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Abstract: Evidence indicated that socio-environmental factors were associated with occurrence of
Japanese encephalitis (JE). This study explored the association of climate and socioeconomic factors
with JE (2006–2014) in Shaanxi, China. JE data at the county level in Shaanxi were supplied by Shaanxi
Center for Disease Control and Prevention. Population and socioeconomic data were obtained from
the China Population Census in 2010 and statistical yearbooks. Meteorological data were acquired
from the China Meteorological Administration. A Bayesian conditional autoregressive model was
used to examine the association of meteorological and socioeconomic factors with JE. A total of 1197 JE
cases were included in this study. Urbanization rate was inversely associated with JE incidence during
the whole study period. Meteorological variables were significantly associated with JE incidence
between 2012 and 2014. The excessive precipitation at lag of 1–2 months in the north of Shaanxi in
June 2013 had an impact on the increase of local JE incidence. The spatial residual variations indicated
that the whole study area had more stable risk (0.80–1.19 across all the counties) between 2012 and
2014 than earlier years. Public health interventions need to be implemented to reduce JE incidence,
especially in rural areas and after extreme weather.

Keywords: Japanese encephalitis; meteorological variables; contingent risk factors; Shaanxi of China;
geographical information system

1. Introduction

Japanese encephalitis (JE) is a mosquito-borne disease caused by infection with Japanese
encephalitis virus (JEV) that causes an infection of the brain [1]. The major clinical symptoms of human
infected JE cases are fever, headaches, nausea and vomiting, loss of consciousness, movement disorders,
seizures, and acute flaccid paralysis [2,3]. Culex mosquitoes, pigs and paddling birds compose
the enzootic circle of JE transmission [1,4]. Usually, rural areas have many Culex tritaeniorhynchus,
the primary vector species of the JE host, and mosquitoes can reproduce and proliferate in wet
areas, e.g., flood areas, rice paddies and grasses [1]. Mosquitoes can transmit JEV and infect humans,
the dead-end host of JE infection [5]. Currently, 24 countries in the Asian and Western Pacific regions
(with a combined population of over three billion) have a significant JE burden, with around 68,000
estimated JE cases occurring annually [2,6]. With socioeconomic development, improved living
conditions, clinical diagnosis and treatment improvement, vaccination and substantial vector control
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programs, JE incidence has been significantly reduced in some countries, e.g., China, Japan and South
Korea [7–10].

In general, areas in Asian and Western Pacific regions with lower latitude and higher temperature
and rainfall had higher JE incidence [2,6]. Recent studies showed a significant variety of JE incidences
across different areas in China, with high risk areas in the southwest of the country [11–14].
Other studies examined the impact of climate factors (e.g., rainfall and temperature) on JE in China
and other countries over time and space, as spatiotemporal variation of meteorological factors can
influence the mosquito population distribution [9,15,16]. Wang et al. examined the association of
meteorological and other environmental variables with JE presence in the whole of China [11], however,
this study did not include human population data across different areas in China and cannot present
how socio-environmental variables affects the JE incidence across areas with different population
distributions [11]. Besides, China has a variety of climate zones and significant socio-environmental
and demographical status disparity across the country. National studies reported very brief results in
examining the socio-environmental impact on JE. Thus, understanding the spatiotemporal pattern
and relevant socio-environmental factors of JE in a relative smaller study area (e.g., using county level
data in a province of China) may provide more specific and precise evidence for local JE control and
prevention. With the progress of global climate change, the impacts of extreme weather and natural
disasters (e.g., flood resulted from excessive precipitation) on mosquito-borne diseases have become
more prominent, including areas usually with low incidence (e.g., Taiwan) [17,18]. JE incidence has
a significant seasonality, with a peak from late spring to early autumn, or in the wet season [19–21].
Thus, understanding the dynamic pattern of JE incidence and examining relevant socio-climate factors
may help preventing resurgence of JE epidemic in areas with low incidence. This study used the
JE surveillance data (2006–2014) in Shaanxi Province, China, to quantify how meteorological and
socio-demographical factors associated with human JE incidence at the county level, to identify risk
factors of JE, and to provide evidence for JE control and prevention strategies, especially in the early
warning and forecasting system development.

