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Introduction: The anterior cruciate ligament (ACL) consists of various components, such as collagen,
elastin fibres, and fibroblasts. Because ACL has a poor regenerative ability, ACL reconstruction need
require the use of autologous tendons. In recent years, tissue-resident stem cells have been studied to
promote ACL regeneration as an alternatively method. However, the existence of stem cells in ligaments
has not been clearly defined. Here, we prospectively isolated stem cells from ACLs and characterized their
properties.
Methods: ACLs from 11 donors and bone marrows (BM) from 8 donors were obtained with total knee
arthroplasty. We used flow cytometry to screen the cell surface markers on ACL cells. Frozen sections
were prepared from patient ACL tissues and stained with specific antibodies. Cultured ACL-derived and
BM-derived cells at passage 3 were differentiated into adipocytes, osteoblasts and tendon/ligament cells.
Results: ACL-derived mesenchymal stem/stromal cells (ACL-MSCs) expressed high levels of CD73 and
CD90. Immunohistochemical analyses revealed that ACL-MSCs were located on the inner surface of ACL
sinusoids. Furthermore, the expression of cell surface antigens was clearly different between ACL-MSCs
and bone marrow (BM)-derived MSCs (BM-MSCs) at the time of isolation, but the two cell populations
became indistinguishable after long-term culture. Interestingly, ACL-MSCs are markedly different from
BM-MSCs in their differentiation ability and have a high propensity to differentiate into ligament-
committed cells.
Conclusions: Our findings suggest that ACL-MSCs express CD90 and CD73 markers, and their differen-
tiation capacity is maintained even through culture. The cell population having tissue-specific properties
is an important research target for investigating the ligament therapies.
© 2018, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The anterior cruciate ligament (ACL), connecting the femur and
tibia, is a key structure of the knee joint [1]. Injury to the ACL is a
major clinical problem for athletes due to the limited self-repair
capacity of the ACL. Although several treatment options are
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available for repairing the damaged ACL, including autografts, al-
lografts, xenografts, and some prosthetic devices, the outcomes are
variable [2e5]. In addition, the malfunction of a reconstructed ACL
is a risk factor for meniscus injury and the subsequent development
of knee joint osteoarthritis [6]. Currently, ACL reconstruction using
autologous tendons is the predominant method for ACL repair, with
a fairly good recovery score [7]. Nevertheless, to avoid invasive
procedures, cell-based therapies are being investigated [8]. Stem
cells are an attractive cell source because of their high proliferation,
self-renewal and multipotency, and they can be used as a thera-
peutic tool to repair the damaged ACL. Mesenchymal stem/stromal
cells (MSCs) are widely used as a source of cells for regenerative
applications, but the outcomes can be variable [9,10]. One study in a
rabbit model has been reported that the ACL could be regenerated
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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after the transplantation of MSCs with a type I collagen scaffold [9].
However, there is also a report of the lack of significant difference in
ACL regeneration between groups with or without transplantation
of MSCs in a pig model [10]. Several reports indicate the presence of
MSC-like cells in human ACL tissues [11,12], but the specific
markers and characteristics of these cells are still unknown. In this
study, we investigated the existence of ACL-specific MSCs that
could be used for the regeneration of an injured ACL.

The expression of cell surface antigens on MSCs changes during
long-term culture; therefore, it is difficult to identify specific
markers to isolateMSCs. To overcome this problem, research groups
including ours had developed a method to prospectively isolate
bonemarrow-derived MSCs (BM-MSCs). In our previous report, the
LNGFRþ/THY-1þ (known as CD271 and CD90) population was
enriched for BM-MSCs, which exhibited multilineage differentia-
tion and self-renewal potential [13]. Somatic tissues, including ad-
ipose tissue [14], placenta [15], knee synovial membrane [16] and
dental pulp [17], also contain MSC-like cells. Based on this knowl-
edge, we sought to identify ACL stem cell-specific markers by
screening for cell surface antigens and examine their differentiation
into multiple lineages using a highly purified population.

