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Abstract

The ESX-1, type VII, secretion system represents the major virulence determinant of Myco-

bacterium tuberculosis, one of the most successful intracellular pathogens. Here, by com-

bining genetic and high-throughput approaches, we show that EspL, a protein of 115 amino

acids, is essential for mediating ESX-1-dependent virulence and for stabilization of EspE,

EspF and EspH protein levels. Indeed, an espL knock-out mutant was unable to replicate

intracellularly, secrete ESX-1 substrates or stimulate innate cytokine production. Moreover,

proteomic studies detected greatly reduced amounts of EspE, EspF and EspH in the espL

mutant as compared to the wild type strain, suggesting a role for EspL as a chaperone. The

latter conclusion was further supported by discovering that EspL interacts with EspD, which

was previously demonstrated to stabilize the ESX-1 substrates and effector proteins, EspA

and EspC. Loss of EspL also leads to downregulation in M. tuberculosis of WhiB6, a redox-

sensitive transcriptional activator of ESX-1 genes. Overall, our data highlight the importance

of a so-far overlooked, though conserved, component of the ESX-1 secretion system and

begin to delineate the role played by EspE, EspF and EspH in virulence and host-pathogen

interaction.

Author summary

Mycobacterium tuberculosis is the etiological agent of human tuberculosis, a life-threaten-

ing disease which has seen a recrudescence in the last decades due to the spread of drug-

resistant bacterial strains and to co-morbidities such as HIV and diabetes. To develop

effective treatment and limit bacterial dissemination within and outside the host, it is piv-

otal to improve our understanding of the strategies used by the pathogen to colonize the

host and subvert the immune defenses. The ESX-1 secretion system represents a key

player in these processes. Here we show that the EspL protein, encoded by the ESX-1 gene

cluster, is essential for bacterial virulence and for stabilizing the abundance of the EspE,
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EspF and EspH components of the ESX-1 system. Tubercle bacilli lacking EspL cannot

multiply inside macrophages, do not secrete the major virulence factor EsxA and fail to

trigger the ESX-1 dependent innate immune response. EspL is thus an important but so-

far neglected contributor to ESX-1 function.

Introduction

Mycobacterium tuberculosis, the etiological agent of human tuberculosis, is arguably the

world’s most successful human pathogen. It is estimated that one third of the world’s popula-

tion is latently infected by the bacterium [1], which can survive in a dormant state inside spe-

cialized cellular structures in the lung parenchyma called granulomas [2,3]. As a consequence

of immunodeficiency or co-morbidities, like HIV or diabetes [4,5], latent M. tuberculosis can

reactivate and establish an acute infectious process which leads to the disease. Host-pathogen

interaction and disease progression are mediated by various virulence factors encoded by the

bacterial genome, the most important of them being the ESX-1 or type VII secretion system

[6].

ESX loci are characterized by genes encoding small secreted proteins with a conserved tryp-

tophan-x-glycine (WXG) motif and by transmembrane ATPases belonging to the

FtsK-SpoIIIE-like family [7,8]. Five ESX systems, implicated in different functions, exist in M.

tuberculosis [9]. The ESX-1 cluster comprises approximately twenty genes and encodes a spe-

cialized secretion apparatus, which releases effectors into the extracellular milieu. The rele-

vance of the ESX-1 genes in mycobacterial physiology was recognized when attenuation of the

vaccine strain M. bovis BCG and of the vole bacillus M. microti was associated with their partial

deletion [10–14]. Since then, the role played by ESX-1 in cytosolic recognition and stimulation

of innate immunity [15–17], phagosomal rupture and bacterial escape [18,19], intercellular

spread and systemic disease [20,21] has been the object of numerous studies. Recently, the

ESX-1 secretion system has also been considered as a potential drug target for the development

of anti-virulence drugs [22].