2. Materials and Methods

2.1. Study Site

Shaanxi Province (longitudes: 105◦29′ to 110◦15′ E, latitudes: 31◦42′ to 39◦35′ N) lies in the middle
of China, covering an area of 205,600 square kilometers with a population of 37,327,378 (according
to the Sixth National Census of China in 2010). The province consists of 107 county level districts
(abbreviated as countiesr) with distinct climate zones: subtropical and humid climate in the south,
warm temperate climate in the middle, and temperate and dry climate in the north.

2.2. Data Collection

JE data from between 2006 and 2014, including gender, age, county and township code of
the home address, date of symptom emergence and hospital admission, and the annual data of JE
vaccination doses (2006–2014), were acquired from Shaanxi Provincial Center for Disease Control
and Prevention (CDC). Meteorological data (monthly), including rainfall, temperature (maximum,
minimum and mean), humidity, sunshine and air pressure, were supplied by the China Meteorological
Administration. The original meteorological data were at the station level with the longitude and
latitude of all 86 observational stations (36 stations in Shaanxi and 50 stations in the neighbouring
provinces) applied in this study. Then we used Kriging interpolation to transfer the station level
data into the county level data. Socio-demographical data at the county level, including human
population by age and gender, urbanization rate (percentage of urban population among the total
population), domestic pig population and mean elevation, were from China Population Census in
2010 and statistical yearbooks. Since the domestic pig population is associated with human population
size across areas, especially in rural areas, we also calculated the pig to human population ratio for
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further analysis. As Shaanxi has a relative lower population growth rate than the national level since
2000, we used the population data in 2010 to represent the population during the whole study period.

2.3. Data Analyses

In this study, we defined JE incidence at the county level as the dependent variable, which was
calculated after adjusting for gender and age. Climate and socio-demographical variables were defined
as independent variables. As JE has a relative lower incidence in Shaanxi compared to the national level,
we firstly aggregated the JE data into three 3-year intervals in the study period: 2006–2008, 2009–2011
and 2012–2014, for displaying spatial pattern of JE incidence in maps. This helps presen a more stable
spatial pattern of JE incidence. Besides, the annual spatial pattern of JE incidence was also mapped.
Nine-year JE incidence data, monthly meteorological variables and yearly socio-demographical data at
the county level were shown. The annual doses of JE vaccination at the provincial level was also plotted.
Spearman correlation analysis was conducted to demonstrate the correlations between JE incidence
and socio-environmental variables and test the multicollinearity among the independent variables.

Usually, analysis of JE incidence at the small areas (e.g., at the county level) with a small number
of cases accrued annually in most areas may cause unstable and biased results in estimating local
incidence and factors associated with JE incidence. To solve this problem, spatial smoothing can be
applied to enhance quality of estimates using “borrowed strength” from neighbouring small areas if
we assume these areas having common characteristics. A Bayesian Conditional Autoregressive (CAR)
model can provide a local smoothing approach to reduce the bias of small area data analysis with
few cases and sparse population [22]. Besides, the spatial autocorrelation, which is usually localized
and varies across different areas, needs to be included in the models to enhance estimates of the
associations of socio-environmental factors and JE incidence. Hence, mapping the variation of spatial
correlation residuals may explain other factors which may associated with geographical difference of
JE incidence. The Bayesian CAR model has been widely used in examining the impact of social and
climate variables on public health, including infectious disease [23], non-communicable disease [24,25]
and injury [26]. We used the Bayesian CAR model with Poisson distribution to analyze the association
of socio-environmental variables with JE incidence at the county level. The formulation of Bayesian
CAR model is as follows [27]:

