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Abstract. Epithelial cells are associated with tumor immunity 
through interstitial transformation, yet the role of epithelial 
immune‑related genes (EIGs) in this process remains unclear. 
Comprehending the mechanisms behind EIGs within lung 
squamous cell carcinoma (LUSC) may offer an explanation to 
these issues. The present study aimed to explore the biological 
role of EIGs in patients with LUSC. Based on data from the 
Gene Expression Omnibus and The Cancer Genome Atlas 
databases, a survival model and nomogram was established. 
This model and nomogram were used to study the mechanism 
of EIGs in LUSC and its medical significance by enrichment 
analysis, tumor microenvironment, immune cell infiltration 
and immune function correlation analysis. Finally, reverse 
transcription‑quantitative PCR (RT‑qPCR) and external 
dataset were used to assess the expression of the EIGs. The 
survival model was used to develop 4 EIGs as predictors for 
patient outcomes. Survival curves revealed that higher risk 
patients had more negative outcomes. This model and the 
nomogram developed based entirely on this model had an 

accurate prognosis predictive LUSC. The enrichment analysis 
indicated that pathways related to antigen processing and 
presentation, as well as Epstein‑Barr virus infection, were 
prevalent in the high‑risk populations. The research on immune 
infiltration demonstrated a notable rise in activated dendritic 
cells and neutrophils in the high‑risk group. Furthermore, the 
results revealed that the high‑risk populations are particularly 
susceptible to the effects of afureserpine, gefitinib and savoli‑
tinib. Finally, the outcomes of RT‑qPCR were consistent with 
those of the bioinformatics analysis. In conclusion, the risk 
evaluation model and nomogram are effective in forecasting 
the prognosis and guiding drug selection for patients with 
LUSC. A worse prognosis in patients with high risk may be 
associated with certain viral infections and antigen processing 
and presentation.

Introduction

Lung cancer ranks has the highest global cancer incidence and 
mortality rates (1). Lung squamous cell carcinoma (LUSC)
has an age‑standardized incidence rate of 7.7 per 100,000 in 
male, accounting for approximately30% of all non‑small cell 
lung cancer (NSCLC) cases and is the second most prevalent 
subtype of NSCLC (2). The diagnosis and therapeutic inter‑
vention for individuals afflicted with pulmonary carcinoma 
are of paramount significance. The traditional tumor (T)‑node 
(N)‑metastasis (M) staging system (3) provides current cancer 
classification guidelines (4); This classification, based solely 
on tumor cell characteristics and neglecting the patient's 
immune profile, paradoxically leads to significant prognostic 
variability among patients within the same TNM stage, 
with some in earlier stages faring worse than those in later 
stages (5). Therefore, a prognostic model that integrates robust 
biomarkers with the TNM staging system has the potential to 
forecast patient prognoses with greater precision.

Single‑cell analysis of cell heterogeneity in complex 
systems is a valuable tool. It can be used to define the global 
gene expression profile of individual cells, thus facilitating the 
analysis of previously unknown genes in cell populations (6). 
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Joanito et al (7) reported the role of epithelial cells in the evalu‑
ation of prognosis of patients with colorectal cancer. Moreover, 
the contributions of epithelial cells to cancer treatment were 
reviewed by Chen et al (8) and Huang et al (9) constructed an 
EIGs prognostic model for predicting long‑term prognosis in 
patients with gastric carcinoma. However, the prognostic value 
of the ECIG for LUSC remains unclear.

Therefore, the aim of the present study is to explore the 
biological functions of EIGs in LUSC patients and assess 
their potential value for prognostic prediction. The present 
study constructed an EIGs prognostic model based mainly 
on single‑cell (sc) mixed bulk RNA sequencing (RNA‑seq) 
and assessed the prognosis of patients with LUSC using 
enrichment pathway analysis, tumor mutation burden (TMB) 
analysis, tumor microenvironment differentiation analysis 
and drug sensitivity prediction, as well as an evaluation of its 
scientific value.

Materials and methods

Data sources and disposal. The Gene Expression Omnibus 
(GEO) database(ncbi.nlm.nih.gov/geo/) contains scRNA‑seq 
data for two purified LUSC samples (GSM3304009 and 
GSM3304010). The Cancer Genome Atlas (TCGA) (portal.
gdc.cancer.gov/) provides bulk RNA‑seq data for patients 
with LUSC, covering 502 tumor cases and 51 normal cases 
(dataset name: TCGA‑LUSC). Following the elimination of 
cancer patients lacking survival information, a total of 488 
cancer patients were incorporated into the study. In addi‑
tion, the GSE37745, GSE73403 and GSE74777 datasets were 
sourced from the GEO. These datasets were combined into a 
single set and adjusted for batch variations using the ‘ComBat’ 
function in the ‘sva’ package (Version: 3.54.0), with all data 
transformed to log2 values (10).

