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Abstract

Background: Aspartic proteases (APs) are a class of aspartic peptidases belonging to nine proteolytic enzyme families
whose members are widely distributed in biological organisms. APs play essential functions during plant development
and environmental adaptation. However, there are few reports about APs in fast-growing moso bamboo.

Result: In this study, we identified a total of 129 AP proteins (PhAPs) encoded by the moso bamboo genome.
Phylogenetic and gene structure analyses showed that these 129 PhAPs could be divided into three categories
(categories A, B and C). The PhAP gene family in moso bamboo may have undergone gene expansion, especially the
members of categories A and B, although homologs of some members in category C have been lost. The
chromosomal location of PhAPs suggested that segmental and tandem duplication events were critical for PhAP gene
expansion. Promoter analysis revealed that PhAPs in moso bamboo may be involved in plant development and
responses to environmental stress. Furthermore, PhAPs showed tissue-specific expression patterns and may play
important roles in rapid growth, including programmed cell death, cell division and elongation, by integrating
environmental signals such as light and gibberellin signals.

Conclusion: Comprehensive analysis of the AP gene family in moso bamboo suggests that PhAPs have experienced
gene expansion that is distinct from that in rice and may play an important role in moso bamboo organ development
and rapid growth. Our results provide a direction and lay a foundation for further analysis of plant AP genes to clarify
their function during rapid growth.
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Background
Aspartic proteinases (APs; Enzyme Commission 3.4.23)
are proteolytic enzymes and play important roles in pro-
tein maturation and degradation [1, 2]. The majority of
APs have two conserved motifs with catalytic activity: an
Asp-Thr-Gly (DTG) motif and an Asp-Ser-Gly (DSG)
motif [3, 4]. APs are widely distributed among microbes,
mammals and plants [3, 5] and are divided into 16 sub-
families based on their tertiary structure and evolution-
ary relationships [4, 6]. APs are involved in many
important biological processes that are involved in devel-
opment, nutrition, pathogenesis, disease and so on and
have potential for commercial application [7, 8].
Most plant APs are grouped into the A1 family and

exhibit the two basic features of A1 family members:
one features is that they are active under acidic condi-
tions, and the other is that their catalytic activity can be
specifically inhibited by pepstatin A [1, 9]. Since the
1980s, plant APs have been purified via pepstatin A-
agarose columns and detected in various plant species
[3, 4, 10]. Plant APs can be classified into three categor-
ies: typical APs, nucellin-like APs and atypical APs [1,
9]. Typical APs contain a plant-specific insert (PSI) simi-
lar to that of saposin-like proteins, but it is removed
during protein maturation [1, 2]. Nucellin-like APs are
similar to nucellins in barley ovules [11]. The character-
istics of atypical APs are intermediate between those of
typical and nucellin-like APs [9, 12]. Pepstatin A activity
has been detected in immature, mature, and germinated
seeds in wheat, and the expression pattern showed a role
of APs in regulating protein degradation [13, 14]. Plant
APs are also considered to be responsible for protein
processing and degradation, such as plant senescence,
programmed cell death (PCD), reproduction, and stress
responses [2, 15–20], which are critical for plant devel-
opment. With the development of DNA sequencing
technology, members of plant AP gene families have
been identified in Arabidopsis [9], rice [12], grape [21],
and poplar [22], revealing gene expansion and functional
diversity [12, 22].
The function of plant APs has been determined pri-

marily in seeds, including dormant seeds and different
parts of seeds [10, 14, 23, 24]. It was proposed that, dur-
ing seed development, plant APs are involved in seed
storage protein processing on the basis of the 2S albu-
min process in vitro and colocalization with proteins in
the plant body [25]. During seed germination, plant APs
are considered to be involved in seed storage protein
degradation [26–28]. Recently, Arabidopsis ASPARTIC
PROTEASE IN GUARD CELL 1 (ASPG1) was reported
to promote seed germination by accelerating the break-
down of seed storage proteins [28]. In addition to their
involvement in seed development and germination, APs
participate in the degradation of insect proteins, allowing

carnivorous plants to obtain nitrogen from those sources
[15, 29]. Plant APs also play roles in the response to bi-
otic and abiotic stresses. ASPG1 is abscisic acid (ABA)
inducible, and Arabidopsis plants overexpressing this gene
had in increased ability to resist drought stress because of
the participation of the transgene in ABA-dependent re-
sponsiveness [17]. Constitutive Disease Resistance 1
(CDR1), an atypical plant aspartic proteinase, exhibits the
ability to induce systemic defense responses against bac-
terial and fungal pathogens in rice and Arabidopsis [20,
30, 31]. Ectopic expression of VqAP13, a grape aspartic
protease gene, can afford powdery mildew resistance but
reduces Botrytis cinerea resistance by regulating the sali-
cylic acid and MeJA signaling pathways [19]. Plant APs
also play roles in plant development, such as reproduction
and lateral root formation. OsAP65 has been proposed to
be involved in biosynthesis of compounds that are essen-
tial to pollen germination and pollen tube growth in rice
[32]. Two novel AtAPs in Arabidopsis (A36 and A39) have
been speculated to participate in gametogenesis and
pollen guidance [18]. Recently, an atypical aspartic prote-
ase, Atypical Aspartic Protease in Roots 1 (ASPR1), was de-
termined to suppress primary root growth and lateral root
development [33]. Altogether, plant APs are important
proteins that are involved in various aspects of plant de-
velopment and responses to environmental changes.
Some plant APs also play an important role in regulat-