log(µi) = log(ni) + (β0 + β1X1i + . . . + βmXmi) + Ui + Si

where Ui (the unstructured random effects) and Si (the structured random effects) represent a Poisson
distribution with mean µi in above formula; i, n, µi, X and β indicates location, population, the mean of
the dependent variable (JE incidence), the fixed effect and socio-environmental variables, respectively.
β0 + β1X1i + . . . + βmXmi shows the regression equation. These random effects are spatially correlated.
We firstly analyzed three sets of aggregated datasets (3-year for each) of JE cases, population and
independent variables separately using Besag, York and Mollie (BYM) models indicating structured
and unstructured residuals. This explored the differences of associations of socio-environmental
variables with JE incidence across three periods. We checked the deviance information criterion (DIC)
to detect the goodness of fit in the Bayesian CAR model, the lower DIC the better. In the first stage,
we conducted preliminary analyses without spatial elements in the Bayesian CAR model. Then we
continuously added covariance (Ui) and structured covariance (Si) in the model, showing the residuals
of the final model at the county level in the map. As JE incidence has seasonality, both of the aggregated
yearly data (in Model I) and data from selected months with high incidence (in Model 2) were applied
in the analyses. To avoid the multicollinary problem, we checked the high correlations among predictor
variables. (rs ≥ |0.80|). We applied the Markov Chain Mount Carlo (MCMC) simulation in estimating
parameter and diagnosis, using single chain algorithm. All types of models were burnt-in with
30,000 iterates and run for 90,000 iterates. Autocorrelations of selected parameters were used to check
the convergence. The Bayesian CAR model was run by the WinBUGS package. This project used
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aggregated data and the Ethics Committee of Xi’an Jiaotong University Health Science Center provided
the required ethical approval.

3. Results

This study included a total of 1197 JE cases (2006–2014) of which 99.7% (1193 cases) of the
total cases occurred in summer and early autumn (between June and October), as Table 1 shows.
JE cases peaked in August each year. The middle region had over half of the JE cases; while the
north had the lowest number of JE cases each year except for 2013. Around 35.7% of total JE cases
occurred in 006. In general, JE cases had a decrease trend in the whole study period. The annual
distribution of JE vaccination doses has increased since the vaccination program started in 2006
(Figure 1). The urban counties (with 60% and more urban population), sub-urban counties (with 30%
to 59% urban population) and rural counties (with less than 30% of urban population) had annual
average JE incidence of 0.14, 0.41 and 0.44 per 100,000, respectively.

Table 1. Distribution of JE cases (2006–2014) by month and region in Shaanxi, China.

Years
Total

2006 2007 2008 2009 2010 2011 2012 2013 2014

Months
January 0 0 0 0 0 0 0 0 0 0

February 1 0 0 0 0 1 0 0 0 2
March 1 0 0 0 0 1 0 0 0 2

April–May 0 0 0 0 0 0 0 0 0 0
June 2 0 0 1 2 0 0 0 0 5
July 134 10 1 37 10 4 0 13 0 209

August 322 92 31 116 65 17 48 88 49 828
September 11 17 10 8 24 5 15 44 6 140

October 1 1 0 0 1 1 0 7 0 11
November–December 0 0 0 0 0 0 0 0 0 0

Regions
North 31 3 2 9 4 0 0 34 0 83

Middle 253 67 25 85 67 18 46 92 30 683
South 188 50 15 68 31 11 17 26 25 431
Total 472 120 42 162 102 29 63 152 55 1197

Table 2 indicates the spatial distribution of JE incidence and socio-environmental variables selected
at the county level in this study. Meteorological variables and JE incidence covered the months between
June and October 2006–2014. Most variables had an approximately normal distribution. Figure 2 shows
the JE incidence (annual average) at the county level in three study periods. In general, 2006–2008
had a higher incidence than 2009–2014. The south, west of the middle and part of the north had the
highest incidence between 2006 and 2008. Areas with high incidence were also discovered in the south
between 2009 and 2011, and in the north between 2012 and 2014. The spatial pattern of JE incidence in
each year was mapped in Supplementary File Figure S1. The years 2006, 2007, 2009 and 2013 had a
significant spatial variation of JE incidence.