In this study, we identified MSC-like cells in ACL tissues that
express CD73 and CD90. This unique population of CD73þ/CD90þ

ACL-MSCs rapidly proliferated in vitro and had the potential to
differentiate into mesenchymal lineages. Before being cultured, the
ACL- and BM-MSCswere very different from each other with regard
to their expression of cell surface antigen, however, the two pop-
ulations became indistinguishable after being cultured in vitro.
Bone morphogenic protein (BMP) signalling was significantly pro-
moting their differentiation into the ligament lineage in ACL-MSCs.
These results provide insights into endogenous ligament-derived
MSCs and indicate a novel tissue regeneration strategy targeting
endogenous tissue stem cells.

2. Methods

2.1. Ethics statement and tissue preparation

ACL and bone fragments were obtained from donors undergoing
total knee arthroplasty at Tokyo Medical and Dental University
Hospital. Samples from patients with rheumatoid arthritis were not
used for this study. In total, 14 samples were used for the experi-
ments (male ¼ 5, median age of 73 years, Supplemental Table S1).
All experimental protocols were approved by the local Institutional
Review Board of Tokyo Medical and Dental University (No. 1030),
and oral and written informed consent was obtained from patients
before experiments. All methods were conducted in strict accor-
dance with the approved guidelines of the institutional committee.
ACL and bone fragments were digested with 2 mg/mL collagenase
(Wako) and 25 mg/mL DNase I (SigmaeAldrich) with shaking at
37 �C for 1 h in Dulbecco's Modified Eagle's Medium (DMEM, Life
Technologies). To remove debris, the cell suspensions (from ACL
and bone fragments) were filtered through a cell strainer (BD Fal-
con, 70 mm). Following red blood cell lysis, the samples were used
for flow cytometric analysis, cell sorting, and cell culture
experiments.

2.2. Flow cytometry and cell sorting

Digested primary cells (1e5 � 107 cells/mL) or cultured cells
(1e5 � 105 cells/mL) were suspended in Hank's balanced salt so-
lution (HBSS, Wako) and stained for 30 min on ice with
fluorescence-conjugated monoclonal antibodies (described in
Supplementary Table S2) for sorting or analysis. Flow cytometric
analysis and cell sorting were performed on the FACS Verse and
FACS Aria II systems (BD), respectively, and the data were analysed
using FlowJo software (Tree Star).

2.3. Colony-forming unit (CFU) assay

The CFU-F assay was performed by culturing 500 cells in a 35-
mm dish for 21 days in culture medium (DMEM supplemented
with 20% foetal bovine serum (Gibco), 1% penicillin/streptomycin
(Gibco), and 5 ng/mL bFGF (Repro Cell)), and the medium was
changed every 3e4 days. Clusters with more than 50 cells were
counted as a colony.

2.4. Mesenchymal lineage differentiation assay

Cultured ACL- and BM-MSCs at passage 3 were harvested using
trypsineEDTA (Gibco), transferred to a 24-well plate and grown
overnight in culture medium. The cell numbers used were as fol-
lows: 2.0 � 104 cells (for adipogenesis) and 1.5 � 104 cells (for
osteogenesis). For adipogenic differentiation, adherent cells were
cultured in adipogenic induction and maintenance medium
(Lonza), whichwas changed every 3e4 days. After 14 days, Oil red O
staining (Muto Pure Chemicals) was used to confirm the differen-
tiation of the cells into adipocytes. For osteogenic differentiation,
adherent cells were cultured in osteogenic induction medium
(Lonza), which was changed every 3e4 days. After 14 days, the
differentiation of the cells into osteoblasts was assessed by Alizarin
Red staining (Millipore). For chondrogenic differentiation,
2.0 � 105 cells were transferred to a 1.5 mL tube and cultured in
chondrogenic induction medium (Lonza) containing 10 ng/mL TGF-
b3 (Lonza) and 500 ng/mL BMP-6 (R&D Systems), which was
changed every 3e4 days.

2.5. Immunohistochemistry

Frozen ACL sections were prepared and immunostained ac-
cording to the Kawamoto method [18]. ACL sections (12 mm) were
fixed using dry ice/ethanol. The markers and antibodies used were
as follows: Hoechst 33258 (Dojin), FITC-conjugated mouse anti-
human CD90 antibody, PE-conjugated mouse anti-human CD73
antibody, APC-conjugated anti-CD31 antibody (BD Pharmingen),
rabbit anti-human Mkx antibody (LSBio), mouse anti-human
COL1A1 antibody (Millipore), Alexa 647-conjugated goat anti-
rabbit, and goat anti-mouse antibodies (Life Technologies).