Identifying epithelial marker genes using scRNA‑seq. The 
present study used the R packages ‘Seurat’, ‘Singler’ and 
‘magrittr’ to analyze scRNA‑seq data (11). Raw arrays for 
each sample were filtered, excluding genes expressed in fewer 
than three individual cells, cells with fewer than 50 genes, 
and cells with more than 5% of genes encoded by mitochon‑
dria. First, the scRNA‑seq dataset was normalized using the 
‘NormalizeData’ property in the Seurat R bundle, and the 
statistics were transformed into standardized scRNA‑seq 
objects. The feature ‘FindVariableFeatures’ was used to detect 
the first 1,500 highly variable genes. Second, a principal 
component analysis (PCA) was performed. Previously, a 
JackStraw evaluation was used to screen for essential PCs), and 
20 PC cells were selected for cluster assessment at P<0.05. The 
FindNeighbors property was used to compute the closeness of 
clusters, whilst the FindClusters property was used to analyze 
mobile clusters. The mobile clusters were subsequently vali‑
dated with RunTSNE, and the FindAllMarkers property was 
used for each cluster to compute the differentially expressed 
genes (DEGs), for which logFoldChange=1 and the expres‑
sion ratio of the least differential genes=0.25. Subsequently, 
each cell cluster was annotated with the ‘CreateSinglerObject’ 
property in the ‘Singler’ package. Finally, using the ‘monocle’ 
package in R, a quasitemporal analysis was performed (12). 
Based on the temporal gene expression of each cell, each 

cell was arranged according to a quasitemporal pattern, and 
this model was split once into multiple cell groups (states) 
based on gene expression status to create an intuitive lineage 
improvement tree.

Model construction and validation. Immune‑related genes 
were retrieved from two comprehensive databases(Immport 
gene list and InnateDB Innate Immunity Genes) , Immport 
(https://www.immport.org/home) and InnateDB (https://www.
innatedb.ca/). By evaluating the expression of epithelial marker 
genes filtered in the preceding step, 278 EIGs were identified. 
To further assess the clinical relevance of these identified 
EIGs, univariate Cox regression analysis was performed. 
Genes exhibiting P<0.05 were deemed prognostic indicators. 
The protein interaction community was then evaluated using 
the protein‑protein interaction network and the hyper‑linkages 
between the DEGs was consequently determined. To improve 
the precision of the predictive gene screening, an extensive 
evaluation using both least absolute shrinkage and selection 
operator (LASSO) and Cox was performed. This analysis 
was executed using the ‘glmnet’ software package, which is 
tailored for fitting generalized linear models via penalized 
maximum likelihood. The LASSO model was used to evaluate 
survival according to Cox, and the ‘cv. glmnet’ capability was 
subsequently used to verify the first‑class model (13). LASSO 
and Cox regression analysis were applied to elucidate genes 
with significant prognostic value. The differentially expressed 
EIGs coefficients are presented in Table SI. This technique 
enabled the systematic analysis of gene expression and risk 
factors, ultimately leading to the creation of predictive models. 
Patients were stratified into distinct risk categories using a risk 
score threshold of 0.91. The basic information of patients in the 
test group and the training group are presented in Table I. To 
assess the predictive accuracy of the EIGs, the area under the 
curve (AUC) was calculated using the ‘survival ROC’ package. 
A nomogram for 1‑, 3‑ and 5‑year outcomes was developed 
based on age, sex, tumor stage and risk model with the ‘RMS’ 
package. Decision analysis was performed using the ‘ggDCA’ 
package. The ‘survminer’ package and Kaplan‑Meier methods 
were used to perform survival analysis. To mitigate the impact 
of confounding factors on survival curves, the two‑stage (TS) 
test was used to address potential issues of curve crossover 
in survival analysis (14). Finally, survival analysis using an 
independent dataset sourced from the GEO (accession nos. 
GSE37745, GSE73403 and GSE74777; ncbi.nlm.nih.gov/geo) 
corroborated the predictive capability of the model regarding 
survival outcomes.

Enrichment analysis. Detailed and in‑depth gene set enrich‑
ment analysis (GSEA) was performed on the gene sets ‘c5.
go.Hs.symbols.gmt’ and ‘c2.cp.kegg.Hs.symbols.gmt’ 
obtained from the MSigDB database (docs.gsea‑msigdb.
org/#MSigDB/MSigDB_FAQ) (15). Furthermore, using the 
‘Cluster Profiler’ R package, Gene Ontology (GO) enrichment 
analysis was performed to assess the cellular and molecular 
characteristics of EIGs, and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis was used to 
evaluate their roles in several metabolic and signaling path‑
ways (16). The GO annotation was based on the Bioconductor 
Project's complete genome annotation package (org.Hs.eg.db). 
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Table I. Patient clinical information for the test and training groups.

A, Training cohort (n=245)

Characteristic n (%)

Age 
  <65 years 90 (36.73)
  >65 years 155 (63.27)
Status 
  Alive 136 (66.67)
  Dead 109 (33.33)
Sex 
  Female 56 (22.86)
  Male 189 (77.14)
Stage 
  I 124 (50.61)
  II  80 (32.65)
  III 34 (13.88)
  IV 4 (1.63)
  Unknown 3 (1.22)
T stage 
  T1 50 (20.41)
  T2 155 (63.27)
  T3 31 (12.65)
  T4 9 (3.67)
M stage 
  M0 193 (78.76)
  M1 4 (1.63)
  MX 45 (18.37)
  Unknown 3 (1.22)
N stage 
  N0 161 (65.71)
  N1 65 (26.53)
  N2 16 (6.53)
  N3 2 (0.43)
  Unknown 1 (0.22)

B, Test cohort (n=244) 

Characteristic n (%)

Age 
  <65 years 99 (40.57)
  >65 years 145 (59.43)
Status 
  Alive 142 (58.2)
  Dead 102 (41.8)
Sex 
  Female 71 (29.10)
  Male 173 (70.90)
Stage 
  I 115 (47.13)
  II  76 (31.15)
  III 49 (20.08)
  IV 3 (1.23)
  Unknown 1 (0.41)

Table I. Continued.