Table 3 demonstrated the correlations between JE incidence and socio-environmental variables
over the whole study period and across counties. Rainfall (RF), humidity (HM), air pressure (AP)
and pig to human ratio (PHR) were positively correlated with JE incidence, while sunshine (SS),
urbanization rate (UB) and population density (PPD) had inverse correlations with JE incidence. Other
variables had weak correlation with JE incidence.
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Table 2. JE incidences and social and -climate variables in Shaanxi, China (2006–2014).

Mean SD. Min
Quantile

25 50 75 Max

IN 0.37 0.32 0.00 0.12 0.29 0.55 1.55
RF 95.33 21.00 58.74 83.08 88.03 105.06 169.68

HM 72.07 5.57 59.02 69.93 71.45 75.46 81.53
Tmax 25.91 0.93 23.49 25.30 25.78 26.50 28.08
Tmin 20.17 1.59 12.01 14.78 16.05 17.02 18.60

Tmean 15.82 1.12 17.96 19.18 20.16 21.04 22.38
SS 174.95 24.57 129.24 158.30 171.19 185.29 233.27
AP 916.76 19.58 870.95 901.31 916.33 931.42 957.59
UB 41.19 19.95 17.17 28.44 33.36 47.27 100.00

PPD 10.13 36.26 0.18 0.78 1.65 4.67 270.70
PHR 0.39 0.38 0.00 0.13 0.27 0.51 2.28
EL 738.88 300.47 212.00 469.00 693.00 959.00 1543.00

Note: IN (incidence, per 100,000), RF (rainfall, mm), HM (humidity, %), Tmax (maximum temperature, ◦C),
Tmin (minimum temperature, ◦C), Tmean (mean temperature, ◦C), SS (sunshine, hours), AP (air pressure, kpa),
UR (urbanization rate, %), PPD (population density, per km2), PHR (pig to human ratio, per 10,000 persons),
EL (mean elevation, m). Monthly mean data of IN and meteorological variables, yearly mean data of UB, PPD
and PHR.

Figure 1. Annual distribution of JE vaccination doses at the provincial level (2006–2014).

Figure 2. Japanese encephalitis (annual average per 100,000) in Shaanxi, China (2006–2014).
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Table 3. Spearman correlations of JE incidences and socio-climate variables in Shaanxi, China (2006–2014).

IN RF HM Tmax Tmin Tmean SS AP UB PPD PHR

RF 0.415 ** 1.000
HM 0.326 ** 0.907 ** 1.000

Tmax 0.109 0.450 ** 0.516 ** 1.000
Tmin 0.171 0.653 ** 0.780 ** 0.883 ** 1.000

Tmean 0.150 0.561 ** 0.680 ** 0.929 ** 0.982 ** 1.000
SS −0.220 * −0.763 ** −0.906 ** −0.545 ** −0.782 ** −0.708 ** 1.000
AP 0.162 0.579 ** 0.673 ** 0.945 ** 0.963 ** 0.986 ** −0.685 ** 1.000
UB −0.414 ** −0.334 ** −0.240 * −0.072 −0.124 −0.103 0.112 −0.133 1.000

PPD −0.212 * −0.186 0.021 0.117 0.259 ** 0.292 ** −0.204 * 0.242 * 0.230 * 1.000
PHR 0.284 ** 0.544 ** 0.474 ** 0.414 ** 0.439 ** 0.409 ** −0.380 ** 0.422 ** −0.437 ** −0.351 ** 1.000
EL 0.035 −0.113 −0.306 ** −0.526 ** −0.621 ** −0.643 ** 0.422 ** −0.603 ** −0.122 −0.679 ** −0.001