ing PCD. In barley, a gene encoding an aspartic
protease-like protein (‘nucellin’) was highly expressed
after pollination, which was synchronized to nuclear cell
degeneration characteristic of PCD [11]. Phytepsin, a
vacuolar aspartic proteinase that is a plant homolog of
cathepsin D and mediates PCD in barley, is highly
expressed during the active autolysis of the root cap and
in tracheary elements and sieve cells [34]. In rice, the
transcripts of OsAP25 and OsAP37 in anthers are acti-
vated by ETERNAL TAPETUM 1 (EAT1) to regulate
PCD in tapetal cells [35]. In Arabidopsis, PROMOTION
OF CELL SURVIVAL 1 (PCS1) encodes an aspartic pro-
tease, and compared with wild type, loss-of-function
mutants experience gametophyte degeneration and cell
death of developing embryos [36]. AP proteins have also
been identified in the plant cell wall, and cis-elements
related to secondary cell wall (SCW) thickening and
PCD, such as SNBE, TERE, and SMRE, were discovered
upstream of partial AP genes from poplar, strongly sug-
gesting that APs play important roles in SCW and PCD
[37–41]. To date, there are many reports on plant AP
function in model plant species such as Arabidopsis and
rice. However, the function of APs in rapid-growing
plant species such as bamboo is still unclear.
Bamboo is a member of the Gramineae family, is

widely distributed worldwide and is a rapid-growing
plant species. Bamboo forests can provide young
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bamboo shoots for food, fibrous raw material, building
materials, raw materials for furniture and crafts and so on
within a short time [42]. In addition to its economic bene-
fits, bamboo also has important ecological functions, such
as the ability to restore degraded landscapes and combat
global climate change [42, 43]. The moso bamboo (Phyl-
lostachys edulis) planting area is approximately 3.27 mil-
lion ha and constitutes most of the bamboo forest region
in China [43]. Rapid growth of moso bamboo occurs after
the young bamboo shoots are covered with a shell and
emerge from the ground. PCD was revealed to occur in
pith cavity formation during rapid bamboo growth [44].
During the bamboo rapid-growth stage, cell division grad-
ually decreases, while cell elongation and secondary cell
wall thickening also occur [45, 46]. Therefore, PCD and
SCW formation are important biological events during
rapid growth of moso bamboo. Members of the NAC,
MYB and LAC gene families have been identified as being
associated with SCW in moso bamboo [47, 48]. The MYB
gene family has specifically been reported to be involved
in environmental responses [49]. In addition to rapid
growth, the flowering pathway [50, 51] and sucrose syn-
thase [52] have also been widely studied in bamboo. Re-
cently, a chromosome-level de novo genome assembly of
moso bamboo was provided, which, compared with the
previous version, was obviously improved in terms of the
assembly data and quality of the whole-genome sequen-
cing assembly [43, 53]. The release of new bamboo gen-
omic data allows us to perform genome-wide gene
functional analyses in moso bamboo.
Here, we identified a total of 129 PhAP proteins that

contain a conserved Asp domain from the moso bamboo
genome. Phylogenetic analysis revealed that PhAP genes
might have experienced gene expansion via segmental
and tandem duplication. Gene structure and motifs indi-
cated that the motifs of PhAPs were conserved, although
the gene structure has changed throughout evolutionary
history. Expression pattern analysis showed that PhAPs
exhibited tissue-specific expression patterns, and several
sets of PhAPs may play important roles during moso
bamboo rapid growth. Our study provides a strong foun-
dation for further research on the potential function of
these proteins in bamboo development and an improved
understanding of the AP gene family in fast-growing
nontimber forest species.

Results
Genome-wide identification of AP genes from the moso
bamboo genome
After two rounds of moso bamboo genome searching via
HMMER v3 (the details of which are in the materials
and methods), a total of 129 Asp family proteins with a
conserved Asp domain were analyzed via the NCBI-
CDD and Pfam database (Fig. 1 and Table S1). Among

these Asp proteins, 102 had two catalytic sequence motifs,
Asp-Thr-Gly (DTG) and Asp-Ser-Gly (DSG), which are
typical features of aspartic proteases; however, 18 proteins
contained one catalytic motif, and nine proteins had no
motif (Fig. 1 and Table S1). Moso bamboo Asp genes were
named based on their relationships with homologous genes
in rice and are listed in Table S1. Other information on the
members of the Asp gene family, including their chromo-
somal localization, CDS, amino acid residue sequence,
corresponding protein length, corresponding protein mo-
lecular weight, and corresponding protein isoelectric point,
is also listed in Table S1.
Phylogenetic relationships among the 129 moso bamboo

Asp proteins were determined using an IQ-TREE procedure
[54]. The 129 moso bamboo Asp proteins fell into three dis-
tinct categories (pink, blue and purple clades) and were
termed categories A, B and C, respectively (Fig. 1). From the
predicted protein domain, we found that all PhAPs con-
tained one Asp domain of variable length (Fig. 1). There
were 16 moso bamboo category A PhAP members, eight of
which contained signal peptides, and the Asp domain con-
sisted of the Taxi_N and PSI domains (including SapB_1
and SapB_2) with two catalytic motifs (Fig. 1 and Table S1).
However, there were no signal peptides or PSI domains
and/or a lack or partial lack of catalytic motifs in the other
eight category A PhAPs (Fig. 1 and Table S1). Categories B
and C had 26 and 87 members, respectively, that contained
the full-length Asp domain consisting of Taxi_N and Taxi_
C, except for PhAP7.4, PhAP31.3, PhAP7.2, PhAP87.1,
PhAP4.1, PhAP50.3, PhAP27.2 and PhAP40.2 (Fig. 1). Less
than half of the category B PhAPs are nucellin-like APs con-
taining catalytic sites (Fig. 1 and Table S1), which is similar
to that which occurs rice [12]. Category C, composed of
atypical aspartic proteases, was the largest category (Fig. 1).
Most category B and C members contained a signal peptide,
and it was notable that there were signal peptides and trans-
membrane domains located in the N- and C-termini, re-
spectively, of nine category B AP proteins (Fig. 1).