B, Test cohort (n=244)

Characteristic n (%)

T stage 
  T1 60 (24.59)
  T2 130 (53.28)
  T3 39 (15.98)
  T4 15 (6.15)
M stage 
  M0 208 (85.25)
  M1 3 (1.23)
  MX 32 (13.11)
  Unknown 1 (0.41)
N stage 
  N0 151 (61.89)
  N1 61 (25)
  N2 24 (9.84)
  N3 3 (1.23)
  Unknown 5 (2.05)

C, Entire cohort (n=489)

Characteristic n (%)

Age 
  <65 years 189 (38.65)
  >65 years 300 (61.35)
Status 
  Alive 278 (56.85)
  Dead 211 (43.15)
Sex 
  Female 127 (25.97)
  Male 362 (74.03)
Stage 
  I 239 (48.88)
  II  156 (31.9)
  III 83 (16.97)
  IV 7 (1.43)
  Unknown 4 (0.82)
T stage 
  T1 111 (22.70)
  T2 285 (58.28)
  T3 70 (14.32)
  T4 23 (4.70)
M stage 
  M0 401 (82)
  M1 7 (1.43)
  MX 77 (15.75)
  Unknown 4 (0.82)
N stage 
  N0 312 (63.8)
  N1 126 (25.78)
  N2 40 (8.37)
  N3 5 (1.02)
  Unknown 6 (1.23)

T stage, tumor stage; N stage, node stage; M stage, metastasis stage.

https://www.spandidos-publications.com/10.3892/ol.2025.14904
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KEGG elucidated the advanced functions, networks and 
applications of biological systems, providing a foundation 
for further research. The ‘cluster profiler’ tool was utilized, 
which uses the Web API to query the most up‑to‑date KEGG 
database, obtain path data and perform functional analysis. 
The threshold of P<0.05 was applied to determine enrichment. 
Distinct GO and KEGG plots were generated, illustrating 
variations in gene numbers and selection criteria.

Tumor immune correlation analysis. Using the ‘biolinks’ soft‑
ware tool, LUSC mutation information from TCGA database 
was analyzed to assess the disparities in TMB between risk 
cohorts. A waterfall plot was subsequently generated using the 
‘maftools’ tool to display the top 20 genes with notable muta‑
tion differences. This visualization enabled the comparison 
of the distinct variations in mutation burden among different 
risk cohorts. Subsequently, the expression data were processed 
using the ESTIMATE algorithm (1.0.13, bioinformatics.
mdanderson.org/), leading to the assessment of the stromal 
score, immune score and overall ESTIMATE score in 
LUSC (17). CIBERSORT(0.1.0, https://cibersortx.stanford.
edu/) was subsequently used to identify 22 invasive immune 
cells. Subsequently, immune typing analysis was performed 
using the R package ‘RColorBrewer’ (18). single‑sample 
GSEA (ssGSEA) was then used to measure immune func‑
tion in different risk groups. Furthermore, TIDE score files 
were retrieved from the TIDE site (tide.dfci.harvard.edu/) to 
compare the different scores among different risk groups.

Immune checkpoint and IMvigor210. An analysis of the 
expression of 79 immune checkpoint genes was performed 
across different groups to assess tumor immunity, and the 
‘ggpubr’ software suite was used to scrutinize disparities in 
immunosuppressive molecules associated with immune check‑
points (19). Furthermore, gene transcription data from 298 
patients with uroepithelial carcinoma was retrieved from the 
IMvigor210 cohort and their responsiveness to immunotherapy 
was forecasted to appraise the immunotherapeutic efficacy of 
the risk model in the present study and to prognosticate the 
outcome of the IMvigor210 immunotherapy regimen (20).

Drug sensitivity test. The drug susceptibility of LUSC was 
predicted using the R‑editing language ‘parallel’ and the 
‘oncoPredict’ package. Moreover, using the ‘ggplot2’ package, 
the susceptibility of the high‑risk group to 198 drugs was 
plotted, considering P<0.05 (21).

Validation by reverse transcription‑quantitative PCR 
(RT‑qPCR). To assess the proposed model, RT‑qPCR analysis 
was performed. RNA was extracted from human LUSC 
H2195, H711 and H1522 cells (Binhui Biotechnology) and 
from normal bronchial epithelium 16HBE cells (Binhui 
Biotechnology) using TRIzol reagent (Takara Bio, Inc.). 
RT‑qPCR was performed using the Probe One Step RT‑qPCR 
Kit (NM_004048, Beijing Quality Biotechnology Co., Ltd.). 
For RT‑PCR, begin with a 70˚C incubation for 10 min, 
then synthesize cDNA at 37˚C for 65 min, hold at 15.8˚C 
for 150 min, and finally maintain at 4˚C. For qPCR, use 
SYBR Green I (Vazyme Medical Co., Ltd.) as a fluorescent 
marker. Thermocycling conditions were as follows: Initial 

denaturation at 95˚C denaturation for 2‑10 min, followed by 
40 cycles of 95˚C for 10 sec and 60˚C for 30 sec. Finally, the 
2‑ΔΔCq method (22) was used to normalize sample gene expres‑
sion for the final result calculations. Normalization involved 
using ΔCT and the efficiency measured for the reference gene 
to calculate the ETΔCT/ERΔCT ratio (23). To compare the 
expression levels between LUSC cells and normal cells, the 
unpaired t‑test was used for statistical analysis. The aforemen‑
tioned method enabled precise measurement and comparison 
of significant gene expression variations across several cell 
types. The primers used in the RT‑qPCR experiment are listed 
in Table SII.