Note: ** p ≤ 0.01, * p ≤ 0.05, IN (incidence), RF (rainfall), HM (humidity), Tmax (maximum temperature), Tmin (minimum temperature), Tmean (mean temperature), SS (sunshine),
AP (air pressure), UB (urbanization rate), PPD (population density), PHR (pig to human ratio), EL (mean elevation). Monthly mean data of IN and meteorological variables, yearly mean
data of UB, PPD and PHR.
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Based on the above correlation results and variables associated with JE from the literature,
we selected RF, Tmin, UB, PPD and PHR, and examined their associations with JE incidence in
the Bayesian CAR model. The posterior estimates of the results were shown as mean value and
standardized division (SD). Table 4 summarized the association of socio-environmental variables with
JE incidence over different study periods (Model 1). UB was inversely associated with JE incidence
in the whole study period. RF was positively associated with JE incidence, and Tmin had inverse
association with JE incidence between 2012 and 2014. The study period from 2006 to 2008 had much
higher DIC value than following 6 years. We also tested the associations of HM, Tmax, Tmean, SS,
AP and EL with JE incidence in the three study periods using similar model and found weaker results.

Table 4. Meteorological, socio-economic factors and JE incidences (Model I: three-year aggregated data).

Year Variable Mean SD MC Error 2.50% Median 97.50%

2006–2008
DIC: 482.357

RF −0.00505 0.026 0.001346 −0.05675 −0.00562 0.04801
Tmin 0.1757 0.8161 0.04699 −1.392 0.2904 1.381
UB −0.01447 0.006339 8.7 × 10−5 −0.02694 −0.01446 −0.00206

PPD −0.00505 0.005126 5.15 × 10−5 −0.01562 −0.00489 0.004593
PHR −0.3778 0.3247 0.008936 −1.017 −0.3775 0.259

2009–2011
DIC: 381.612

RF −0.002776 0.01136 4.55 × 10−4 −0.02498 −0.002908 0.01965
HM 0.0434 0.09243 0.005146 −0.1153 0.03623 0.2319

Tmin 1.59 1.488 0.0858 −1.496 1.411 4.751
UB −0.01466 0.007114 1.28 × 10−4 −0.029 −0.01457 −9.74 × 10−4

PPD −0.005596 0.00557 5.00 × 10−5 −0.0174 −0.005294 0.004608
PHR −0.7085 0.4878 0.01128 −1.677 −0.7072 0.2421

2012–2014
DIC: 401.925

RF 0.003558 0.001654 6.26 × 10−5 5.81 × 10−4 0.003453 0.007144
Tmin −3.901 1.248 0.0719 −6.03 −3.89 −1.489

UB −0.02025 0.005439 8.26 × 10−5 −0.03087 −0.02026 −0.009464
PPD −0.001663 0.004063 5.48 × 10−5 −0.01047 −0.001387 0.00552
PHR −0.4917 0.2732 0.006128 −1.051 −0.4817 0.01762

Note: RF (rainfall) Tmin (minimum temperature), UB (urbanization rate), PPD (population density),
PHR (pig to human ratio). The bold indicates variables significantly associated with JE incidence.

The spatial residual variations (the structured random effects) of Model I were mapped in Figure 3;
and socio-environmental variables were considered in the model. The spatial residual variations were
presented as relative risk (RR) in the same study period.

Figure 3. Spatial random effect for JE incidence (2006–2014), structured spatial residuals with fixed
effect in Model I.
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Between 2006 and 2008, there were still distinct spatial residual variation across counties; and
high-risk areas (RR ≥ 1.20) were distributed evenly in the whole study area. A cluster of high risk
areas in the middle of Shaanxi was also apparent in the period from 2009 to 2011. During the last
three-year period (2012–2014), all the counties had stable RR ranging from 0.80 to 1.19. In general,
the spatial random effects had a more heterogeneous distribution than spatial distribution of incidence
of the same period, especially in the last period. We also found higher DIC value in models with no
added random effect index, besides the model we applied to obtain the results above.