Phylogenetic analysis of APs from moso bamboo and rice
To investigate the evolutionary relationship of the PhAP
family, a phylogenetic tree was constructed using 129 PhAP
and 92 OsAP full-length amino acid residue sequences
(Table S1 and Table S2). Both PhAPs and OsAPs were
classed into three categories, as previously reported in Ara-
bidopsis [9], rice [12], grape [21] and poplar [22]. Category
A contained 16 PhAPs together with seven OsAPs; these
proteins could be classified into seven subclades based on
their relationships with their rice homologous proteins
(Fig. 2). There was at least one PhAP homolog in each sub-
clade but no homolog of OsAP6 (Fig. 2). The moso bamboo
genome encoded eight PhAP88 genes and only one homo-
log in rice, which meant that AP88 underwent gene expan-
sion in moso bamboo (Fig. 2). 25 PhAPs and 15 OsAPs
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Fig. 1 (See legend on next page.)
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were classified into category B, which could be further di-
vided into 13 subclades (Fig. 2). Each subclade contained at
least one PhAP homolog in moso bamboo (Fig. 2). Cat-
egory C contained 87 PhAPs and 70 OsAPs. There was at
least one PhAP homolog, and PhAP57 and PhAP93 exhib-
ited evidence of gene expansion in moso bamboo (Fig. 2).

There were no homologous genes of OsAP77–87 in moso
bamboo, indicating that the homologs in bamboo were lost
during evolutionary history (Fig. 2). Altogether, these re-
sults showed that the PhAP gene family in moso bamboo
underwent specific evolutionary events after the divergence
of bamboo and rice.

(See figure on previous page.)
Fig. 1 Phylogenetic relationships and protein domain diagram of moso bamboo aspartic proteinases. The left part shows the phylogenetic
relationships of 129 APs from moso bamboo. Categories A, B And C are shaded in pink, blue and purple, respectively. The blue stars, red triangles
and green circles represent APs containing 2, 1 and 0 catalytic sequences, respectively. Bootstrap are shown close to the branch nodes. The right
part shows the protein domain, and the caption is shown in the upper left corner
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Chromosomal location and gene duplication events of PhAPs
We mapped the PhAPs onto chromosomes to examine
the PhAP distribution on the moso bamboo chromo-
somes. Among the 129 PhAP genes, 124 were located on
21 out of 24 moso bamboo chromosomes, while the
other five PhAPs were located on scaffolds (Fig. 3). Fig-
ure 3 shows that the chromosomal distribution of the
PhAPs was nonrandom but was scattered and uneven.
Fourteen PhAPs located on chromosome 6 contained

the maximum number of PhAP genes; 13 PhAP genes
were on chromosome 8; 12 PhAPs were on chromosome
14; and chromosomes 2, 5, and 11 had only one PhAP
gene (Fig. 3). There was no PhAP gene located on
chromosome 1, 19, or 22 (Fig. 4). Segmental and tandem
duplications are considered to be the main reasons lead-
ing to gene family expansion in plants. As shown in
Fig. 3, some PhAP genes (PhAP8/21.1 and PhAP8/
21.2; PhAP57.2 and PhAP57.3; and PhAP57.4,
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PhAP93.1 and PhAP93.2 as well as PhAP93.3 and
PhAP93.4; PhAP69.1 and PhAP72.3; PhAP8/21.3 and
PhAP8/21.4; and PhAP93.5 and PhAP93.6) were adja-
cent to others and located sequentially in tandem on
chromosomes 3, 6, 12, 14, 17 and 24, suggesting that
these genes might have expanded via tandem duplica-
tion (Fig. 3). In addition to the tandem duplication, we
also found that 73 PhAPs were located in segmental
duplication blocks (Fig. 3). Furthermore, approximate
divergence dates and the Ka/Ks ratio of duplication
pairs were estimated (Table S3). The results showed
that duplication events may have taken place from
63.41 million years ago (Mya) to 0.2 Mya. The Ka/Ks
of the duplication pairs were < 1.0 except for PhAP8/
21.3 and PhAP8/21.4, PhAP57.3 and PhAP57.4, and
PhAP93.1 and PhAP93.2, suggesting that most dupli-
cation pairs underwent purifying selection. These re-
sults indicated that most of the PhAP genes arose
from tandem and segmental duplications, the pro-
cesses of which play a very important role in the ex-
pansion of the PhAP gene family.

Analysis of PhAP conserved motifs and gene structure
The distribution of conserved protein motifs and gene
structure are considered to play an important role in
gene family evolution. First, we analyzed the conserved
motifs of the PhAP proteins and their distribution by the
MEME online tool. The conserved motifs and their dis-
tribution are shown in Fig. 4, while the corresponding
logos are shown in Fig. 5. The conserved motif number
in each of the PhAPs ranged from two to nine (Fig. 4).
Motif 1 and motif 2 had the catalytic sequence motifs
(Fig. 5) that were most conserved in the three categories
and were present in nearly all members of PhAPs to-
gether with motif 4 and motif 9 (Fig. 4). Category A pro-
teins had five or six conserved motifs, of which motif 8
was category A specific, with the exception of
PhAP88.1–5 (Fig. 4). Motifs 3, 6, 7 and 10 were specific
motifs of categories B and C (Fig. 4). Category B could
be divided into two subclades based on the conserved
motif distribution: the proteins in one clade had seven
motifs, and the others had six motifs, except for
PhAP7.4 and PhAP31.3 (Fig. 4). Like PhAP22s, the atyp-
ical category C members contained eight to nine motifs,
but 18 members in category C had fewer than eight mo-
tifs because of the loss of some conserved motifs (Fig. 4).
These results showed that the motifs were conserved in

each category, although some PhAP members lost sev-
eral motifs.
We further analyzed the exon/intron structure of the

