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Alzheimer’s disease (AD) is a neurodegenerative disease representing the most common
type of dementia worldwide. The early diagnosis of AD is very difficult to achieve due to
its complexity and the practically unknown etiology. Therefore, this is one of the greatest
challenges in the field in order to develop an accurate therapy. Within the different
etiological hypotheses proposed for AD, we will focus on the two-hit vascular hypothesis
and vascular alterations occurring in the disease. According to this hypothesis, the
accumulation of β-amyloid protein in the brain starts as a consequence of damage in the
cerebral vasculature. Given that there are several vascular and angiogenic alterations in
AD, and that endothelial progenitor cells (EPCs) play a key role in endothelial repair
processes, the study of EPCs in AD may be relevant to the disease etiology and
perhaps a biomarker and/or therapeutic target. This review focuses on the involvement
of endothelial dysfunction in the onset and progression of AD with special emphasis on
EPCs as a biomarker and potential therapeutic target.

Keywords: Alzheimer’s disease, biomarkers, blood brain barrier dysfunction, endothelial progenitor cells,
endothelial repair, neurotoxicity, two-hit vascular hypothesis, vascular alteration

INTRODUCTION

Alzheimer’s disease (AD) is the main neurodegenerative disease leading to dementia and cognitive
impairment. According to World Alzheimer Report 2019: Attitudes to dementia there are 50 million
people with dementia (two-thirds with AD), with an expected increase of more than 152 million
patients by the year 2050 (International, 2019).

Alzheimer’s disease can be classified according to its onset. Early-onset AD, which is mostly
caused by autosomal dominant mutations; and late-onset AD, which accounts for most cases and
whose etiology remains unclear. The most studied mutations responsible for autosomal dominant
AD occur in the β-amyloid (Aβ) precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2)
genes. However, those mutations collectively represent less than 1% of total cases. Late-onset AD is
diagnosed from the age of 65 onward, and it has a multifactorial cause in which both environmental
and genetic risk factors are involved (Giri et al., 2017). Among, different vascular-associated genetic
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risk factors, those corresponding to ε4 allele of APOE (APOE
ε4), phatidylinositol binding clathrin assembly protein (PICALM),
clusterin (CLU) or sortilin related receptor-1 (SORL1) genes have
been identified in AD (Sweeney et al., 2019). From all of them,
APOEε4 is the most studied. Curiously, all affect Aβ clearance
across the blood-brain barrier (BBB) (Sweeney et al., 2019).

Due to the symptomatic complexity of the disease and its
similarity with other types of dementia, an accurate premortem
diagnosis of AD is particularly challenging. Regrettably, the
definitive diagnosis is made by postmortem brain tissue
histological tests. Currently, techniques such as magnetic
resonance imaging (MRI) (Wolz et al., 2011; Bron et al., 2017),
positron emission tomography (PET) (Salmon et al., 1994;
Ding et al., 2019), and detection of biomarkers released into
the cerebrospinal fluid (CSF) (Blennow et al., 2001; Khoonsari
et al., 2019), are only able to detect AD patients in late stages
of the disease. Furthermore, different techniques have been
recently developed to detect mild cognitive impairment (MCI)
biomarkers (a stage prior to AD), including the analysis of
hippocampal BBB leakage by dynamic contrast-enhanced MRI
Ktrans values (Montagne et al., 2015, 2020; Nation et al., 2019)
and the analysis of platelet-derived growth factor receptor-
β (sPDGFRβ) levels in CSF, a marker of pericyte damage
(Montagne et al., 2015; Nation et al., 2019). However, none of
these techniques became the gold standard in clinical practice for
the early diagnosis of AD.

Currently, there are different hypotheses about the AD onset:

(a) β-amyloid deposit and hyperphosphorylated tau protein
hypothesis: AD is originated from the presence of
extraneuronal amyloid plaques formed by amyloid fibers
composed of Aβ protein, and intraneuronal neurofibrillary
tangles (NFTs), that are mainly formed by paired helical
filaments (PHF) of the hyperphosphorylated tau protein
(Gallardo and Holtzman, 2019; Paroni et al., 2019; Arnsten
et al., 2021).

(b) Cholinergic hypothesis: the cause of AD is due to
alterations of the cholinergic system. In AD there
are modifications in cholinergic transport, acetylcholine
release, expression of cholinergic receptors, reduction of
acetylcholine transferase activity, and loss of cholinergic
neurons. These events are relevant for AD since the
cholinergic system is closely related to memory (Mufson
et al., 2008; Hampel et al., 2018).