The pattern of JE incidence between 2012 and 2014 was different from that in earlier years of this
study. Meteorological variables had more significant associations with JE incidence in this period than
previous years. No JE case was discovered in the north in 2012 and 2014 (Table 1), and the north area
had much higher proportion of JE cases in the whole province in 2013 (22.36%) than the average of
the whole study period (6.93%), especially in August (11 of 88 total cases, or 12.50%) and September
(18 of 44 total cases, or 40.91%). Thus, we assumed that some extreme weather event(s) (e.g., excessive
rainfall) may have resulted in high incidence in the north in 2013. Then the association of meteorological
variables and socioeconomic factors (UB, PPD and PHR) with JE incidence in August and September
2013 with 1 to 3-month lag was examined (Model II). Table 5 indicated that RF was inversely associated
with JE incidence in August and September with three months lag each (rainfall in May and June) but
had positive association with JE incidence in September with two months lag (rainfall in July).

Table 5. Meteorological, socio-economic factors and JE incidences (Model II: 2013).

Month of JE Lag and DIC Variable Mean SD MC Error 2.50% Median 97.50%

August

1-month
DIC: 252.858

RF 0.004155 0.002431 8.09 × 10−5 −7.73 × 10−4 0.004221 0.008774
Tmin −1.083 1.174 0.06731 −4.112 −0.8657 0.6437
UB −0.02564 0.009119 1.21 × 10−4 −0.0438 −0.02556 −0.007921

PPD −0.01713 0.01472 1.12 × 10−4 −0.05335 −0.01435 0.003748
PHR −1.165 0.5232 0.01226 −2.261 −1.141 −0.209

2-month
DIC: 251.518

RF 0.00312 0.007369 2.84 × 10−4 −0.01214 0.003419 0.01692
Tmin −2.779 1.397 0.08016 −5.123 −3.009 0.2639
UB −0.02573 0.00924 1.20 × 10−4 −0.04408 −0.02565 −0.00777

PPD −0.01325 0.01315 1.37 × 10−4 −0.04547 −0.01084 0.005502
PHR −0.9929 0.5402 0.01096 −2.15 −0.9573 −0.03795

3-month
DIC: 243.944

RF −0.05158 0.01391 5.44 × 10−4 −0.07931 −0.05139 −0.02518
Tmin 0.2289 0.952 0.05355 −1.685 0.3494 1.904
UB −0.02759 0.008652 1.45 × 10−4 −0.04498 −0.02749 −0.01094

PPD −0.01212 0.01335 1.65 × 10−4 −0.045010 −0.009631 0.006669
PHR −1.664 0.5583 0.01578 −2.83 −1.634 −0.6456

September

1-month
DIC: 155.262

RF −0.04816 0.02992 0.00103 −0.1111 −0.04633 0.005663
Tmin −2.952 1.387 0.07904 −5.973 −2.87 −0.05671

UB −0.01319 0.01744 2.87 × 10−4 −0.04756 −0.0133 0.02167
PPD −0.1252 0.1036 0.00244 −0.3847 −0.1015 0.002195
PHR −0.3601 0.753 0.0169 −1.856 −0.3579 1.128

2-month
DIC: 140.323

RF 0.01925 0.004357 2.08 × 10−4 0.01163 0.0189 0.02872
Tmin −1.68 2.081 0.1196 −5.456 −1.376 1.871
UB −0.01898 0.01402 1.76 × 10−4 −0.04658 −0.01895 0.008462

PPD −0.1021 0.08615 1.70 × 10−3 −0.3129 −0.08403 0.006762
PHR −0.07627 0.5582 0.01121 −1.267 −0.04381 0.9268

3-month
DIC: 147.809

RF −0.05426 0.02199 9.76 × 10−4 −0.09975 −0.05336 −0.01424
Tmin −5.791 1.562 0.08906 −9.645 −5.492 −3.489

UB −0.02307 0.01343 1.76 × 10−4 −0.05014 −0.02288 0.002658
PPD −0.06881 0.0592 8.42 × 10−4 −0.2163 −0.05536 0.00457
PHR −0.5815 0.5584 0.009745 −1.767 −0.5504 0.4278

Note: RF (rainfall) Tmin (minimum temperature), UB (urbanization rate), PPD (population density),
PHR (pig to human ratio). The bold indicates variables significantly associated with JE incidence.