129 PhAP genes (Fig. 4). PhAPs from different categories
had distinct gene structures, which included exon/intron
numbers, length and arrangement (Fig. 4). The gene
structure of the category A genes was diverse (Fig. 4).
PhAP88.7 and PhAP88.8 had 11 exons with similar exon
numbers and distributions, whereas other homologs had
two to eight exons of various lengths (Fig. 4); PhAP88.1-
PhAP88.8 were the closest homologs of OsPhAP88 (Fig.
2). The other homologs in category A, such as PhAP44/
90s, PhAP9s and PhAP41s, also had different gene struc-
tures (Fig. 4). The gene structure of members of cat-
egory B was conserved because the close homologs had
similar exon/intron structures, although there were dif-
ferent exon numbers and distributions between the two
branches of category B (Fig. 4). The number of exons in
category C was at most five, which was different from
the numbers in Populus and grape [21, 22], and most of
the closest homologs, such as PhAP57s, − 14 s, − 7 s, and
-4 s, on exhibited different gene structures (Fig. 4). These
results indicated that the gene structure of PhAPs chan-
ged throughout evolutionary history.

Cis-element analysis of PhAP family genes
Cis-elements are located in the promoter region of tar-
get genes and interact with transcription factors to trig-
ger target gene expression. We herein filtered cis-
elements of upstream sequences of the 129 PhAP genes
(Fig. 6). It was very clear that the most abundant cis-ele-
ments located in the promoter region of PhAPs were
MYB-related elements and light-responsive elements
(Fig. 6). Nearly all PhAPs contained an average of seven
MYB-related elements and nine light-responsive elements
(Fig. 6). Forty-one light-responsive elements and 18 MYB-
related elements existed in the promoter regions of
PhAP40.2 and PhAP65.2, respectively (Fig. 6). The second
most abundant cis-elements were MeJA-responsive and
abscisic acid-responsive elements, MYC-related elements
and anaerobic-inductive elements (Fig. 6). In addition, 89
PhAPs had several anaerobic-inductive elements, 66
PhAPs contained one to four metabolic regulatory cis-ele-
ments, and 61 PhAPs contained relatively few cis-elements
that were auxin-responsive elements and gibberellin-
responsive elements (Fig. 6). A portion of the PhAP up-
stream regions contained a small number of meristem-
related cis-elements (59 PhAPs), ethylene-responsive

(See figure on previous page.)
Fig. 4 Phylogenetic tree of PhAPs as well as protein motifs and gene structure of corresponding PhAP genes from moso bamboo. The left panel
shows the phylogenetic tree of PhAPs, as shown in Fig. 1. The middle panel shows the conserved protein motifs and their distribution. The boxes
with different colors represent the conserved motifs listed in Fig. 5. The right panel shows the gene structure. The yellow boxes represent exons,
the gray lines represent introns, and the green boxes indicate untranslated regions
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elements (57 PhAPs) and salicylic acid-responsive ele-
ments (42 PhAPs). Environmental stress-related cis-ele-
ments, such as drought-inducible elements, low-
temperature-responsive elements, defense and stress-
responsive elements, and wound-responsive elements,
were also identified in some PhAP genes (Fig. 6). No cis-
element was identified from PhAP57.1, − 57.7, − 57.2, −
57.6 or − 88.3 (Fig. 6). These results suggested that PhAPs
may be widely involved in development and responses to
environmental changes in moso bamboo.
Because SCW formation and PCD have been reported

to occur during the moso bamboo rapid-growth stage,
PhAP genes may be involved with key transcription fac-
tors that regulate SCW and PCD. We further scanned
10 cis-elements previously discovered to participate in
SCW formation and PCD by MEME scanning [22, 55].
The results are shown in Figure S1. A total of 83% (107
out of 129 PhAPs) of PhAPs had at least one cis-element
related to SCW formation and PCD. There were 64 and
50 PhAPs containing SMRE1 and SMRE3 cis-elements,
respectively, and 27 PhAPs had ACIII and SMRE5 cis-

elements. Seventy PhAPs had SMRE2 cis-elements.
SMREs and ACIII are located in the promoter regions of
secondary wall biosynthetic genes and are responsible
for SCW [56]. Thirty-five PhAPs have ACII and TERE
cis-elements. Similarly, 31 PhAPs had SNBE cis-ele-
ments. TERE and SNBE are critical cis-elements respon-
sible for PCD and SCW during tracheary [37] and vessel
[38] element formation, respectively. Sixteen PhAPs had
s ACI and M46RE. The cis-element M46RE, which is
recognized by MYB46, is also involved in SCW [57].
SCW- and PCD-related cis-elements were also found
upstream of PhAP57.1, − 57.2 and − 57.3 (Figure S1). To
date, methyl jasmonate (MeJA)-, gibberellin (GA)-,
ABA-, and ethylene-related as well as MYB transcription
factors have been reported to be involved in PCD [58–
60]. Hence, these results suggested that PhAPs may be
potentially involved in SCW and PCD processes.