(c) Two-hit vascular hypothesis: a damage in cerebral
vasculature (hit one) induces the accumulation of Aβ in the
brain (hit two) (Zlokovic, 2011). (See below section “Two-
hit vascular hypothesis” for more information.) Several
studies support the early appearance of vascular alterations
in AD (Sweeney et al., 2018; Apátiga-Pérez et al., 2021;
Hussain et al., 2021; Kurz et al., 2021). In this scenario,
endothelial progenitor cells (EPCs) appear as a possible
therapeutic target by considering their involvement in the
maintenance of vasculature.

For all the aforementioned, this mini-review is focused on
vascular and angiogenic alterations in AD, besides the potential

key role of EPCs on the AD’s etiology, and their potential as a
therapeutic biomarker.

EVIDENCE OF VASCULAR ALTERATIONS
IN ALZHEIMER’S DISEASE

The alteration and dysfunction of the cerebral vasculature
is an important component of AD pathophysiology (Figure
1A shows a healthy capillary and Figure 1B shows an
AD capillary). Hence, this process could contribute to the
appearance and progression of the disease as well as promote
neurodegeneration, inflammation, Aβ accumulation, and tau
phosphorylation (Sagare et al., 2012). Several findings acquired by
neuroimaging techniques, analysis of postmortem brain samples,
and CSF biomarkers detection support a vascular dysfunction in
AD (Montagne et al., 2017; Sweeney et al., 2018).

Neuroimaging studies using 18F-fluorodeoxyglucose (FDG)-
PET linked alterations in glucose transport to MCI and early AD.
This was determined through a reduction in glucose transporter-
1 (GLUT-1) in the BBB (Minoshima et al., 1997; Bailly et al.,
2015; Nelson et al., 2016). P-glycoprotein (P-gp) is a membrane
protein found in the endothelial cells of the BBB. Of interest,
its principal function is to eliminate xenobiotics from cerebral
parenchyma to the blood, although, it can also transport Aβ (Gil-
Martins et al., 2020). Importantly, 11C-verapamil-PET studies
described the dysfunction of P-gp in AD and MCI patients
(Van Assema et al., 2012; Deo et al., 2014). Additionally, MRI
approaches showed that early AD patients present BBB leakage
in the gray matter and cortex, which is associated with cognitive
impairment and a decreased cerebral blood flow in gray matter
(Van De Haar et al., 2016a,b). Interestingly, the hippocampal BBB
leakage occurs before suffering brain atrophy or dementia in MCI
patients and APOEε4 carriers, in addition, it is regardless of Aβ

and tau changes (Montagne et al., 2015, 2020; Nation et al., 2019).
MRI also revealed the presence of microbleeds in the central
nervous system in 45–78 and 25% of patients at the initial stages
of AD (before developing dementia) or with MCI, respectively
(Brundel et al., 2012; Uetani et al., 2013; Yates et al., 2014).
These results agree with the hypothesis of an early endothelial
dysfunction underlying the onset of AD.

Blood-brain barrier permeability was also determined in
postmortem tissue (Figure 1B), where the leakage of certain
substances (e.g., fibrinogen, fibrin, thrombin, plasmin, albumin,
or immunoglobulins) from capillaries and the subsequent
accumulation in the parenchyma was detected (Wisniewski and
Kozlowski, 1982; Grammas et al., 2006; Ryu and McLarnon,
2009; Sengillo et al., 2013). Additionally, the extravasation of
erythrocytes, peripheral macrophages, and neutrophils has been
observed (Fiala et al., 2002; Cullen et al., 2005; Zenaro et al.,
2015). Electron microscopy and immunostaining techniques
have determined the degeneration of pericytes, considered key
cells in the maintenance of the BBB (Baloyannis and Baloyannis,
2012; Sengillo et al., 2013). In this regard, an increase in sPDGFRβ

