP) material (Magic C18, 5 mm, 200 Å, Michrom

BioResources, Auburn, CA, USA) into a 75 mm fused-silica

capillary (BGB Analytik AG, Böckten, Switzerland). Mass

spectrometric analyses were performed on an LTQ-FTTM

(Thermo Scientific, Bremen, Germany) systems directly coupled

to a nanoLCTM HPLC system (eksigent, Dublin, CA, USA) at a

flow rate of 200 nl/min. Peptides were eluted with an acetonitrile

gradient from 3 to 45% in approximately 55 min and data-

dependent acquisition of tandem mass spectra was continuously

repeated during the course of the analysis. Each high accuracy MS

full scan was followed by four MS/MS scans of the four most

intense peaks. High mass accuracy data was search with Mascot

Integra (Matrix Science, UK) using the UniProt mouse protein

data base (ftp.ebi.ac.uk/pub/databases/SPproteomes/fasta/

proteomes/59.M_musculus.fasta.gz), allowing for two missed

trypsin cleavage sites and precursor- and fragment ion tolerances

of 5 ppm and 0.8 Da, respectively. Peptides from ICAT samples

were identified by searching MS/MS spectra against the same

mouse protein database using Sequest [24].

PeptidePhrophet was used to assess the validity of peptide

assignments. Proteins were filtered using ProteinProphet with a

computed overall probability of $0.95 for a protein being present

in the sample. Only peptide pairs that had a mass difference of

9.0301 Da were included. Both peptide contained cysteins and

belonged to a protein that was identified with an Xcorr value$1.5.

Averages and standard deviations were calculated for each protein

expression value when multiple peptide measurements were

available. We only considered peptides with double and multiple

charges, and manually evaluated the expression values by

inspecting the areas of integration that the software had chosen

and by adjusting them as needed. To calculate protein ratio

between different pull down samples, XPRESS [56] was used.

Prion inoculations
8–12 weeks old mice were inoculated intracerebrally (ic) or

intraperitoneally (ip) with 36106 infectious units (IU) or 106106

IU, respectively, of Rocky Mountain Laboratory strain (RML,

passage 5.0) brain homogenate, prepared as described [57].

Beginning 50 days after inoculation, mice were examined daily for

neurological dysfunction and sacrificed on the day of onset of

terminal clinical signs of scrapie. For transmission experiments,

mice were inoculated ic with up 30 ml of 10% sonicated brain

homogenate. Mice were monitored clinically every other day in

order to ascertain the onset of clinical signs and the course of the

disease. Clinical signs exacerbated over time and included

progressive akinesia, priapism (males), hunchback, and stiff tail.

Mice were sacrificed on the day of onset of terminal clinical signs

of scrapie, defined as the time point at which they became unable

to drink and/or eat.
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