Expression patterns of PtAP genes in moso bamboo tissues
To reveal the potential function of PhAPs, we analyzed
the expression pattern of PhAPs in various tissues,

Fig. 5 Conserved motif logos of PhAPs. The red boxes represent the catalytic sequence in motif 1 and motif 2. The number in the upper-middle
of every motif is the E-value that represents the statistical significance of the motif. The percentage located in the upper right represents the
enrichment percentage of each motif
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Fig. 6 Cis-element analysis of the promoter region of PhAPs. The cis-elements located in the 1500 bp promoter sequence (upstream of the start
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including the roots, different portions of stems, leaf
blades, leaf sheaths, buds, and rhizomes (Fig. 7), the data
of which were obtained from publicly available RNA-seq
data [43]. To check whether the RNA-seq data were re-
producible, we randomly selected seven PhAPs and vali-
dated their expression patterns via RT-qPCR in different
tissues of moso bamboo, including the top shoots, mid-
dle shoots, low shoots, leaves, sheaths, and roots. The re-
sults showed that the expression patterns of the seven
PhAPs were consistent with the RNA-seq results (Figure
S2). Figure 7 showed that the expression pattern of
PhAPs were tissue preferences. The percentage of highly
expressed PhAPs in each tissue is summarized in Figure
S3A. On the basis of their expression patterns, the
PhAPs were clustered into two main classes: class I and
class II (Fig. 7). Almost all PhAPs showed transcript
abundance in each tissue except class IIζ, which included
PhAP8/21.4, − 57.1, − 57.2, − 57.4, − 57.5, − 57.6, − 57.7,
− 56.1, − 56.3, − 58/73.1, − 71.2, − 87.2, − 93.4, − 93.6, −
27.2, − 7.4 and − 88.2. Class I showed a high expression
levels in the stems, although some members were highly
expressed in the leaves or rhizomes (Fig. 7). In contrast,
class II genes were nearly absent from the stems and
showed various expression in the other above mentioned
tissues (Fig. 7). Class II could be further divided into
seven subclasses whose members exhibited preferential
transcriptional abundance in the rhizomes (IIα); leaves
(IIβ); roots (IIγ); buds (IIδ); roots, leaves and bud (IIε);
and leaves and buds (IIη) (Fig. 7). No mRNA expression
was detected from class IIζ members, which included 17
PhAPs from the abovementioned tissues (Fig. 7). Some
PhAPs showed a highly specific expression pattern; for
example, four PhAPs (PhAP91.1, − 16.3, − 72.2 and − 9.1)
were mainly expressed in new roots with lateral roots,
and four PhAPs (PhAP71.1, − 50.3, − 43.2, and − 88.6)
were specifically expressed in the leaves (Fig. 7). Further,
12 PhAPs (PhAP70.2, − 17.1, − 7.1, − 7.3, − 45.2, − 4.2, −
93.5, − 27.1, − 40.1, − 31.2, − 31.3 and 2.1) were
expressed in only the shoots, and three PhAPs
(PhAP58.1, − 39.2 and − 88.1) were expressed only in the
rhizomes.

Expression dynamics of PhAP genes in the rapid-growth
stage of moso bamboo
One of the most important features of moso bamboo is
its rapid growth, which is mainly mediated by cell div-
ision and elongation [45]. Therefore, we further ana-
lyzed the expression patterns of the 129 PhAPs in the
top, middle and basal portions of 0.2 m, 1.5 m, 3 m and
6.7 m tall moso bamboo, as previously reported [43].
Figure 8 shows that the expression patterns of the
PhAPs also showed tissue specificity. The percentages
of highly expressed genes in different parts of the
shoots are summarized in Figure S3B. The PhAPs were

divided into two main classes (class I′ and class II’)
based on their expression abundance (Fig. 8). The tran-
script reads were detected, except for those of class I’ε
(Fig. 8). All PhAP members of class I′ were nearly ab-
sent from the 6.7 m moso bamboo (Fig. 8). Class I’α
members were highly expressed in the top portion of 3
m moso bamboo, and their transcript levels gradually
decreased in the middle and basal portions (Fig. 8). In
contrast, class I’γ transcripts accumulated in the basal
portion of 3 m moso bamboo (Fig. 8), suggesting that
the genes encoding those transcripts may be involved
in cell elongation and SCW processes. Class I’δ tran-
scripts preferentially accumulated in the top portion of
the 0.2 m and 1.5 m moso bamboo shoots and in the
middle portion of the 0.2 m moso bamboo shoots (Fig.
8); the genes encoding these transcripts may play crit-
ical roles in cell division. The mRNA level of class I’ζ
members was slightly higher in the middle portion than
in the other portions (Fig. 8). Compared with those of
class I′, PhAP members of class II’ were expressed in
6.7 m moso bamboo (Fig. 8). For example, nearly all
members from class II’α showed high mRNA abun-
dance in the shoots of 6.7 m moso bamboo, although
their expression was also detected in the basal portion
of 0.2 m bamboo shoots (Fig. 8). Moreover, the mem-
bers of class II’β had a high transcript level in the top
portion of the 0.2 m and 1.5 m shoots. Taken together,
these results suggested that specific PhAPs played a role
in moso bamboo during different stages of the rapid-
growth period.
GA is considered to be one of the most important