2.6. Ligament lineage differentiation assay

The ligament linage differentiation assay was based on previous
method with minor changes [19]. Cultured MSCs at passage 3 were
harvested using trypsineEDTA. For tenogenic differentiation,
2.0 � 104 cells were transferred to a 24-well plate and cultured
overnight in culture medium. Adherent cells were cultured in
DMEM with BMP-12 (50 ng/mL, SigmaeAldrich) and 10% FBS,
which was changed every 3e4 days. After 6 days, the differentia-
tion of cells into ligament-like cells was confirmed using real-time
PCR.

2.7. Gene expression analysis

After the differentiation of MSCs into tenocyte/ligament lineage
cells, total RNA was prepared using the TRI reagent (Sigma-
eAldrich). Complementary DNA was amplified using the StepOne
Real-Time PCR System (Life Technologies) and normalized against
b-actin expression (20e35 cycles per gene). Experiments were
performed with more than three independent biological samples,
and triplicate values were averaged. The probes used to detect the
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expression of keymarkers were confirmed to be specific to humans
(TaqMan gene expression assays: COL1A1, Hs00164004_m1; MKX,
Hs00543190_m1; SCX, Hs03054634_g1; and ß-ACTIN (ACTB),
Hs01060665_g1).

2.8. Statistical analysis

Quantitative data are presented as the mean ± standard devia-
tion from at least three independent experiments. For statistical
analysis, data were evaluated using Student's T-test or Man-
neWhitney U-test with Bonferroni's correction. In all cases, p-
values <0.05 were considered significant.

3. Results

3.1. MSC-specific marker expression in ACL-derived cells

ACLs were dissected from human donors undergoing total knee
arthroplasty with informed consent. In this study, samples from 14
patients (65e83 years old) were used (Supplementary Table S1).
ACL tissues were treated with collagenase to obtain a cell suspen-
sion. To isolate ACL-resident stem cells, we screened for surface
markers using flow cytometry. Suspended ACL-derived cells were
stained for a series of MSC-specific cell surface antigens and ana-
lysed by FACS (Fig. 1a). ACL-derived cells expressed high levels of
CD29, CD44, CD73, and CD90 and low or undetectable levels of
CD105, CD106, CD140a (PDGFRa), CD146, CD166, and CD271
(LNGFR) (Fig. 1b). Next, to validate for MSCs, we performed a colony
formation assay. The selected cell surface markers were used to
separate the ACL-derived cell populations into positive/negative
fractions, and the colony-forming ability of each population was
investigated. On day 21 of in vitro culture, the CD29þ, CD73þ, and
CD90þ populations displayed enhanced colony-forming ability
(Fig. 1c). In contrast, the CD44þ, CD146þ, CD166þ, and CD271þ

fractions were not enriched in cells with colony-forming abilities
(Fig. 1c). It is known that CD29, CD73, and CD90 are highly
expressed in not only in BM-MSCs but also adipose tissue-derived
and synovial MSCs; therefore, our data suggest that MSCs are
contained in ACL tissues. In particular, the CD73þ cells exhibited a
five-fold higher colony-forming ability than the Propdium Iodide-
(PI-) cells (non-selected live cells) did. Although CD146 and CD271
are known as specific markers of MSCs from multiple organs
[20,21], they are not useful candidates for isolating ACL-derived
MSCs.