levels, a marker of pericyte damage, was found in the CSF of both
AD and MCI patients (Montagne et al., 2015; Miners et al., 2019;
Nation et al., 2019). Elevated levels of sPDGFRβ correlate with
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FIGURE 1 | (A) Healthy capillary; the BBB has tight junctions between endothelial cells, pericytes enveloping endothelial cells, astrocytes, and normal blood flow.
(B) AD capillary; Main vascular alterations occurring in AD: (1) the rupture and dysfunction of the BBB increase the permeability of different cells and molecules; (2) the
accumulation of erythrocytes in the parenchyma generates neurotoxic products (Fe2+) that damage brain cells through the production of ROS; (3) the extravasation
and consequent accumulation of neurotoxic molecules induces neurodegeneration and vascular damage; (4) oligemia induces a reduction in nutrient and oxygen
supply, (5) generating hypoxic zones increases Aβ production and tau phosphorylation; (6) Aβ flow through the BBB is impaired due to a lower expression of LRP-1
and a higher expression of RAGE, leading to Aβ accumulation in the brain parenchyma; (7) blood vessels release a large amount of proinflammatory mediators (NO,
TNFα, and IL-6) that together with (8) the extravasation of immune system cells generate inflammation. All together finally generate neuronal damage. ROS, reactive
oxygen species; Ig, immunoglobulins; BBB, blood-brain barrier; Aβ, amyloid β protein; LRP-1, low-density lipoprotein receptor-related protein 1, RAGE, receptor for
advanced glycation end products; NO, nitric oxide; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin-6, HIF-1α, hypoxia-induced factor 1α; MAPK,
mitogen-activated protein kinase. (C) Role of EPCs in vascular maintenance/repair e-EPCs participate in vasculogenesis and/or angiogenesis in a paracrine manner
through the release of proangiogenic factors. L-EPCs participate by directly differentiating into mature endothelial cells. Created with BioRender.com.
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the CSF/plasma albumin ratio and the levels of fibrinogen in CSF,
both are markers of BBB leakage (Miners et al., 2019; Nation et al.,
2019). In this sense, the existence of endothelial degeneration in
AD patients and reduction in the length of the capillaries has been
confirmed, as well as the reduced expression of tight junction
proteins in capillaries (Baloyannis and Baloyannis, 2012; Halliday
et al., 2016). Remarkably, several molecular changes have been
also observed in the cerebral endothelium of AD patients, such
as low expression of low-density lipoprotein receptor-related
protein 1 (LRP-1) and GLUT-1 (Mooradian et al., 1997; Donahue
et al., 2006), which validate previous neuroimaging studies.
Curiously, LRP-1 removes Aβ from the brain in conjunction with
P-gp (Storck et al., 2018). Moreover, other molecular changes
including increased levels of the receptor for advanced glycation
end products (RAGE) have been reported (Donahue et al., 2006).
Interestingly, RAGE induces the uptake of circulatory Aβ to
the cerebral parenchyma (Donahue et al., 2006). Cyclophilin
A (CypA) and matrix metalloproteinase-9 (MMP-9) are also
overexpressed, leading to the degradation of the BBB tight
junctions (Halliday et al., 2016). APOEε4 increases the damage of
the BBB by the activation of the cyclophilin-A-MMP-9 pathway
(Bell et al., 2012; Halliday et al., 2013). Accordingly, APOEε4
carriers have elevated levels of CypA, MMP9, and sPDGFRβ

in the CSF (Montagne et al., 2020). In microvessels isolated
from AD brains higher levels of inflammatory mediators were
determined, such as nitric oxide (NO), tumor necrosis factor-
alpha (TNF-α), and interleukin-6, and 8 (IL-6 and IL-8), MMPs,
prostaglandins, and leukocyte adhesion molecules, compared
with healthy controls (Dorheim et al., 1994; Grammas and Ovase,
2001; Thirumangalakudi et al., 2006). Interestingly, some of these
molecules are implicated in angiogenesis (Grammas and Ovase,
2001; Grammas et al., 2006).

Alterations in angiogenesis also occur in AD (Steinman
et al., 2021). Vascular dysregulation leads to a lack of oxygen
in the brain (hypoxia), which eventually induces an up-
regulation of pro-angiogenic proteins in brain vessels, such
as vascular endothelial growth factor (VEGF), thrombin, or
hypoxia-induced factor 1α (HIF-1α), among others (Grammas
et al., 2006; Thirumangalakudi et al., 2006). Despite the
increase in pro-angiogenic factors, there is no evidence of
increased vascularization. Indeed, it has been shown that vascular
density decreases (Baloyannis and Baloyannis, 2012). Although
the causes underlying abnormal angiogenesis are not clear,
in vitro and in vivo studies revealed that the Aβ peptide has
anti-angiogenic effects (Paris et al., 2004). Accordingly, brain
endothelial cells from AD patients have low levels of vascular-
restricted mesenchyme homeobox 2 gene (MEOX-2). MEOX-2
acts as a regulator for the proliferation of vascular cells. Low levels
of the mentioned gene in AD generate aberrant angiogenesis
that results in a decrease in cerebral microcirculation. In animal
models, MEOX-2 deletion reduces LRP-1 levels, leading to
decreased Aβ efflux from the brain parenchyma to the blood,
among other vascular alterations (Wu et al., 2005). Importantly, a
hypoxic environment suppresses the expression of MEOX-2 (Xia
S. et al., 2012).