phytohormones involved in moso bamboo rapid growth,
which includes cell expansion, SCW and PCD [44, 61].
APs have been reported to be involved in cell expansion
and PCD processes and are associated with GA signaling
[28, 62]. Therefore, using previously reported RNA-seq
data, we analyzed whether PhAPs respond to GA treat-
ment [56]. We further carried out RT-qPCR by ran-
domly selecting seven genes to confirm the RNA-seq
data. The leaves from two-month-old moso bamboo
seedlings were treated with 100 μM GA3; the RT-qPCR
results were consistent with the RNA-seq results (Figure
S4). After GA treatment, 39.51% (32 PhAPs) and 43.21%
(35 PhAPs) of PhAP expression levels were positively
and negatively regulated, respectively, by GA, while the
expression of 17.28% (14 PhAPs) of the PhAPs was not
detected, and others exhibited poor reproducibility (Fig. 9
and Figure S3C). Almost all GA-responsive PhAP genes
were involved in the rapid growth of moso bamboo (Fig-
ure S3). These results suggested that the PhAP genes
may respond to GA signaling to regulate various aspects
of the rapid growth of moso bamboo. Altogether, these
results strongly suggested that most PhAPs play import-
ant roles in rapid growth.
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Discussion
As a class of proteolytic enzymes, APs are involved in
protein processing and degradation. Increasing amounts
of evidence have demonstrated that plant APs play crit-
ical functions in plant development and in response to
biotic and abiotic stresses. With the completion of
whole-genome sequencing of a large number of plant
species, members of AP gene families have been identi-
fied from additional plant species, such as Arabidopsis,
poplar, rice and grape. However, little information is
known about the AP gene family in moso bamboo,
which is one of the fastest growing plant species on
Earth. In this study, we identified a total of 129 moso
bamboo PhAPs that have conserved protein domains
and gene structures and that are evolutionary related to
members of the OsAP gene family. Expression pattern
analysis also indicated that these PhAPs may be involved
in the development of different organs and in rapid
growth-related processes in moso bamboo.
APs were widely distributed across plant species, and

we identified 129 PhAP genes from the moso bamboo
genome, the number of which was greater than that of
rice (96 OsAPs) [12], poplar (67 PtAPs) [22], Arabidopsis
(69 AtAPs) [9], and grape (50 VqAPs) [21]. The 129
PhAP members could be classified into three categories:
category A (16 PhAPs), category B (25 members), and
category C (88 members) (Figs. 1, 2 and Table S1). Cat-
egory A was the smallest category, and category C re-
vealed gene expansion had occurred for its members,
which was similar to findings in Arabidopsis, rice, poplar
and grape [9, 12, 21, 22]. Perhaps the formation of these
three categories occurred before the monocotyledon and
dicotyledon divergence. When they were compared with
those from Arabidopsis, grape, poplar and rice, the
PhAPs in moso bamboo revealed gene expansion had
occurred for members in each category, especially cat-
egories A and B, which were approximately two times
larger than they were in rice (Fig. 2). It has been re-
ported that moso bamboo has experienced whole-
genome duplication, which led to more gene duplication
events [53]. We found that 56.6% (73 PhAPs) of PhAPs
were located in duplication blocks (Fig. 3), the percent-
age of which was greater than that in rice (24.7%, 23
OsAPs) [12] and grape (32.0%, 16 VvAPs) [21] but less
than that in poplar (62.6%, 42 PtAPs) [22]. In addition,
we also identified tandem duplication events in the

PhAP family, such as PhAP8/21 s, PhAP57 and PhAP93
(Fig. 3). Category C of PhAPs also underwent gene ex-
pansion, as determined for PhAP57 and PhAP93, but
some homologs of OsAPs, such as OsAP77–87, were lost
during the evolutionary process (Fig. 3). These results
suggested that, owing to the different development and
growth features, compared with those in rice, APs in
moso bamboo underwent a distinct evolutionary path-
way. For example, moso bamboo exhibits rapid growth
characteristics in the early growth stage [43, 45, 59].
The protein domain of PhAPs was conserved during

the evolutionary process. For example, all members con-
tain a conserved full-length Asp domain with a catalytic
sequence (Fig. 1); few PhAPs had no catalytic sequence,
similar to those in rice and poplar [12, 22]. Signal pep-
tides and transmembrane domains were also present in
homologous genes of moso bamboo, such as those in
rice, Arabidopsis, poplar and grape [9, 12, 21, 22] (Fig.
1). Motifs 1 and 2 contained the catalytic sequence, and
motifs 4 and 9 were conserved and present in nearly all
members of the three categories (Figs. 4 and 5), which is
similar to that described in poplar [22]. Members of
each category shared the conserved motif (Fig. 4), and
the members of each category contained a specific motif,
for example, motif 8, which was category A specific, and
motifs 3, 6, 7 and 10, which were category B and C spe-
cific (Fig. 4). These results suggested that motifs of the
PhAP family are diverse. The gene structures of PhAPs
from the same category were more conserved than those
from different categories (Fig. 4). The gene structure of
the members of category B was most conserved, while
that of category A and category C was less conserved
and was similar to the gene structure of the correspond-
ing members of category A and category C in grape and
poplar but different from those in rice [12, 21, 22].
These results suggested that PhAPs may have originated
from an ancient DNA sequence and experienced expan-
sion with variation. The domain varied among the three
categories, although the Asp domain and catalytic se-
quence were conserved, suggesting that there may be
functional divergence.
Gene expression is specifically controlled in space and

time, and the precise regulation by developmental and
environmental signals are essential for gene function. AP
genes are reported to be widely expressed in plants [9,
12, 21, 22]. PhAPs had high transcript abundance in