Protein expression. To assess the protein expression differences 
in patients with LUSC and healthy individuals, a thorough 
analysis was performed using data obtained from the Human 
Protein Atlas (HPA) database (AREG, MUC1 and FABP6; 
proteinatlas.org/). This comprehensive dataset was used to 
assess the protein expression profiles of the chosen EIGs in 
both LUSC and normal tissues and the analytical method 
enabled the comprehensive understanding of the expression 
patterns and variations of these genes across different samples.

Statistical analysis. Statistical analyses were carried out using 
R version 4.2.1, and the corresponding R packages were also 
based on this version. A P‑value threshold of less than 0.05 
was used to determine significance, except where explicitly 
stated otherwise.

Results

Identification of epithelium‑related genes. As illustrated in 
Fig. 1, which presents the study flowchart, scRNA‑seq was 
performed on a sequence of 2,470 LUSC samples. Furthermore, 
Fig. 2A demonstrates the range, sequencing depth and % of 
mitochondria for each sample. After a quality control filtration 
process was used to remove poor‑quality cells, the remaining 
cells were subjected to subsequent analysis. After sample 
normalization, 7,950 low‑mutation genes were excluded 
and 1,500 highly variable genes were selected (Fig. 2B). 
Subsequently, the PCA method was applied to simplify the 
variables within the dataset (Fig. 2C and D). Moreover, to 
perform a more detailed and in‑depth analysis, 20 PCs) were 
selected, each exhibiting P<0.05, ensuring their statistical 
significance. Subsequently, the t‑SNE algorithm (2.0, geeks‑
forgeeks.org) was used, which allowed the visual mapping and 
distinguishing of the 12 clusters present within the sample, 
thus providing a clearer representation of the data distribution 
and relationships (Fig. 2E). Using the ‘single‑R’ package in 
R (bioconductor.org/packages/release/bioc/html/SingleR.
html), it was demonstrated that Clusters 0, 2, 3, 7 and 10 were 
classified as epithelial cell subpopulations. The expression 
patterns of distinct genes in individual cell clusters are shown 
in Fig. 2F. Finally, the developmental trajectory of epithelial 
cells was assessed using pseudotime analysis (Fig. 2G).

Model construction and validation. After the overlap of 
the immune gene set with genes related to the epithelium 
was confirmed, 278 immune‑related genes were identified 
(Fig. S1A and Table SIII). A single‑variable Cox regression 
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Figure 1. Study flow chart. TCGA‑LUSC, The Cancer Genome Atlas Lung Squamous Cell Carcinoma Collection; sc‑gene, Single cell sequencing gene; TSNE, 
t‑distributed stochastic neighbor embedding; ROC, receiver operating characteristic; TMB, tumor mutation burden; TIDE, tumor immune dysfunction and 
exclusion; RT‑q, quantitative real‑time polymerase chain reaction.

https://www.spandidos-publications.com/10.3892/ol.2025.14904
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Figure 2. Filter for epithelial cell mark genes. (A) Evaluation of single‑cell RNA‑sequencing data from two lung squamous cell carcinoma samples. (B) Variance 
map displays 7,950 genes, with the top 1,500 highly variable genes highlighted in red. (C) principal component analysis dimension reduction. (D) A total of 
15 PCs were identified based on P<0.05. The 0.04 denotes the mitochondrial gene fraction within the single‑cell dataset; 0.83 signifies the disparity in mRNA 
content among the single‑cell data clusters. (E) t‑SNE algorithm visualizes cell clustering. (F) Heatmap shows the expression of the top 5 genes in each cluster. 
(G) Cell trajectory and pseudo‑time analysis. PC, principal component; t‑SNE, t‑distributed stochastic neighbor embedding.
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analysis was performed using the TCGA LUSC cohort as a 
training set, and 24 epithelium‑related genes (Table SIV) were 
revealed to be significantly related to overall survival (OS; 
Fig. S1B). Furthermore, a protein‑protein interaction network 
was constructed using Cytoscape (3.9 https://cn.string‑db.
org/), and the relationships among the cox genes were demon‑
strated (Fig. S1C). A total of 8 EIGs were then identified 
using LASSO analysis, and 4 genes [amphiregulin (AREG), 
mucin (MUC)1, fatty acid‑binding protein 6 (FABP6) and 
thymic stromal lymphopoietin (TSLP)] were selected for 
model construction after comparison with Cox regression 
analysis (Fig. S1D and E). The risk score was calculated 
as follows: (0.134 x AREG expression) + (0.129 x MUC1 
expression) + (0.249 x FABP6 expression) + (‑0.199 x TSLP 
expression). This was followed by an evaluation of the 
prognostic value of the model. According to the risk score, 
clinical information of different risk groups was recorded 
(Table II). Survival rates notably differed between the two 
risk groups, as indicated by the survival analysis curves, with 
high‑risk patients exhibiting a significantly reduced survival 
rate, compared with that of the low‑risk patients (P=0.007; 
Fig. 3A). However, the generated curves intersected at the tail 
end S(t)=0.2. The TS test demonstrated that there was still a 
significant difference in survival between different risk groups 
(P=0.00723), indicating that the intersection of the curves did 
not affect the results. ROC curves were also used to evaluate 
the prognostic ability of the model. Fig. 3B presents the AUC 
values at 1, 3 and 5 years, with OS rates for patients with LUAD 
of 0.698, 0.707 and 0.629, respectively. Similar results were 
demonstrated for both the experimental group and the entire 
cohort (Fig. 3C‑F), confirming the feasibility of the model. 
Specifically, for the test cohort, it was revealed that individuals 

Table II. Clinical information of patients in different risk 
groups.