In summary, there is a large amount of evidence,
from multiple approaches, that support the existence of a

neurovascular component in the onset of AD. Remarkably, this
vascular dysfunction starts before developing atrophy and/or
dementia and continuous in later stages. Based on this evidence,
the two-hit vascular hypothesis was proposed (Zlokovic, 2011).

TWO-HIT VASCULAR HYPOTHESIS

Zlokovic (2005) suggested that neurovascular dysfunction
contributes to the cognitive decline and neurodegeneration
associated to AD. Later, his group proposed the two-hit
vascular hypothesis, where damage in cerebral vasculature (hit
one) induces the accumulation of Aβ in the brain (hit two)
(Zlokovic, 2011).

The damage in the cerebral vasculature (hit one) can be caused
by either several vascular risk factors (such as hypertension,
diabetes, hypercholesterolemia, or smoking, among others), or
by genetic risk factors like APOEε4. The cerebral vasculature
undergoes several outcomes during the injury (Figure 1B).
Accordingly, the cerebral blood flow is reduced (oligemia),
leading to hypoxia in some areas, and the subsequent release
of reactive oxygen species (ROS) that promote cellular damage
by oxidative stress (Carvalho et al., 2009), as well as inducing
the expression of HIF-1α. In addition, HIF-1α. increases the
expression and activity of β-secretase and the activity of
γ-secretase. Therefore, this raises the amyloidogenic pathway and
ultimately Aβ production (Zhang et al., 2007; Li et al., 2009).
There is also a dysfunction in the BBB, leading to an increase
in the permeability of toxic molecules and their accumulation
in the brain parenchyma (mentioned in the previous section).
Some of these molecules cause neurodegeneration and further
increase the damage to the cerebral vasculature (Chen and
Strickland, 1997; Mhatre et al., 2004; Paul et al., 2007;
Chen et al., 2010). Moreover, the presence of erythrocytes in
the parenchyma generates neurotoxic products, such as iron,
leading to an increase of ROS and therefore, brain damage
(Regan and Guo, 1998).

Finally, the cerebrovascular dysfunction triggers
inflammation, defective Aβ clearance in the brain, and increased
influx of peripheral Aβ through BBB (Figure 1B). Likewise,
tau hyperphosphorylation is also promoted by these harmful
processes leading to the formation of NFTs (Busciglio et al., 1995;
Gordon-Krajcer et al., 2007; Fang et al., 2010; Koike et al., 2010;
Lee D. et al., 2010). All these events result in the accumulation
of Aβ and tau in the brain tissue and Aβ around cerebral blood
vessels (hit two) (Sagare et al., 2012; Nelson et al., 2016; Sweeney
et al., 2018). In fact, it has recently been described that insoluble
vascular amyloid deposits could induce BBB disruption (Soto-
Rojas et al., 2021). In summary, the two-hit vascular hypothesis
suggests that the accumulation and hyperphosphorylation of tau
are secondary to a vascular lesion and/or a lesion generated by Aβ

(Grammas, 2011; Zlokovic, 2011). Moreover, there is a feedback
between the cerebrovascular dysfunction and inflammation,
since each one can induce the other (Clapp et al., 2004; Theofilis
et al., 2021). Indeed, one of the risk factors for AD is chronic
inflammation (Tao et al., 2018).
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Overall, these events promote synaptic dysfunction, neuronal
damage, neurodegenerative change, and finally neuronal death,
thus generating dementia (Chen and Strickland, 1997; Regan and
Guo, 1998; Grammas et al., 2000; Mhatre et al., 2004; Carvalho
et al., 2009; Chen et al., 2010; Feuillette et al., 2010; Tian et al.,
2013; Pereira et al., 2021).

ENDOTHELIAL PROGENITOR CELLS
AND THEIR POTENTIAL ROLE IN
ALZHEIMER’S DISEASE

Since angiogenesis and the integrity of the BBB are both crucial
for the development of AD, and EPCs are essentials in endothelial
repair processes, it is tempting to propose that EPCs may have a
key role in this disease. In recent years, our group has described
that EPCs are involved in other neurovascular diseases such
as stroke and migraine (Sobrino et al., 2007, 2011, 2012a,b;
Rodríguez-Osorio et al., 2012; Rodríguez et al., 2016; Pías-
Peleteiro et al., 2017).