(See figure on previous page.)
Fig. 7 Expression patterns of PhAPs in different tissues of moso bamboo. The expression profiles of the 129 PhAPs is displayed by hierarchical
clustering. The color bar in the upper-right corner indicates log2-based transcripts per million reads (TPM). Roots 9 and 10 represent 2 biological
replicates of new roots with lateral roots, leaves 1 and 2 represent 2 biological replicates of leaf blades, leaves 3 and 4 represent 2 biological
replicates of leaf sheaths, rhizomes 1 and 2 represent 2 replicates of rhizomes, and buds 1 and 2 represent 2 replicates of buds on rhizomes.
Shoots D1 and D2, D3 and D4 and D5 and D6 represent 2 replicates of the top, middle and basal portions of the 6.7 m high shoot. The TPM
value was listed in Table S4
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nearly all tissues, including the roots, leaves, buds,
shoots and rhizomes, although no transcripts were de-
tected for a few PhAPs (Fig. 7). Some PhAPs also exhib-
ited tissue-specific expression patterns; for example, four
PhAPs and three PhAPs were specifically highly
expressed in the roots and rhizomes, respectively (Fig.
7). These specific expression patterns were similar to
those in other plant species. For example, three AP
genes were not detected in the tested tissues, while other
APs were generally expressed in root leaves, stems,
flowers, fruits and tendrils with various abundances in
grape [21]. In poplar, AP genes exhibited preferential ex-
pression patterns in the mature and young leaves, roots,
female and male catkins and xylem [22]. In addition, cis-
elements reported to respond to environmental change,
phytohormones, PCD and SCW were located in the pro-
moter region of APs in moso bamboo (Fig. 6 and Fig. 1).
These results indicated that AP genes may function in
various tissues in moso bamboo and are potentially reg-
ulated by various developmental and environmental
cues. The mechanism of PhAP tissue-specific expression
patterns and the contribution of various factors is an in-
teresting question worthy of further study.
Rapid growth of moso bamboo was observed shortly

after the young shoots emerged from the ground [43].
GA is a critical phytohormone involved in rapid growth,
and the spatial and temporal distribution of GA is
strictly regulated [44, 61]. The top portion of young
bamboo shoots contain GA at a concentration higher
than that in the basal portion [45]. Pith cavity formation
accompanied by PCD and cell division are the main bio-
logical events in the top portion during the moso bam-
boo rapid-growth stage [44, 45]. We found that 59
PhAPs were expressed in the top region of the 0.2 m
moso bamboo shoots (Fig. 8). Among them, PhAP25s,
which is the ortholog of OsAP25 in rice and is triggered
by PCD in plants [35], was highly expressed at the top
and was expressed at low levels in the middle or basal
part (Fig. 8). Notably, PhAP25s was activated by GA
treatment (Fig. 9). These results suggest that PhAP25s
may be regulated by GA and may play a role in pith cav-
ity formation in the early stage of rapid bamboo growth.
In the middle and basal portions, cell elongation coupled
with cell wall thickening is fundamental [45]. PhAP
members from class I’α, class I’γ and class II’α were
highly expressed in the middle and basal portions (Fig.
8). Among them, the mRNA abundance of PhAP65.1,
PhAP65.2 and PhAP19.1 peaked in the basal portion of

the 3 m moso bamboo shoots (Fig. 8). In rice, OsAP65 is
involved in pollen germination and pollen tube growth
[32]. The homologs of PhAP19.1 in Arabidopsis were
A36 and A39, which encode two aspartic proteases that
are preferentially transcribed in pollen and that affect
pollen tubes and tube cell wall deposition [18]. These re-
sults suggested that PhAPs highly expressed in the mid-
dle and basal portions may play functions in cell
elongation and cell wall component formation. It is in-
teresting that not all APs highly expressed in the top
part were activated by GA or that those highly expressed
in the basal part were repressed by GA. One reason is
that GA is not the unique regulatory factor of PhAPs;
these genes may be regulated by other developmental
and environmental signaling pathways. How PhAP ex-
pression is precisely controlled requires further
investigation.
Because the shell of bamboo covers the stem of young

shoots, which presented a yellow-like etiolation status
[43, 44], the rapid growth of moso bamboo was similar
to skotomorphogenesis, including protein degradation
processes [63]. We found that light-responsive elements
were located in nearly all PhAP upstream promoter re-
gions (Fig. 6). It was reported that the A1 expression
level in Arabidopsis is upregulated by light [64]. We also
found that nearly all PhAP expression levels were dy-
namic at different stages (Fig. 8). The phytohormone GA
has been reported to be involved in skotomorphogenesis,
and the GA concentration reached its maximum in the
basal portion of moso bamboo [45, 65]. Most PhAPs also
positively or negatively respond to GA treatment (Fig.
9), although a small amount of GA-responsive cis-ele-
ments were identified in the promoter region of the
PhAPs (Fig. 6). Most PhAPs may not be directly regu-
lated by GA during the moso bamboo rapid-growth
stage. Expression of APs regulated by GA was previously
reported in Arabidopsis; for example, ASPG1, which is
critical for seed germination, is activated by GA treat-
ment [28]. This indicated that PhAPs involved in rapid
growth are activated to participate cell division or elong-
ation during the different stages. Altogether, these re-
sults strongly suggest that PhAPs play critical roles in
rapid growth of moso bamboo by integrating develop-
mental and environmental signaling.

Conclusion
Aspartic proteases are important proteolytic enzymes
that function in plant development and in response to

(See figure on previous page.)
Fig. 8 Expression heatmap of PhAPs in the top, middle and basal portions of rapidly growing shoots of moso bamboo. The expression profile of
129 PhAPs is displayed by hierarchical clustering. The color bar in the upper-right corner indicates log2-based TPM values. Shoots A, B, C, and D
represent the basal portions of 0.2 m, 1.5 m, 3 m and 6.7 m high rapidly growing moso bamboo, respectively. The numerals 1 and 2, 3 and 4, and
5 and 6 represent 2 biological replications. The TPM was listed in Table S5
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environmental changes. In this study, a total of 129
PhAPs were identified from moso bamboo, a fast-
growing plant species. The PhAP family in moso bam-
boo underwent gene expansion via segmental and tan-
dem duplications that were distinct from those in rice.
Notably, several sets of PhAP genes showed dynamic
transcript abundance during the moso bamboo rapid-
growth stage, suggesting that PhAPs may play critical
roles in moso bamboo rapid growth by mediating envir-
onmental and developmental signaling.