A, High‑risk group (n=238)

Characteristic n (%)

Age 
  <65 years 75 (31.51)
  >65 years 163 (68.49)
Status 
  Alive 123 (51.68)
  Dead 115 (48.32)
Sex 
  Female 65 (27.31)
  Male 173 (72.69)
Stage 
  I 127 (53.36)
  II  67 (28.15)
  III 38 (15.97)
  IV 5 (2.1)
  Unknown 1 (0.42)
T stage 
  T1 67 (28.15)
  T2 126 (52.94)
  T3 33 (13.87)
  T4 12 (5.04)
M stage 
  M0 188 (78.99)
  M1 5 (2.1)
  MX 43 (18.07)
  Unknown 2 (0.84)
N stage 
  N0 160 (67.23)
  N1 54 (22.69)
  N2 16 (6.72)
  N3 3 (1.26)
  Unknown 5 (2.1)

B, Low‑risk group (n=251)

Age 
  <65 years 114 (45.42)
  >65 years 137 (54.58)
Status 
  Alive 155 (61.75)
  Dead 96 (38.25)
Sex 
  Female 62 (24.7)
  Male 189 (75.3)
Stage 
  I 110 (43.82)
  II  87 (34.67)
  III 49 (19.52)
  IV 2 (0.80)
  Unknown 3 (1.20)

Table II. Continued.

B, Low‑risk group (n=251)

Characteristic n (%)

T stage 
  T1 43 (18.33)
  T2 160 (63.75)
  T3 37 (14.74)
  T4 11 (4.38)
M stage 
  M0 213 (84.86)
  M1 2 (0.8)
  MX 34 (13.54)
  Unknown 2 (0.8)
N stage 
  N0 152 (60.56)
  N1 72 (28.69)
  N2 24 (9.55)
  N3 2 (0.8)
  Unknown 1 (0.4)

T stage, tumor stage; N stage, node stage; M stage, metastasis stage.

https://www.spandidos-publications.com/10.3892/ol.2025.14904
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in the high‑risk category had a significantly decreased OS 
rate, and this trend was consistent across all the experimental 
results. Additionally, through analysis of the expression levels 
of EIGs, it was revealed that AREG, MUC1 and FABP6 were 
expressed at higher levels in high‑risk patients, indicating 
increased susceptibility to disease, whilst TSLP was more 
highly expressed in low‑risk patients, suggesting greater 
resistance (Fig. S2A‑C). Moreover, scatter plot analysis indi‑
cated that OS was markedly reduced and that the mortality 
rate was increased (Fig. S2D‑I). Kaplan‑Meier curves for 
survival analysis and differential expression of patients with 
LUSC patients with four model‑associated EIGs are shown in 
Fig. S3. AREG, FABP6, and MUC1 showed decreased expres‑
sion in the high‑risk group compared to the low‑risk group, 
while their expression was elevated in the latter. Conversely, 
TSLP exhibited lower expression in the low‑risk group but was 
relatively higher in the high‑risk group. The survival curves 
for the AREG and MUC1 genes intersected; therefore, the TS 
test was performed. The resulting P‑values were 0.0314459 
and 0.02161114 for AREG and MUC1, respectively. This indi‑
cated that despite the intersection, the genes still demonstrated 
a significant difference in their prognostic implications for 
survival outcomes.

Clinical OS prediction by the independent prognostic models in 
patients with LUSC. Univariate and multivariate Cox regression 
analyses revealed that the risk score held independent prog‑
nostic significance in both types of analyses (Fig. S4A and B). 
Moreover, the clinical circle and heatmap indicated that age 
and T stage may be independent prognostic factors (Fig. S4C 
and D). Furthermore, the risk models value was notably greater 
than that of clinical traits in predicting patient prognosis, 
according to the nomogram (Fig. 4A). The ROC survival curve 

also demonstrated that the risk was more predictive than the 
majority of clinical data (Fig. 4B). Additionally, the decision 
curve revealed that the risk model had a markedly greater net 
benefit than the other clinical factors (Fig. 4C). The calibration 
curve also demonstrated that having a model had a notably 
greater C‑index than having no risk model (Fig. 4D and E). 
Subsequently, a prospective estimate of patients with LUSC 
was performed according to age, risk, sex and disease stage 
(Fig. S5A‑C) and survival rates were compared among patients 
of different ages, sexes, T stages and N stages (Fig. S5D‑H) to 
determine the predictive effect. Notably, there were pronounced 
differences in risk scores among those aged ≥65 and above, as 
well as between patients with stage I and stage II tumors. The 
survival curves plotted by combining clinical features such as 
age, sex, and tumor stage with the model‑predicted risk scores 
show significant differences between the groups.  GEO external 
data was validated and it was demonstrated that the model is 
feasible (Fig. S5I).

Enrichment analysis. The GSEA enrichment results indi‑
cated that the model gene had a positive association with the 
‘granulocytes migration’ and ‘leucocytes migration’, while it 
showed a negative association with ‘chromosome segregation’ 
and ‘DNA replication’. Pathway enrichment revealed a high 
association of the model genes with three pathways related 
to ‘cytokine‑cytokine receptor interaction’, ‘type Ⅰ diabetes 
mellitus’ and ‘complement and coagulation cascades’ , whilst 
the association with the ‘DNA replication’ pathway was low 
(Fig. 5A‑D). GO analysis revealed the involvement of immune 
system genes, T cells, cytokines and white blood cells (Fig. 5E 
and F). Moreover, KEGG analysis confirmed the close rela‑
tionship between these genes and the way in which antigen 
are processed and presented (Fig. 5G and H). According to 

Figure 3. Cohort survival and prognosis differences. (A) Kaplan‑Meier and (B) ROC curve of the training group. (C) Kaplan‑Meier curve and (D) ROC curve 
of the testing group. (E) Kaplan‑Meier and (F) ROC curve of the total group. ROC, receiver operating characteristic; AUC, area under the curve.
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KEGG analysis, antigen processing and presentation pathways 
were enriched, and the high‑risk group revealed contamina‑
tion with human T‑cell leukemia virus 1. The detailed findings 

are presented in Table SV. Finally, the potential mechanisms 
initiated by relevant model genes during the progression of 
tumors were illustrated (Fig. 6).