Endothelial progenitor cells constitute a subtype of cells
present in the blood that derive mostly from the bone marrow.
These cells exhibit characteristics of both endothelial and
stem cells since they can differentiate into mature endothelial
cells and self-renew, respectively (Hristov et al., 2003; Yoder,
2012). Three surface markers are characteristics of EPCs: CD34,
VEGF receptor 2 (VEGFR-2), and CD133. CD34 is a marker
expressed by hematopoietic stem cells and certain types of
mature endothelial cells. VEGFR-2 is a specific receptor of
VEGF and is expressed in endothelial cells and uncommitted
stem cells. CD133 is an early marker of hematopoietic stem
cells (Hristov et al., 2003). EPCs participate in the maintenance
of the endothelium by acting as a cellular reservoir for the
replacement of dysfunctional endothelial cells or by releasing
angiogenic growth factors (Figure 1C; Hristov et al., 2003;
Lee et al., 2009; Malinovskaya et al., 2016). There are two
different types of EPCs: (a) early-outgrowth EPCs (e-EPCs),
circulatory angiogenic cells, or colony-forming unit endothelial
cells (CFU-EC) which participate in both the process of network
formation and the repair of injured endothelial cells in a
paracrine way by secreting different angiogenic factors; and (b)
late-outgrowth EPCs (l-EPCs), endothelial outgrowth cells, or
endothelial colony-forming cells, which improve angiogenesis by
differentiating into mature endothelial cells (Hur et al., 2004;
Bauman et al., 2018). In addition to their functionality, both types
of EPCs can be recognized by characterization in vitro. Whereas
e-EPCs appear after a few days in culture and form colonies with
spindle-shaped cells around them, l-EPCs appear after 2–3 weeks
in culture and present a cobblestone shape (Hur et al., 2004).

The number of EPCs has been proposed as a possible surrogate
marker of vascular function, and low EPCs counts are associated
with higher cardiovascular risk (Hill et al., 2009; Bitterli et al.,
2016; Hayek et al., 2016). These cells have also been implicated in
the maintenance of cerebral endothelial vasoreactivity in healthy
subjects (Chung et al., 2015). EPCs may have an important
role in different nervous system diseases. For example, EPCs
attach to the endothelium and promote the formation of new

vessels after an ischemia and/or hypoxia event. Consequently,
EPCs induce and modulate vasculogenesis and angiogenesis in
those hypoxic areas, as well as stimulate re-endothelialization
of injured vessels (Yoder, 2012). Indeed, high EPCs levels
have been associated with a good functional and neurological
prognosis, besides a reduction of the infarct growth in patients
with ischemic stroke (Sobrino et al., 2007). In addition, the
EPCs percentage in blood was associated with serum levels
of VEGF, stromal cell-derived factor-1α and, active MMP-9
(Sobrino et al., 2012b). Interestingly, patients treated with statins
had larger EPCs levels and, therefore, a better outcome (Sobrino
et al., 2012a). This relationship has also been established in
intracerebral hemorrhage (ICH) patients (Sobrino et al., 2011;
Pías-Peleteiro et al., 2017). Notably, ICH patients who presented
the Pro72 single-nucleotide polymorphism in the tumoral protein
53 (Tp53) gene had higher levels of circulating EPCs, EPCs-
mobilizing cytokines, and, eventually, better functional outcome
(Rodríguez et al., 2016). These factors were related to greater
neovascularization. Likewise, a reduced number of EPCs has
been shown in patients with migraines, especially during attacks
(Rodríguez-Osorio et al., 2012). Recently, a relationship has been
observed between the elevated levels of EPCs and cerebral small
vessel disease burden, which is a risk factor for the development
of AD (Kapoor et al., 2021). Curiously, sickle cell anemia
(SCA) patients, a monogenic disease that affect erythrocyte
membranes, present a high risk to develop a small vessels disease
such as ischemic, hemorrhagic, and silent strokes (Ito et al.,
2020). Newly, genetic alterations in l-EPCs of genes involved
in angiogenesis, coagulation, inflammation, apoptosis, and cell
adhesion have been observed in SCA patients that suffered a
stroke (Ito et al., 2020). Therefore, EPCs seem to be involved in
cerebrovascular diseases.