Methods
Genome resources
Chromosome-level reference genomes of moso bamboo
(Phyllostachys edulis) and whole rice (Oryza sativa)
plants were downloaded from the GigaDB Database [43]
(http://gigadb.org/dataset/100498) and Phytozome data-
base (https://genome.jgi.doe.gov/portal/pages/dynamic
OrganismDownload.jsf?organism=Osativa), respectively.

Identification of members of the asp gene family
To identify moso bamboo Asp genes, predicted proteins
from the moso bamboo genomic database were searched
by HMMER v3 [66] using the hidden Markov model
(HMM) file that corresponded to the Asp domain
(PF00026) downloaded from the Pfam database (http://
pfam.xfam.org/) as a query [67]. The obtained protein
sequences with an expected value (E) < 1E-20 and con-
taining the Asp domain were aligned by ClustalW [68]
and used to construct a moso bamboo-specific HMM
file via hmmbuild from HMMER v3. The new moso
bamboo-specific Asp HMM was used as a query against
the predicted proteins of moso bamboo. All peptide se-
quences with E < 1E-2 and containing the Asp domain
identified by the Pfam database [67] and NCBI-CDD
tools [69] were selected as Asp genes (Table S1). OsAP
genes were reported previously [12], we confirmed them
in Phytozome database and listed in Table S2.

Multiple sequence alignment and phylogenetic and
domain analyses
129 PhAPs and 92 OsAPs amino acid residues were
aligned by MEGA 7.0. The alignment files were
uploaded to the IQ-TREE web server [54] (http://iqtree.
cibiv.univie.ac.at/) for phylogenetic tree construction,
with the default parameters. The protein domains were
identified by searching the Pfam database. EvolView
[70–72] (https://www.evolgenius.info/evolview/#login)
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1.00 Fig. 9 Expression heatmap of PhAPs in response to GA treatment.
The expression profiles of the 129 PhAPs in response to GA (100 μM
for 4 h) are displayed by hierarchical clustering. The color bar in the
upper-right corner indicates log2-based expression values. The TPM
was listed in Table S6
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and Dendscope 3 [73, 74] were used for phylogenetic
tree visualization and annotations.

Protein motif and gene structure analyses
The conserved motifs of the PhAP genes were identified
by the MEME Suite web server [55] (http://meme-suite.
org/). The number of motifs was set to 10, and all other
parameters were the default ones. The gene structure
and conserved domain were visualized via TBtools [75].

Chromosomal distribution and gene duplication
The length of the chromosomes and the locations of the
PhAP genes in the moso bamboo genome were used to
map genes onto the chromosomes through MapChart
[76]. Nucleotide sequences with alignment ratios and
similarity ratios greater than 70% and with distances be-
tween genes on the same chromosome of less than 100
kb were selected as tandem duplications. Moreover,
genes located in duplication regions and nucleotide se-
quences with alignment ratios greater than 75% were se-
lected as resulting from segmental duplications [77–80].
The Ka/Ks values were calculated by TBtools [75]. The
formula T = Ks/2r was used to estimate the divergence
time of PhAP gene pairs in moso bamboo. The r for
moso bamboo and rice was 6.5 × 10− 9 years [81]. A dia-
gram of collinearity analysis of genes and chromosomes
was constructed using Circos [82].

Cis-element analysis
The 1500 bp upstream DNA sequence of the 5′-UTR of
the PhAP genes was selected as the promoter sequence.
The promoter sequences were uploaded to the PlantCARE
database (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/) to scan for cis-elements. The cis-ele-
ments from the PlantCARE database were subsequently
screened manually. The identification and location of pre-
viously reported PCD- and SCW-related cis-elements
(SNBE, TERE, M46RE, ACI, ACII, ACIII, SMRE1, SMRE2,
SMRE3 and SMRE5) were scanned via the MEME Suite
web server [55].

Expression analysis of PhAP genes
The raw RNA-seq data for new roots with lateral roots;
blades; leaf sheaths; buds on rhizomes; rhizomes; and
top, middle and basal portions of bamboo shoots of dif-
ferent heights (0.2 m, 1.5 m, 3 m and 6.7 m) were re-
trieved from the GigaDB dataset [43]. The raw RNA-seq
data for GA treatment were retrieved from NCBI Se-
quence Read Archive (SRA) under the accession number
GSE104596. Quantification of transcript expression was
carried out by Salmon [83], and TPM were obtained for
further analysis.

RT-qPCR analysis
Moso bamboo tissue materials (top, middle and basal
portions of the shoots, leaf blades, sheaths and roots)
were harvested from 8m-high bamboo growing in a
bamboo forest at Fujian Agriculture and Forestry Uni-
versity (FAFU). Two-month-old seedlings were treated
with 100 μM GA3 for 4 h [61]. The control groups were
treated with the same concentration of DMSO instead
of 100 μM GA3 for 4 h. Samples (three independent rep-
lications) were collected, immediately frozen in liquid ni-
trogen and stored at − 80 °C.
Total RNA of the samples was extracted using an RNA-

prep Pure Plant Plus Kit (Tiangen, China). Total RNA was
then reverse transcribed using a PrimeScript RT Reagent
Kit together with gDNA Eraser (Takara, China). RT-qPCR
was performed via GoTaq qPCR Master Mix (Promega,
USA). PhUBQ was used as an internal control gene [61].
All the primers used in this study are listed in Table S7.
The reaction mixture consisted of 10 μl of 2× GoTaq
qPCR Master Mix, 0.4 μl of each gene-specific primer, 1 μl
of cDNA and 8.2 μl of nuclease-free water. The reaction
conditions were as follows: 95 °C for 2min followed by 40
cycles of 95 °C for 15 s and 60 °C for 20 s. The relative
gene expression levels were calculated by the comparative
ΔCt method (2-ΔCt). Three biological replications were
assessed per sample.
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