Considerable progress has been made in understanding how the system works and is regu-

lated. Electron microscopy-based studies showed that the M. xenopi ESX-5 core membrane

complex is composed of four proteins (EccB5, the ATPase EccC5, the putative channel EccD5,

and EccE5) which assemble into an oligomer with a six-fold symmetry [23]. However, it is still

unknown how the secreted substrates can cross the mycobacterial external membrane, or

mycomembrane, although the involvement of EspC, encoded by the distal espA-espC-espD
locus, has been hypothesized in M. tuberculosis [24]. The current model for ESX-1 activity pro-

poses heterodimeric and co-dependent complexes as the secreted substrates, i.e. EsxA/EsxB

and EspA/EspC [25,26]. These are targeted to the inner membrane apparatus by a bipartite

secretory signal composed of the WXG motif on the first member of the dimer and of a tyro-

sine-x-x-x-aspartic acid/glutamic acid (YxxxD/E) motif on the second [26,27]. ESX-1 function

undergoes transcriptional regulation, exerted by EspR [28], Lsr2 [29], CRP [30], MprA [31]

and mIHF [32] on the espA-espC-espD locus. Recent studies showed that WhiB6, a redox sen-

sor protein, directly controls expression of genes associated with the ESX-1 secretion system in

M. marinum, such as espA, espE and eccA1, and that this regulation is strictly dependent on its

Fe-S cluster [33]. In M. tuberculosis, whiB6 is part of the PhoP regulon [34] and divergently

contributes to ESX-1 gene transcription in the H37R strains compared to other isolates [35].

Additional, post-transcriptional, control of secretion activity is carried out by the serine prote-

ase MycP1 through proteolytic cleavage of another ESX-1 substrate, EspB [36].

Mycobacterium tuberculosis EspL
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Here, we investigate the role of a previously overlooked ESX-1 component, EspL, in M.

tuberculosis. We demonstrate that it is essential for mycobacterial replication inside macro-

phages, for eliciting innate cytokine production and for stabilizing the protein levels of the

additional ESX-1 members EspE, EspF and EspH.

Results

Construction of an espL deletion mutant

In order to evaluate the role of EspL in M. tuberculosis virulence and ESX-1-dependent secre-

tion activity, construction of an unmarked deletion mutant was planned. The transcriptional

profile of the H37Rv genomic region that includes espL was carefully considered to avoid

polarity on the downstream gene espK. Studies by Cortes and colleagues [37] demonstrated

the presence of a polycistronic RNA that covers mycP1, eccE1, espB and espL, but not espK,

which is transcribed independently (S1A Fig). Additionally, sequence inspection revealed that

the GTG translational start codon of espL overlaps the stop codon of the preceding gene espB.

The pJG1100-derived suicide vector [38] was then constructed according to this pre-existing

information and the espL coding sequence (CDS) was deleted from the chromosome by allelic

exchange, from coordinate 4,360,199 to coordinate 4,360,543, thereby leaving the espB stop

codon intact (S1B Fig). The resulting strain, named ΔespL, was validated by immunoblot (Fig

1A) and whole genome sequencing. The latter technology identified one single nucleotide

polymorphism (SNP) in gene rv1403 (353T>C), which caused substitution of Val118 with

Ala, and one SNP in ethA (A to G transition at position 368) which resulted in replacement of

His123 with Arg. No other differences were noted upon comparison with the genome

sequence of the parental strain, except for the intended deletion. ΔespL was transformed with

the complementing plasmid pGA44-espL, which carries the espL gene under the control of the

PTR promoter, or with the empty vector pGA44 as a control [39]. Immunoblot experiments

proved that expression of EspL was restored in the complemented strain ΔespL/pGA-espL,

whereas no band was detected in the control ΔespL/pGA44 (Fig 1A). Consistent with these

findings, qRT-PCR showed that the espL mRNA was expressed at a level similar to that of the

wild type when the gene was provided in trans (Fig 1B). Transcriptional analysis was extended

to include espB, espK and esxA. While espB and esxA mRNA levels were not altered signifi-

cantly by the mutation introduced or by the ectopic expression of espL, the amount of espK
transcript was 2.5-3-fold higher in the mutant strain (Fig 1B).

ΔespL is attenuated and does not stimulate innate immunity ex vivo
The ΔespL mutant did not show any major difference as compared to the wild type strain dur-

ing in vitro growth in standard medium (S2A Fig). However, infection of THP-1 cells demon-

strated severe reduction of the cytotoxicity of the mutant, which allowed cell survival to a

similar extent as upon infection with the ΔΔRD1 strain, which lacks the extended RD1 region

[40] (Fig 2A). Importantly, expression of espL by pGA44 complemented the phenotype to wild

type levels (Fig 2A). These findings were further confirmed by colony forming unit (CFU)

enumeration. While all of the strains were equally phagocytosed by THP-1 cells (S2B Fig), a

major increase in the number of intracellular bacteria over one week was reported when

H37Rv and the complemented strains, but not ΔespL, were used for infection (Fig 2B).