Several studies have analyzed the number of circulating EPCs
in AD patients and their ability to form CFU-EC colonies
(Table 1). However, there are discrepancies in these results.
Lee and co-workers determined that AD patients did not
present significant differences in the number of circulating EPCs
compared with subjects without AD who present cardiovascular
risk factors. Despite that, AD patients had a significant reduction
in CFU-EC colony formation, and this decrease was correlated
with a greater cognitive impairment (Lee et al., 2009). In
accordance with some of these findings, other works concluded
that there are no significant differences in the number of
circulating EPCs in AD patients and controls (Breining et al.,
2016; Haiyuan et al., 2020). However, EPCs from moderate and
severe AD showed functional alterations in culture, such as
reduced adhesion and migration capacity, compared to mild AD
and controls (Haiyuan et al., 2020). Conversely, a clinical study
indicated that AD patients had a reduced number of circulating
EPCs compared with control subjects and that a lower number of
EPCs correlates with greater cognitive impairment (Kong et al.,
2011). The discrepancies in these studies may be due to the age of
the subjects since the number of circulating EPCs decrease with
age (Jie et al., 2009; Xia W. H. et al., 2012). In this regard, Breining
et al. (2016) and Haiyuan et al. (2020) analyzed data from older
subjects than Lee et al. (2009) and Kong et al. (2011). As a result,
the physiological decrease in the number of EPCs with aging
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may mask the results. Furthermore, the difference in the results
could also be due to the different inclusion and exclusion criteria
used in the studies besides the likely existence of underlying
diseases. Moreover, none of the studies differentiated between
APOEε4 carriers, and both APOEε4 carriers and low levels of
EPCs are considered cardiovascular risk factors (Hill et al., 2009;
Mahley, 2016). Although the number of circulating EPCs is
controversial, several studies reported functional alterations in
EPCs (Lee et al., 2009; Haiyuan et al., 2020). In concordance
with these results, another study in AD patients observed that
e-EPCs presented reduced chemotaxis, and paracrine angiogenic
properties, increased senescence; and altered gene expression
(most of them related to physiological cellular processes) (Lee
S. T. et al., 2010). Other factors involved in the pathogenesis
of AD such as Aβ1−42 accumulation may also influence the
functionality of e-EPCs. High concentrations of Aβ1−42 induce
apoptosis, with AD-derived e-EPCs being more susceptible (Lee
S. T. et al., 2010). Moreover, aging leads to functional alterations
in e-EPCs that correlate with endothelial dysfunction (Heiss
et al., 2005). Therefore, although the results are compromised,
all the aforementioned studies analyzing EPCs in culture observe
functional alterations of these cells in AD regardless of their
circulating number.

Circulating progenitor cells (CPCs) are cells involved in tissue
maintenance and repair (Sidney et al., 2014). Different authors
have described CD34 as a marker for this cell lineage (Sidney
et al., 2014). Within CPCs, different subpopulations of cells can
be determined not only by the different markers expressed on
their plasma membrane but also by the ability to differentiate
into one or more mature cell types. EPCs represent one of these
subpopulations (Sidney et al., 2014). Therefore, we have included
different studies relating CPCs and AD in this mini-review, which
shows some discrepancies in the results (Table 1). For example,
there is a significant increase in circulating CD34+/CD133+ and
CD34+ progenitor cells in moderate-severe AD compared to
healthy subjects (Stellos et al., 2010) and CD34+ cells in early
AD (Bigalke et al., 2011). In contrast, another study reported
a reduction in the levels of CD34+ cells in early AD, and the
number of these cells was inversely correlated with Aβ1−42 levels
and Aβ42/40 ratio in CSF (Maler et al., 2006). Moreover, the
number of CD34+ and CD34+/CD133+ cells in AD patients
was inversely correlated with cognitive function and age (Stellos
et al., 2010). Contrary, another study found that in patients with
coronary artery disease, lower numbers of CPCs are associated
with cognitive impairment (Moazzami et al., 2020). Regarding
cognitive impairment, patients with MCI present reduced levels
of circulating EPCs as well as CD34+/CD133+ and CD34+
progenitor cells (Nation et al., 2018). Concerning CD34+ cells,
a lower number of these cells was associated with worse memory,
lower posterior cingulate gyrus cortical thickness, and bilateral
hippocampal hyperperfusion (Nation et al., 2018). However,
the reduced number of studies and their controversial results
highlight the need of further studies in order to reach more
conclusive results about EPCs and CPCs in the onset and
progression of AD.