Figure 4. Verification of the predictive ability of the model. (A) Construction of the nomogram. (B) Receiver operating characteristic curve based on the model, 
nomogram and clinical traits. (C) Decision curves of risk models and clinical traits. Calibration curve (D) without and (E) with the model. *P<0.05; **P<0.01; 
***P<0.001. AUC, area under the curve; OS, overall survival.

https://www.spandidos-publications.com/10.3892/ol.2025.14904
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Figure 5. Enrichment analysis. Risk groups were enriched through the GO (A) high expression pathway by GSEA. (B) Different risk groups were enriched 
through the GO low expression pathway by GSEA. (C) Different risk groups were enriched through the KEGG high expression pathway by GSEA (D) Different 
risk groups were enriched through the GO high expression pathway by GSEA. (E) Bar and (F) circle chart of GO enrichment analysis. (G) Bar and (H) circle 
chart of KEGG enrichment analysis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Tumor immune correlation analysis of LUSC. The tumor 
mutation load was assessed in different risk populations. It was 
demonstrated that the most common mutations in the popula‑
tion were titin and MUC16 (Fig. 7A and B). When comparing 
TMB across different risk groups, no significant difference 
was observed (Fig. 7C). Consequently, the outcomes of 
patients with high and low TMB levels were analyzed. A more 
favorable prognosis was revealed in patients with a lower TMB 
than in those with a higher TMB (Fig. 7D). Subsequently, after 
incorporating the TMB‑based risk model, high‑risk and low 
TMB subgroups demonstrated a significantly improved prog‑
nosis compared with that of the TMB and low‑risk subgroups 
(Fig. 7E). Although TMB did not show significant differences 
when comparing different risk groups individually, and even 
though survival was better in the H‑TMB group than in the 
L‑TMB group, after integrating TMB with the high‑ and 
low‑risk groups defined by our model, survival differences still 
persisted between different risk and TMB groups (P<0.001). 
This shows the feasibility of the model in the present study. 
Subsequently, differences between TIDE and EIGs were 
assessed. A significant difference in TIDE scores was noted 
between the two risk groups (Fig. 7F). Due to the significant 
involvement of epithelial cells in the immune response and 
migration of tumors, the infiltration of these cells along with 
immune cells was assessed using data from patients with 

LUSC. The high‑risk cohort exhibited significant variances in 
matrix scores, immune scores and estimated scores (Fig. 7G). 
Furthermore, the two risk populations demonstrated markedly 
different immune types (P=0.033; Fig. 7H). CIBERSORT 
analysis revealed that in high‑risk cases, the proportion of 
activated dendritic cells, neutrophils and M2 macrophages 
was markedly higher when contrasted with the levels found 
in other immune cell populations. (Fig. 7I). Finally, the 
ssGSEA algorithm revealed a markedly high level of resting 
dendritic cells and neutrophils in the high‑risk population, in 
comparison with the low‑risk population (Fig. 7J).

Immune checkpoint genes and IMvigor210. To further assess 
the role of epithelial cells as genetic predictors of immuno‑
therapy efficacy, 210 patients in the IMvigor210 cohort were 
analyzed. Survival analysis revealed significantly lower 
survival rates after immunotherapy in high‑risk patients, 
compared with low‑risk patients (Fig. S6A). Subsequently, the 
IMvigor210 immunotherapy analysis demonstrated that both 
high‑ and low‑risk groups exhibited poor sensitivity to immu‑
notherapy (Fig. S6B and C); therefore, immune checkpoints 
were searched for again. Immune checkpoint genes, which are 
critical for bypassing autoreactivity, represent new targets for 
cancer therapy (18). Immune checkpoint proteins poliovirus 
replication cell adhesion molecule and tumor necrosis factor 

Figure 6. Molecular mechanisms of 4 model genes in tumor progression. AREG, amphiregulin; MUC1, mucin‑1; FABP6, fatty acid‑binding protein 6; TSLP, 
thymic stromal lymphopoietin; IKB, inhibitor of nuclear factor kappa B; IKK, inhibitor of kappa B kinase; TP53, tumor protein 53; P60, Protein 60; P50, 
Protein 50; mRNA, messenger RNA.

https://www.spandidos-publications.com/10.3892/ol.2025.14904
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Figure 7. Tumor mutation and immune‑related analyses. Mutation frequency of genes in the (A) low‑risk and (B) high‑risk groups. (C) Differential expression 
levels of TMB between the low‑risk and high‑risk groups. Kaplan‑Meier curves for the (D) low‑ and high‑TMB groups, and (E) patients stratified by EIGs 
and TMB. (F) Differential expression levels of TIDE between low‑risk and high‑risk groups. (G) Differences expression levels of stromal, immune and 
ESTIMATE scores between low‑risk and high‑risk groups. (H) Differences in immune typing between the high and low risk groups. (I) Analysis of differences 
in 22 tumor‑infiltrating immune cells between low‑risk and high‑risk groups. (J) Differential expression levels of the HLA between low‑risk and high‑risk 
groups. *P<0.05; **P<0.01; ***P<0.001. TMB, tumor mutation burden; H, high; L, low; TCGA, The Cancer Genome Atlas.
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receptor Superfamily Member 14 (TNFRSF14) exhibit signifi‑
cant differences across various risk groups, and their expression 
levels correlate with risk scores. (Fig. S6D‑G). Significant 
disparities were observed in the correlations between risk 
scores and a selection of immune checkpoint proteins , such as 
cytotoxic T‑lymphocyte‑associated protein 4, Inducible T Cell 
Costimulator (ICOS), and CD20, etc. (Fig. S7).