There was an inverse association between Tmin and JE incidence in September with 1 and 3-month
lag (Tmin in June and August). UB and PHR were inversely associated with JE incidence in August.
The spatial residual of Model II in 2013 (all types of lag effect) had stable relative risk ranging from
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0.96 to 1.07. The DIC value in Model II was much lower than Model I. We also applied Model II in
other years with relative high incidence (e.g., 2006 and 2009), and found no significant association
between meteorological factors and JE incidence.

4. Discussion

This study explored the pattern of JE incidence and examined socio-environmental impact on JE
in Shaanxi, China (2006–2014). The spatial pattern of JE incidence and significant socio-environmental
drivers of JE incidence changed across three periods. In the third period, meteorological variables
were more significantly associated with JE incidence than previous years. There was significant lag
effect of impact of meteorological factors on JE incidence in August and September 2013. The results
from this study may help researchers to have a better understanding of JE in local areas, and provide
precise evidence for establishing and conducting targeted and more effective strategies on JE control
and prevention to public health policy makers and practitioners.

Meteorological variables can change the living and proliferation environment of mosquitoes,
and lead to variation of mosquito density over time and space. This may influence the development and
transmission of virus from mosquito to human population and other hosts [28,29]. Precipitation can leave
a humid environment, which can foster the survival, growth and reproduction of mosquitoes [30–32].
Thus, the increased humidity can add the transmission of JEV from mosquito to susceptible hosts,
including humans. The subtropical south of Shaanxi, composed of mountains, rivers and valleys,
has a humid environment and around 25 ◦C mean temperature in summer, which provide a suitable
environment for mosquito reproduction and JEV transmission, especially in areas near rivers. In most
of the study period, the south region had higher precipitation than the middle and north of Shaanxi.
This may explain why JE incidence was higher in the south in most of the study period. However,
during the whole month of July 2013, heavy rainfall occurred in the north of Shaanxi with around
500 mm precipitation, which was higher than the annual average local precipitation, and was also
higher than precipitation in the middle and south that month. In our study, the two months lag for
rainfall had a significant and positive association with JE in September 2013, which is consistent with
previous studies [13,33]. Other literature has also indicated that temperatures over 21 ◦C are suitable
for mosquito population growth and increase of JE incidence over time in tropical and subtropical
regions [19,33,34]. A suitable temperature helps mosquito larva and JEV development, and can foster
the spread of mosquitoes and JE disease [11,35]. In general, areas with lower latitude in Shaanxi had
higher temperature in each month in the whole study period. In our study, Tmin were inversely
associated with JE incidence in Model I (2012–2014) and Model II (September 2013, 3 months lag),
indicating that the geographical distribution of rainfall (especially during excessive precipitation
period) may have a higher impact on the spatial variation of JE incidence than other meteorological
variables (e.g., temperature). The north of Shaanxi, which was traditionally regarded as a relatively
dry area with low incidence of mosquito-borne diseases, may have relative weaker adaptation capacity
to disease outbreak resulted from extreme weather than other areas. All above may explain that the
spatial pattern of JE incidence in August and September 2013 was different from that in the remaining
study period.