The crucial role played by the ESX-1 secretion system in inducing expression of cytokines

of the innate immunity pathways was previously illustrated. In particular, EsxA secretion was

found to be responsible for activating the cytosolic surveillance pathway based on cGAS-

dependent sensing of DNA and the inflammasome [15–17]. Here, markedly reduced produc-

tion of the pro-inflammatory cytokine IL-1β (Fig 2C), as well as decreased expression of type I
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interferon gene IFNB1 (Fig 2D), interferon-stimulated gene ISG15 (Fig 2E), and interleukin

gene IL6 (Fig 2F), were noted after THP-1 infection by the ΔespL strain. On the contrary,

H37Rv and the complemented strain ΔespL/pGA-espL elicited production of cytokines belong-

ing to both the cGAS-STING-type I Interferon (IFN) and inflammasome axes. Overall, these

data indicate that EspL is a key player in M. tuberculosis virulence, interaction with the

immune system and, likely, in ESX-1 secretion, as explained below.

Fig 1. Validation of ΔespL mutant. A) Detection of EspL by immunoblot analysis of total protein extracts from M.

tuberculosis H37Rv, ΔespL mutant and complemented strain. RpoB was used as a loading control. B) qRT-PCR analysis

of espL, espB, espK and esxA gene expression levels in different strains. Data were obtained from two independent

replicates, normalized to the housekeeping gene sigA and expressed as relative to H37Rv. �, p< 0.05. ��, p< 0.005. ����,

p< 0.0001. ns, not significant in two-way ANOVA followed by Tukey’s multiple comparison test.

https://doi.org/10.1371/journal.ppat.1007491.g001
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Secretion of ESX-1 substrates is compromised in ΔespL
The secretion profile of the mutant was examined in parallel to that of the wild type H37Rv

and of the complemented mutant strains. While the proteins were produced by all of the

strains (Fig 3A), EsxA and EsxB were not detectable in the secreted fraction by immunoblot

when EspL was missing, whereas EspA and EspD levels were greatly reduced (Fig 3B). As a

consequence of the compromised secretion, accumulation of EsxA and EsxB occurred inside

ΔespL cells (Fig 3A). Interestingly, EspB was found to be released into the culture supernatant

in the absence of EspL (Fig 3B and S3 Fig), confirming that its secretion is not dependent on

EsxA, EsxB, EspA or EspD, as reported earlier [41]. Therefore, the severe attenuation of ΔespL,

described above, correlates with lack of secretion of the major virulence factor EsxA.

In-depth analysis of the culture filtrates of strains H37Rv, ΔespL, ΔespL/pGA-espL was per-

formed by mass-spectrometry (S4 Fig, S2 and S4 Tables). While confirming the findings

described above, these additional experiments showed that EspE, EspF and EspH (and other

ESX-1 substrates such as EspC) are underrepresented in the secreted fraction of the mutant

strain, indicating that ESX-1-dependent secretion activity is affected in ΔespL.

Localization of EspL in sub-cellular fractions

To gain insight into EspL function, the localization of the protein in sub-cellular fractions was

studied. Total extracts from strain H37Rv were separated into cytosolic, membrane and capsu-

lar proteins, in addition to culture filtrate preparations. Anti-EspL antibodies identified a pro-

tein, with the apparent molecular weight of EspL, mainly in the cytosol and, to a lesser extent,

in the membrane. However, partial contamination of the membrane fraction could not be

excluded (S5 Fig). EspL was undetectable in the culture filtrate. Control antibodies against

RpoB, Rv3852 and EsxB recognized their cognate antigens in the cytosolic/membrane, mem-

brane only or cytosolic/secreted fractions, as expected [42]. EspL could thus exert its function

in the cytosol or as a membrane-associated protein.