3.2. Prospectively isolated ACL-MSCs are enriched in the
CD73þCD90þ population

To investigate the relationships among the CD29þ, CD73þ, and
CD90þ populations, multicolour stainingwas performed. Our group
previously has reported that CD73 is a common marker of BM-
MSCs in humans, mice, and rats [22]; thus we searched for a
marker that is co-expressed with CD73. As a result, most of the
CD73-positive cells were also positive for CD29 (92.8%) and CD90
(72.1%) (Fig. 2a, left). The CD29þ cells were almost always positive
for CD73 (Fig. 2a, right); therefore, we focused on CD90 as a co-
expressed marker and performed FACS to isolate populations of
cells with or without CD73 and CD90. Using dual-colour staining,
we confirmed the presence of 4 different fractions (CD90þ/73þ:
1.76%, þ/�: 0.279%, �/þ: 0.889%, and �/�: 97.1%) (Fig. 2b). Cells
that express both CD73 and CD90 are an extremely rare population
in ACL tissues. Colony-forming unit-fibroblast (CFU-F) assay using
anti-CD73 and anti-CD90 antibodies showed that the CFUs were
enriched in the CD73þ cell fraction (Fig. 2c). In particular, the
CD73þ/CD90þ fraction had the highest colony-forming ability
among the ACL-derived cells (Fig. 2c) and differentiation potential
into adipocytes, osteoblasts and chondrocytes (Supplementary
Fig. S1). Next, the properties of “cultured” ACL-derived CD73þ/
CD90þ MSCs were investigated with regard to their cell surface
antigens. Flow cytometric analyses showed that the expression of
CD29, CD44, CD73, CD90, CD105, and CD166 increased in these cells
after two passages (Supplementary Fig. S2), and the cell surface
markers were maintained at a high level even after four passages
(Supplementary Fig. S2). In contrast, the ACL-MSCs displayed low
or negative expression of CD31 (endothelial cell-specific marker),
CD45 (leukocyte marker), and CD235 (erythrocyte marker) (data
not shown). Therefore, MSC-like cells were enriched in the CD73þ/
CD90þ population, and these cells maintained their properties after
several passages.

3.3. CD73þCD90þ ACL-MSCs reside on the inner surface of ligament
sinusoids

Next, we investigated the cellular localization of ACL-MSCs by
isolating them using specific antibodies. The ACL consists of a
bundle of ligaments that connects bones. Frozen sections were
prepared from patient tissues and stained with antibodies against
CD90 and CD73. Immunohistochemical analyses of transverse
sections of ACL tissues showed that CD73 (red)-positive cells were
also positive for CD90 (green), and CD73þ/CD90þ cells were located
in small ductal structures present near the surface of the ACL
(Fig. 3a). Co-staining with CD31 (endothelial cell marker) showed
that the CD73þ/CD90þ sinusoids were not positive for CD31 (Fig. 3a,
c: arrow head). In contrast, there were no CD73þ/CD90þ cells in
capillaries, but all the CD73þ cells were also positive for the
endothelial marker CD31 (Fig. 3b, d: arrow).We further verified this
cellular localization using antibodies against Mohawk (Mkx) (a
marker of ligament lineage cells) and type I collagen (COL1A1). The
CD73þ/CD90þ cells were surrounded by collagen, and they
expressed Mkx (Supplementary Fig. 2S). Therefore, the ACL-MSCs
are located in the sinusoids of ligaments but not in the capillaries.

3.4. Cell surface markers of ACL-MSCs are distinct from those of
BM-MSCs

To dissect the differences in cell surface antigen expression in
detail, ACL- and BM-MSCs were analysed before and after long-
term culture. BM-MSCs were identified as the CD271þ/CD90þ

(LNGFRþ/THY-1þ) population. The marker CD73 was highly
expressed in ACL-MSCs, whereas CD106 and CD146, and CD271
were highly expressed in BM-MSCs (Fig. 4a). After the culture
period, the expression of CD73, CD146, and CD271 was comparable
between ACL-MSCs and BM-MSCs (Fig. 4b). Principal component
analysis (PCA) based on cell surface antigen expression showed no
overlap between ACL-MSCs and BM-MSCs when the cells were
freshly isolated, indicating that two populations are distinct
regarding the stem cell markers (Fig. 4c, fresh MSCs). However,
prolonged culture altered the cell surface marker expression,
resulting in similar cell populations (Fig. 4c, cultured MSCs).

3.5. CD73þCD90þ MSCs tend to differentiate into ligament-like cells

We analysed the potential of ACL- and BM-MSCs to differentiate
into mesenchymal lineages. Both BM- and ACL-MSCs differentiated
into mesenchymal lineages, whereas low adipogenesis was
observed in ACL-MSCs (Fig. 5a and b). Next, we compared the dif-
ferentiation potential into ligament cells to ACL-MSCs with BM-
MSCs. The transcription factors MKX and Scleraxis (SCX) are high-
ly expressed in human ACL tissue [23]. Moreover, Mkx promotes
ligament differentiation [24]. Thus, these markers were used to