The progress of urbanization, which may devastate the suitable environment for mosquito
population survive and growth, have been accompanied with decrease of JE incidence in Eastern
Asia [7–10]. In Shaanxi, the middle region (including Xi’an, the provincial capital) has a higher
urbanization level than the north and south. Thus, fewer high risk areas were discovered in the middle
of Shaanxi than the south and the north in general; and areas with higher urbanization level had
lower JE incidence than the remaining areas in the middle of the province. JEV can be transmitted
from pigs to humans by mosquito biting [5]. The pig to human ratio in the south of Shaanxi was
over 150% higher than the middle and north respectively in each year of the whole study period.
Our study found that PHR was only inversely associated with JE incidence in Model II (2013), which is
different from other studies [13,36]. The results in this study indicated that urbanization rate and
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extreme weather (e.g., rainfall) may have more significant impact on the spread of JEV and spatial
variation of JE incidence than PHR and other variables in this study. The distinct spatial pattern of
JE incidence in August and September, 2013 (higher in the north than middle and south) and PHR
resulted in the inverse association, from statistical perspective. Other spatial studies using point
data indicated that land cover types and ground vegetation can also influence the distribution of
mosquito [5,37–39]. In Shaanxi, most of farms and crop lands are in the rural areas, especially in the
middle and south; and the south has more bodies of water. This may be associated with geographical
distribution of JE cases in most years of the study period. However, our study used administrative
geographical units in data analysis, which is difficult in demonstrating the details of types of land use
and vegetation at the county level, including snow melt and the distance to bodies of water of each
JE case. Evidence indicated that immunization programs have reduced JE incidence in China over
time [9,10]. The reduction of JE incidence in Shaanxi, especially in the south (a traditionally high-risk
area), may be attributed to the implementation of immunization programs in these areas. However,
the impact of immunization program on JE at the county level cannot be examined in this study due to
the unavailability of dynamic vaccination information at the county level. The dynamitic mosquito
population data at the county are not available in this study. Thus, the impact of mosquito population
and relevant key factors (e.g., type of land use, vegetation and snow melt) on JE cannot be examined.

The covariates and random effects applying in spatial autocorrelation adjustment, and borrowed
strength from adjacent areas in the Bayesian CAR model, can reduce the randomly created risk
likelihood in spatial analysis [40]. In this study, JE annual average incidence rate between 2012 and
2014 were lower than earlier years in this study. And the spatial residual variation in this period
was more homogenous than previous years. The Bayesian CAR model indicated that other factors,
e.g., vaccination program, healthcare facilities, land types, may result in the spatial variation of
residuals and have more significant impact on the geographical difference of JE incidence in earlier
years. Bayesian CAR model has also been used in other studies in infectious and non-communicable
diseases [26,41,42].

There are a few strengths in this study. Firstly, this is the first study exploring the association of
meteorological and socio-demographical variables with JE incidence in the study site with a relative
low JE disease burden in China, using a Bayesian spatial model. Secondly, this study used two types
of spatial models: Model I provided a relative stable pattern of JE incidence using aggregated yearly
data and examined the impact of socio-environmental factors on JE incidence. Model II discovered
that extreme weather (e.g., excessive precipitation) can change the spatial pattern of JE incidence with
lag effect and had higher impact on mosquito-borne disease than other variables, using monthly data.
The comparison of two models provided more in-depth understanding of spatial pattern of JE and
relevant factors. Finally, the results of this study can provide more precise evidence for public health
implication on local JE control and prevention programs than previous national studies, focusing on
high risk areas and significant socio-environmental factors.

However, some weaknesses should also be addressed. Firstly, some factors which can influence
the spread of JEV, e.g., personal health behavior, vaccination at the county level, mosquito population
over time and at the county level, types of land use and vegetation at the county level, are not
available or not applicable using administrative geographical units in our spatial analysis. Secondly,
some cases without county information were not included in this study, and this may result in a bias
underestimating JE incidence in some areas.

5. Conclusions

In conclusion, the association between socio-environmental variables and JE incidence has become
more significant in the recent years compared to earlier years in Shaanxi (China). Rainfall and
urbanization rate were the most significant factors associated with JE. The impact of progressing
climate change and more frequent extreme weather occurrence on mosquito-borne disease need to be
notified and future public health implication on JE control and prevention, especially in rural areas.
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Areas traditionally having low incidence and prevalence of mosquito-borne disease need to enhance
capacity of adapting to climate change and its impact on resurgence of infectious disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/4/608/s1,
Figure S1: The spatial pattern of JE incidence in each year.
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