Additionally to the analysis of the number of EPCs in
AD, the therapeutic potential of these cells has also been

suggested in different animal models (Table 1). For instance,
e-EPCs were injected intravenously into repeated scopolamine
(SCO)-induced cognitive impairment rats, an experimental
model that replicates biomarkers of AD (Safar et al., 2016). As
a result, there was an improvement in learning and memory;
besides attenuation of Aβ plaque deposition, suppression of Aβ

and p-tau levels, and reversal of neurotransmitter aberrations.
L-EPCs were also injected intravenously in APP/PS1 transgenic
mice, exhibiting an enhanced penetration of exogenous EPCs
into the brain compared to controls (Yuan et al., 2016).
Subsequently, using the same transgenic mice model, l-EPCs
were injected directly into the hippocampus (Zhang et al.,
2018). The transplantation of EPCs up-regulated tight junction
proteins (such as zonula occludens-1, occludin and, claudin-
5) in the BBB, increasing microvessels density and promoting
angiogenesis in the hippocampus and cortex. The EPCs also
exerted an anti-apoptotic effect promoting neuronal survival
in the hippocampus. In addition, a reduction in the area and
intensity of Aβ plaques in the hippocampus and cerebral cortex
was observed. Moreover, learning and memory were significantly
improved in AD mice (APP/PS1) after EPCs transplantation (for
more details see Table 1). Therefore, the use of transfected EPCs
has been proposed as a possible treatment pathway in AD by
taking advantage of their ability to home to the damaged BBB.
Recently, transfected EPCs that release antibodies against Aβ

and reduce its aggregation have been generated (Heller et al.,
2020). However, this novel therapeutic approach has not yet been
tested in vivo. Although, in other neurological pathologies, such
as traumatic brain injury, the intraventricular administration of
l-EPCs resulted in greater integrity of the BBB and increased
angiogenesis in a mouse model (Huang et al., 2013). In ischemic
stroke, intra-arterial administration of l-EPCs resulted in reduced
infarct volume, as well as increased angiogenesis and vascular
density (Lin et al., 2020). Therefore, EPCs are postulated as a good
therapeutic option for pathologies that present BBB alterations.

DISCUSSION

Although AD is the main type of dementia worldwide, its etiology
remains unclear. The Zlokovic two-hit vascular hypothesis
proposes that AD starts from initial damage in the cerebral
vasculature. Different studies in AD have demonstrated that
there is a dysfunction of the BBB leading to hypoperfusion and
hypoxia, accumulation of Aβ and hyperphosphorylation of tau,
accumulation of neurotoxic molecules, and inflammation, among
others in cerebral parenchyma. Altogether, these mechanisms
cause neurodegeneration, neuronal dysfunction, an increase of
pro-angiogenic molecules, and aberrant angiogenesis.

The basis of the decreased angiogenesis seen in AD remains
unclear, although it has been proposed that it is due to either
the accumulation of Aβ or the low expression of MEOX-2.
However, the main cells responsible for carrying out angiogenesis
in hypoxic sites are EPCs. Therefore, these cells could be involved
in aberrant angiogenesis.

In the last years, clinical studies have analyzed the relationship
between the number of EPCs and AD patients. The obtained

Frontiers in Aging Neuroscience | www.frontiersin.org 6 January 2022 | Volume 13 | Article 811210

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-811210 January 20, 2022 Time: 15:15 # 7

Custodia et al. Vascular Dysfunction in Alzheimer’s Disease

TABLE 1 | Summary of relevant preclinical and clinical studies on association between EPCs and AD.

Endothelial Progenitor Cells And Alzheimer’s Disease

Preclinical studies

References Study Animal model Results

Safar et al.,
2016

Injection of e-EPCs in the tail vein of
SCO-induced AD-like pathological rat
model.

Induced model EPCs (approximately 1 × 106 cells) administration induced: improvement in
learning and memory measured by Morris water Maze test; attenuation of
amyloid plaque deposition detected by histology; suppression of Aβ and p-tau
levels determined by ELISA; and reversal of neurotransmitter aberrations
analyzed by ELISA.

Yuan et al.,
2016

Injection of l-EPCs in the tail vein of
APP/PS1 transgenic mice.

Transgenic model Enhanced penetration of exogenous EPCs into the brain of APP/PS1
transgenic mouse model of AD in comparison with controls.