Fig. 1. Analysis of colony-forming cells in the anterior cruciate ligament (ACL). (a) Schema of cell isolation from the ACL. (b) Representative flow cytometric profiles of freshly
isolated ACL-derived cells stained for CD29, CD44, CD73, CD90, CD105, CD106, CD140a, CD146, CD166, and CD271 (grey: isotype control; red: sample). (c) Colony formation rates
during 3 weeks of culture after cell sorting.
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Fig. 2. Purification of ACL-derived mesenchymal stem/stromal cells (MSCs) using surface markers. (a, b) Representative flow cytometric profiles of fresh ACL-derived cells stained
for CD29 and CD90 and gated for the CD73þ (a) and CD73þCD90þ fractions (b). (c) Rate of colony formation on day 21 in the following cells: CD73þ/90þ, þ/�, �/þ, �/�, and
propidium iodide (PI)� (n ¼ 3e7, p* < 0.05, p*** < 0.001, Student's t-test with Bonferroni's correction).
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measure the ligament differentiation potential of ACL- and BM-
MSCs. Quantitative PCR (q-PCR) data showed that the potential of
ACL-MSCs to differentiate into ligament-like cells was significantly
higher than that of BM-MSCs (MKX: 10-fold, SCX: 6-fold) (Fig. 5c).
The expression of COL1A1 is also important for differentiation into
ligament lineage; however, no significant differences were
observed via q-PCR and immunohistochemical analyses for the
expression of COL1A1 in BM- and ACL-MSCs (Fig. 5c and
Supplementary Fig. S3). Therefore, the potential of MSCs to differ-
entiate into ligament-like cells depends on their tissue of origin.

4. Discussion

MSCs are multipotent stem cells capable of self-renewal and
differentiation into mesodermal lineages such as chondrocytes,
adipocytes and osteocytes [25]. These cells have been identified in
multiple tissues such as BM, umbilical cord blood, amniotic fluid,
adipose tissue and dental pulp [26]. MSCs are considered a novel
modality of therapy for a wide variety of degenerative and immu-
nological disorders. In this study, we prospectively isolated MSCs
residing in ACL tissues using a combination of CD73 and CD90 as
positive selection markers. In vitro analyses showed that these cells
had the ability to differentiate into the ligament lineage as well as
mesenchymal lineages.

We show here that CD73þ/CD90þ cells are located on the inner
surface of small ducts that are negative for CD31, suggesting that
these ducts are not capillaries but rather sinusoids within the lig-
ament (Fig. 3d). The sinusoidal structures form a network that
covers the surface of the ligament. Although the function of ACL-
MSCs remains unclear, we observed that the CD73þ/CD90þ MSCs
have a high preference to differentiate into ligament-like cells.
According to our data, ACL-MSCs express the Mkx gene
(Supplementary Fig. S3). ACL-MSCs are known to exist in a pro-
genitor state. Although a majority of ACL-MSCs are quiescent dur-
ing homeostasis, they can be activated by stimuli such as injury. It is
important for tissue stem cells to reside near network structures
under resting conditions so that they can contribute to tissue repair
in response to injuries.

CD271, awidely used BM-MSCmarker [27,28], was not useful for
the detection of ACL-MSCs (Fig. 1). CD271 (also known as p75 NTR)
is a neural crest marker [28]. A fraction of MSCs are derived from
the neural crest lineage during developmental stages [29e31].



Fig. 3. Location of CD73þCD90þ cells in the ACL. (a, b) Immunofluorescence staining of transverse sections of human ACL tissue with anti-human CD73 (red), anti-human CD90
(green), and anti-CD31 (cyan) antibodies and Hoechst (blue) in a representative sinusoid (a) and capillary (b) (Scale bars ¼ 20 mm). (c, d) The location of CD73þCD90þ cells in ACL
tissues at high-power fields in the sinusoid (c) and capillary (d) (Scale bars ¼ 10 mm).
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During embryonic development, BM cells are derived from neural
crest lineages; however, the ACL is mainly derived from the
mesoderm. The difference in origin between the BM and ligaments
may explain the divergence of the surface markers and differenti-
ation preference. On the other hand, CD73 is commonly expressed
on MSCs derived from various organs. Our group had confirmed
CD73 as a universal MSC marker in mice, humans, and rats [22].
CD73 dephosphorylates ATP and ADP into AMP. Thus, CD73 sup-
presses inflammatory reactions [32]. Inflammation is frequently
observed in ligaments and synovial tissues in association with
ageing. MSCs play an important role in suppressing inflammation
[33]. The ability to suppress inflammation is critical for MSCs
derived from various organs.