Drug sensitivity test. The present study also evaluated differ‑
ences in susceptibility between patients at low risk and those at 
high risk. Reduced susceptibility to anticancer drugs, including 
gefitinib, savolitinib, ipatasertib, erlotinib,  uprosertib, afure‑
sertib, alpelisib and nilotinib (Fig. 8A‑H), was demonstrated in 
patients at low risk of cancer. The pharmaceuticals exhibiting 
heightened sensitivity within the low‑risk cohort are listed in 
Table SVI. High‑risk patients, on the other hand, had lower 
susceptibility to anticancer agents such as dasatinib, fludara‑
bine, leflunomide, and selumetinib (Fig. 8I‑L). Table SVII lists 
the drugs that show greater sensitivity in the low‑risk group. 
These results indicate that EIGs may be good predictors of the 
efficacy of anticancer drugs (Table SVIII).

Validation of in vitro model genes. Images of immunohisto‑
chemical tissue sections of LUSC and normal tissues obtained 
from the HPA database demonstrated the differential expres‑
sion of the selected EIGs genes in both tissue types (Fig. S8A). 
Analyzed using immunohistochemistry techniques, these 
sections revealed marked expression differences between 

cancerous and normal tissues. Furthermore, the present study 
used RT‑qPCR to determine the levels of proteins in LUSC 
epithelial cells (AREG, FABP6, MUC1 and TSLP). The 
results revealed a significantly higher expression of AREG 
and MUC1 in normal tissues compared with that in tumor 
tissues, whereas there was a significantly higher expression 
of TSLP and FABP6 in tumor tissues compared with that in 
normal tissues (Fig. S8B). Overall, the RT‑qPCR results were 
consistent with the aforementioned bioinformatics results.

Discussion

LUSC is a prevalent cancer with a typically poor prognosis (1). 
Furthermore, traditional TNM staging is not a good predictor 
of patient prognosis and, in parallel, biomarkers are crucial 
for identifying biological agents (2). Overall, the present study 
demonstrated that the prognostic model based on the combi‑
nation of biomarkers and statistical data was superior to that 
based on TNM staging. Single‑cell analysis, a valuable tool 
for studying cell heterogeneity in complex systems, is used to 
analyze previously unknown genes in cell populations (6). The 
results indicate that the risk scores of four EIGs can act as 
independent prognostic indicators, with the high‑risk group 
demonstrating worse prognoses. Therefore, the nomogram 
in the present study has high predictive value. Moreover, the 
results of immunoinfiltration indicated that the infiltration of 
activated dendritic cells and neutrophils was greater than that 
of M0 macrophages. Enrichment analysis also indicated that 

Figure 8. Drug sensitivity experiments. (A) Afuresertib; (B) Alpelisib; (C) Savolitinib; (D) Uprosertib; (E) Erlotinib; (F) Gefitinib; (G) Ipatasertib; (H) Nilotinib; 
(I) Dasatinib; (J) Fludarabine; (K) Leflunomide; and (L) Selumetinib.

https://www.spandidos-publications.com/10.3892/ol.2025.14904
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the presentation of antigens and virus infection may be related 
to high‑risk subgroups. Therefore, the model could be used as 
a reference for the choice of antitumor agents in patients with 
LUSC.

The diversity and plasticity of the lung epithelium serve 
significant roles in the heterogeneity of lung cancer (2). 
Furthermore, a prognostic model based on the epithelium may 
be useful for predicting other types of cancer. Joanito et al (7) 
established a model for evaluating the prognosis of patients 
with colorectal cancer, whilst Chen et al (8) described the 
function of epithelial cells in tumor invasion and metastasis. 
The model in the present study has good forecasting value. 
Based on the prognostic model, individuals with high‑risk 
EIGs show decreased survival rates. This disparity is attrib‑
uted to the greater invasive and metastatic capabilities of the 
high‑risk subgroup, leading to a worse prognosis. A total of 
four prognostic markers EIGs, AREG, MUC1, FABP6 and 
TSLP were identified. It has been reported that AREG, an 
epidermal growth factor, contributes to the development of 
type 2 resistance and tolerability (24). T cells promote fibrotic 
and immunosuppressive functional states of cancer‑associated 
fibroblasts. AREG monoclonal antibody and IL‑33 synergisti‑
cally inhibit tumor growth (25). MUC1 becomes aberrantly 
glycosylated in cancers, facilitating the transition to malig‑
nancy, promoting tumor progression, and contributing to 
treatment resistance. MUC1 stabilizes the hypoxia‑inducing 
factor spermidine/spermidine N1‑acetyltransferase 1 (SAT1), 
leading to an increase in SAT1 expression, which induces 
carbon flux into the tricarboxylic acid cycle (26). As a 
result, MUC1 is an important mark in developing cancer 
vaccines (27). Inhibiting FABP6 could offer therapeutic 
benefits in treating LUSC, making it a promising target for 
therapy. At present, there are no published FABP6 inhibi‑
tors available, and the target is considered susceptible to 
fragmentation (28). Although TSLP has been extensively 
studied in the field of type 2 immunity, more recent research 
has identified an increasing role of TSLP in inflammation and 
cancer (29). TSLP induces several cytokines, including IL‑13, 
to affect cell proliferation by associating with several macro‑
phages (30). The results of these studies indicate that these 
genes may be potential targets for experiments to elucidate 
the underlying molecular mechanisms of LUSC. In addition, 
a number of studies have reported that AREG has an inhibi‑
tory effect in pancreatic cancer and glioma (25,31), TSLP and 
MUC1 serve an important role in the pathogenesis of breast 
cancer and pancreatic cancer (26,27), and FABP6 is closely 
related to digestive system tumors (28). This suggests that 
other patients with cancer could also benefit from using the 
model in the present study.