Zhang et al.,
2018

Injection of l-EPCs in the hippocampus
of APP/PS1 transgenic mice.

Transgenic model EPCs (approximately 4 × 105 cells) administration into the hippocampus
induced: up-regulation of tight junction proteins (ZO-1, CLN-5, and occludin)
measured by immunofluorescence and western blot; increment of microvessel
density showed by immunofluorescence of CD31; angiogenesis in the
hippocampus and cortex described by immunofluorescence of CD31;
anti-apoptotic effect measured by western blot; reduction of area and intensity
of Aβ plaques in the hippocampus analyzed by immunohistochemistry; and
improvement in memory and learning measured by Morris water maze.

Clinical studies

References Study Sample Results

Maler et al.,
2006

Relation between the number of
CD34+ cells, CSF AB levels, and early
AD

Venous blood
and CSF

Significantly decreased CD34+ cells in early AD, levels of these cells were
inversely correlated with significantly inverse correlation between the number of
CD34+ cells, Aβ1−42 levels, and Aβ42/40 ratio in CSF.

Lee et al.,
2009

Relation between the number of EPCs
and their ability to form colonies and
AD.

Venous blood No significant differences in the number of circulating EPCs between patients
and control groups. Significantly reduction in CFU-EC colony formation in AD
patients. Correlation between lower number of colonies and greater cognitive
impairment.

Lee S. T.
et al., 2010

Relation between e-EPCs functional
characteristics and AD.

Venous blood Significant reduction in chemotaxis and paracrine angiogenesis properties,
increase in senescence and altered genes expression in AD e-EPCs.
Induction of apoptosis and functional alterations in e-EPCs by high
concentrations of Aβ1−42. Greater susceptibility in e-EPCs in AD than in
controls with cardiovascular risk factors.

Stellos et al.,
2010

Relation between the concentrations of
circulating CD34+/CD133+ and
CD34+ progenitor cells and AD.

Venous blood Significantly increase in circulating CD34+/CD133+ and CD34+ progenitor cells
in moderate-severe AD compared to controls. Significantly inverse correlation
between the number of circulating CD34+/CD133+ and CD34+ progenitor
cells, cognitive function, and age in AD patients.

Bigalke et al.,
2011

Relation between adipocytokines and
CD34+ progenitor cells in AD.

Venous blood Statistically significant increase in circulating CD34+ progenitor cells and
decrease in leptin plasma levels in early AD.
Significantly inverse correlation between the number of circulating CD34+

progenitor cells and leptin plasma levels.

Kong et al.,
2011

Relation between the number of EPCs
and AD.

Venous blood Decreased number of circulating EPCs in AD patients, statistically significant.
Correlation between lower number of circulating EPCs and lower Mini-Mental
State Examination score.

Breining
et al., 2016

Relation between the number of EPCs
and AD.

Venous blood No significant differences in the number of circulating EPCs between AD
patients and control groups.

Nation et al.,
2018

Relation between number of circulating
EPCs, CD133+/CD34+ and CD34+

cells and MCI, memory, posterior
cortical thickness, and hippocampal
perfusion.

Venous blood Significantly decreased number of circulating EPCs, CD133+/CD34+ and
CD34+ cells in MCI.
Significant association between low levels of CD34+ cells, worse memory,
lower posterior cingulate gyrus cortical thickness, and bilateral hippocampal
hyperperfusion

Haiyuan
et al., 2020

Relation between the number of EPCs,
their adhesion and migration capacity,
and AD.

Venous blood No significant differences in the number of circulating EPCs between patients
and control groups.
Significant reduction in migration and adhesion properties in moderate and
severe AD compared to mild AD and controls.

data were contradictory since some studies did not observe
significant differences in the number of EPCs, while others
did. As discussed above, age and inclusion criteria may lead to
observed differences. Interestingly, studies using animal models

of AD showed that exogenous administration of EPCs improved
learning, memory, and angiogenesis, attenuated Aβ deposition,
reduced p-tau levels, and up-regulated the number of tight
junctions, among others.
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Taking all these data into account, we can conclude that there
are several vascular and angiogenic alterations in AD and that
EPCs may play a key role in endothelial and BBB dysfunction
associated with AD. Moreover, in vivo studies using EPCs as a
therapeutic approach open a possible new path for the treatment
of AD. However, further studies are necessary to confirm the
potential key role of EPCs as an early diagnostic and therapeutic
biomarker in AD, and to elucidate the underlying mechanisms
associated with the EPC’s therapeutic properties.
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