Our data shows that there was no significant difference in
COL1A1 expression between ACL- and BM-MSCs. In a previous
report, ACLs from patients with osteoarthritis exhibited lower
COL1A1 expression than the ACLs from healthy controls did [23].
We used samples from 65 to 83-year-old patients suffering from
osteoarthritis. Thus, a limitation of our study is the lack of analysis
of tissue from younger individuals. However, in a previous report,



Fig. 4. Comparison of cell surface proteins between ACL- and bone marrow (BM)-derived MSCs. Cell surface protein expression in ACL-MSCs (CD73þ/90þ) and BM-MSCs (CD90þ/
271þ) before (a) and after culture (b). (c) Principal component analysis of four types of cells. ACL-derived CD73þ/90þ MSCs: fresh (blue, circle) and cultured (blue, square); BM-
derived CD90þ/271þ MSCs: fresh (red, circle) and cultured (red, square).

Fig. 5. Ability to differentiate into adipocytes, osteoblasts, and ligament cells (a, b) Representative phase contrast micrographs of ACL- and BM-MSCs differentiated into adipocytes
(a) and osteoblasts (b) (Scale bars ¼ 100 mm). (c) Expression levels of mRNA (MKX, SCX, and COL1A1) following ligament differentiation (n ¼ 5, p** < 0.01, ManneWhitney U-test).

Y. Ogata et al. / Regenerative Therapy 8 (2018) 20e2826
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the properties of ACL-MSCs were very similar in both old and young
tissues [34]. Thus, the CD73þ/CD90þ ACL-MSCs from young and
healthy individuals should be studied in the future.

Because a number of isolation techniques and culture conditions
have been described in the literature, it is difficult to identify
suitable criteria to compare MSC sub-populations. The minimal
criteria of MSCs are that these cells should adhere to plastic dishes
without expressing haematopoietic markers and that they should
be able to differentiate into mesenchymal lineages [35]. Most
studies in the field have used classical methods of MSC isolation
that require long-term culture and have validated MSCs based on
cell surface markers after culturing them in vitro [36]. Therapies
utilizing cells that have been expanded in long-term culture not
only elicit safety concerns due to the risk of transformation but also
tend to be expensive. Therefore, prospectively isolated MSCs have
an advantage for clinical application. Although the prospectively
isolated tissue-specific MSCs were separated into unique pop-
ulations at the time of isolation, long-term cultured MSCs were
categorized into the same cluster as the cells isolated from different
tissue origins (Fig. 4c). Therefore, we strongly suggest that two
aspects of MSCs should be taken into the consideration, namely, the
timing of isolation, i.e., whether the cells were freshly isolated or
cultured before use, and the tissue of origin. Our previous report
indicated that synovial MSCs have a stronger propensity to differ-
entiate into cartilage than do BM-MSCs [16]. These properties of
cells are also dependent on the environment in which the MSCs
reside [37]. Recently, it has been reported that the properties of
MSCs are regulated by the expression of the lamin A gene [38].
Moreover, the differentiation preference of cells is maintained for a
certain period of time during long-term culture. Additionally, the
cytoskeleton and epigenetic mechanisms have been thought to
influence differentiation propensity; nevertheless, this is an
important issue that needs to be elucidated in the future.

In conclusion, ACL-derived MSC-like cells isolated using CD73
and CD90 as positive markers exhibited stem cell-like character-
istics. The purification of ACL-MSCs according to the expression of
cell surface antigen enabled the identification of stem cells in the
ligament. ACL-derived MSCs have a high propensity to differentiate
into MKXþ and SCXþ ligament cells and may thus contribute to
ligament regeneration. These findings provide important insights
into potential stem cell therapies that can be used to repair ACL
tissues.
5. Conclusion

We demonstrated that cell surface markers of cultured MSCs
became similar among different source. However, the property for
differentiation remained different, and CD73þ/CD90þ-positive cell
population in ACL may be important for ligament regeneration
therapies.
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