In the present study, the molecular mechanisms involved in 
disease development process were identified through an enrich‑
ment analysis. GSEA identified several antigen‑presenting 
pathways related to enrichment in high‑risk subgroups. 
Epithelial cell surface receptors may mediate tumor immune 
signaling, which results in antitumor immunity. Furthermore, 
KEGG analysis revealed an association between the incidence 
of LUSC and several viral infections, such as human T‑cell 
leukemia virus 1 and Epstein‑Barr virus (EBV), and that EBV 
infection is characteristic of lung lymphoepithelioma cancer. 
Small cell lung cancer is closely linked to human T‑cell 

leukemia virus 1 infection (32). Therefore, a patient with a high 
risk score has a poor prognosis, partly due to the presence of 
tumor antigens and viral infection, which are associated with 
the proliferation and progression of LUSC. In the present study, 
different methodologies were applied to compare immune cell 
abundance among the risk groups. The results indicated that 
in high‑risk tumors, immune cells, especially macrophages 
and DCs, were infiltrating, pointing to the essential function of 
immune cells in the development of LUSC.

Furthermore, the expression levels of HAVCR2, HLA‑A, 
CEACAM1, indoleamine 2,3‑dioxygenase 1, VTCN1 and 
TNFRSF14 were revealed to differ substantially between the 
two risk groups, suggesting their potential involvement in 
the pathogenesis of tumors. The weak association between 
immune checkpoint proteins exhibit a low correlation with risk 
scores might be attributed to limited sample size and patient 
numbers, potentially impairing the study's statistical power and 
hindering the identification of substantial correlations between 
these proteins and risk scores. Furthermore, it's possible that 
after adjustments for multiple testing, these correlations could 
cease to be statistically significant. Among them, the expres‑
sion of HLA and TNF‑α were most notable. In the same way 
that infliximab is used to treat breast cancer and trastuzumab 
is used to treat severe Crohn's disease (33,34), we hypothesize 
that the two monoclonal antibodies that act on HLA and TNF 
are potentially useful in treating LUSC. This may be a potential 
new discovery in the field of cancer treatment. To provide guid‑
ance for treating LUSC, 198 different risk groups were assessed 
and it was demonstrated that certain agents, such as erlotinib 
and gefitinib, have been used as first‑line treatments. Notably, 
most of the drugs affect EGFR, which is in line with the present 
research on the relevant pathways.

The present study has certain merits. Currently, to the best of 
our knowledge, there are no other studies that have reported the 
success of the EIGs model in predicting the outcome of LUSC. 
sc‑RNAseq was used to investigate gene expression diversity 
at the cellular level. This advanced method is complemented 
by the addition of bulk RNA sequencing, allowing us to blend 
data from epithelial cell marker genes with immune‑related 
gene sets. The present model combined epithelial cell biology 
and tumor immunity, which has demonstrated a robust predic‑
tive capability. To assess the precision of this risk model, a 
comparative analysis was performed with studies of a similar 
nature. Firstly, compared with the T‑cell‑related prognostic 
model for LUSC constructed by Shi et al (35), our study 
delves more deeply into the immune checkpoint responses 
and explores their potential application in guiding anticancer 
drug selection for LUSC patients. Second, compared with the 
fibroblast model used by Lai et al (36), the model in the present 
study was validated using RT‑qPCR. However, the research is 
based on one of several databases, and additional supporting 
data are needed. Therefore, additional clinical investigations 
are essential to validate the findings of these studies.

The present study has certain limitations, including 
generalizability across different datasets and potential batch 
processing effects on results. To mitigate these issues, data 
was used from a single source in one database for both experi‑
mental and control groups and randomization was applied. 
The single‑cell datasets were also sourced from the same insti‑
tution using consistent methods. Rather than combining two 
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datasets for single‑cell and large‑scale RNA sequencing, gene 
intersections were focused on. For external validation with 
GEO datasets, the ComBat function from the R package ‘sva’ 
was used, which removes batch effects by treating the batch 
variable as a separate argument. This produces calibrated 
measurements, allowing for standard analytical techniques or 
further adjustments to eliminate unwanted variation, thereby 
enhancing the reliability of the combined datasets.

In conclusion, the model based on EIGs and the nomogram 
demonstrated high effectiveness in predicting prognosis for 
patients with LUSC. The high risk group was associated with 
viral infections and antigen presentation. Furthermore, drug 
sensitivity analysis revealed that the high‑risk group exhibited 
heightened sensitivity to drugs, such as gefitinib and savoli‑
tinib. However, these conclusions need to be substantiated 
through further experimental and clinical studies.
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