Deletion of espL causes reduced expression of whiB6
Since PFAM [43] and recent experimental work [44] predicted the presence of an YbaB-type

DNA-binding domain [45–47] in EspL, we hypothesized that the protein may influence gene

expression through binding to DNA. The transcriptome of the mutant strain was then ana-

lyzed and compared to that of the wild type by RNA-seq. Despite the low cut-off value (2-fold

change), none of the M. tuberculosis genes was found to be deregulated in ΔespL, except for

whiB6, whose expression level was decreased by 3-fold on average (S1 Table), and espL itself,

which was not detected in the knock-out mutant. Genes belonging to the ESX-1 cluster, as well

as genes which are part of other ESX loci (ESX-2 to ESX-5) were expressed at similar levels in

the mutant as compared to the wild type. Curiously, genes that were reported to be included in

the WhiB6 regulon in the related species Mycobacterium marinum [33] were not found to be

deregulated by RNA-seq in M. tuberculosis ΔespL (S1 Table). These findings were confirmed

Fig 2. Ex vivo phenotype of ΔespL mutant. A) Virulence of ΔespL mutant compared to H37Rv and complemented strain in the THP-1

infection model. ΔΔRD1 carries a deletion of the extended ESX-1 locus. THP-1 cells were infected at multiplicity of infection (MOI) of 5.

Fluorescence measurements directly correlate with THP-1 viability. Data were expressed as the mean and standard deviation (SD) of four

independent replicates. B) Colony forming unit (CFU) evaluation of intracellular bacteria upon THP-1 infection. THP-1 cells were infected

at multiplicity of infection (MOI) of 20:1 (cells:bacteria). Data were expressed as the mean and SD of two independent replicates. C), D), E)

and F) Cytokine expression levels measured upon THP-1 infection with different bacterial strains. IL-1β was detected by ELISA assays. IFNB,

ISG15 and IL6 were quantified by qRT-PCR. Data were expressed as the mean and SD of two independent replicates. NI: not infected control.
�, p< 0.05. ��, p< 0.005. ���, p< 0.0005. ����, p< 0.0001. ns, not significant in one-way ANOVA followed by Tukey’s multiple comparison

test.

https://doi.org/10.1371/journal.ppat.1007491.g002
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independently by qRT-PCR, which also proved that re-introduction of espL into the comple-

mented strain was necessary and sufficient to restore espL and whiB6 mRNA levels to normal

(S6 Fig). Thus, EspL seems to control expression of whiB6 either directly or indirectly.

Fig 3. Immunoblot analysis of ΔespL mutant. A) Total cell lysates prepared from the indicated bacterial strains were analyzed by

immunoblot. Membranes were probed for RpoB, which represented the loading control, EspB, Antigen 85 (Ag85), EsxB, GroEL2,

EspA, EspD and EsxA. B) Culture filtrates were analyzed as described for the total cell lysates. The experiment was repeated two

times. One representative image is shown.

https://doi.org/10.1371/journal.ppat.1007491.g003
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Ectopic expression of whiB6 in ΔespL increases ESX-1 gene expression

levels but does not complement attenuation

Intrigued by the discoveries reported earlier, we examined the impact of constitutive expres-

sion of whiB6 in the ΔespL mutant. Levels of whiB6 mRNA were increased by approximately

4-fold in the ΔespL strain carrying pGA-whiB6, as compared to wild type. All of the tested

genes (i.e. espB, esxA, espE, espF, espH and espA), which are part of different transcriptional

units [37,48], were induced (Fig 4A), therefore indicating that WhiB6 works as an activator of

ESX-1 genes in M. tuberculosis. However, despite the increased expression of virulence-related

genes, ΔespL/pGA-whiB6 displayed the same attenuation as ΔespL, ΔespL/pGA44 and ΔΔRD1

(Fig 4B). In other words, the lack of cytotoxicity caused by deletion of espL could not be

bypassed by ectopic over-expression of whiB6. EspL is therefore essential for M. tuberculosis
virulence.

EspL stabilizes the cytosolic levels of EspE, EspF and EspH

Inspired by the work of Stoop and colleagues [49], we thoroughly analyzed the proteome of

the espL knock-out mutant and compared it to that of the wild type, of the complemented

strain and of the mutant expressing whiB6 in trans. Results are reported in Fig 5, Fig 6, S7 Fig,

S3 Table and S5 Table. As expected, EspL was detected in the wild type and in the comple-

mented strains only (Fig 5A). On the other hand, WhiB6 levels could only be measured in the

strain over-expressing whiB6, indicating that this transcriptional regulator is poorly expressed

in wild type conditions (Fig 6E). No significant difference was noted for EspB, EspA, EspC and

EspD in the proteome of ΔespL (Fig 6D, 6A, 6B and 6C), whilst a small though statistically

valid increase in EsxA and EsxB levels was reported (Fig 5B and 5C), thus corroborating the

data obtained by immunoblot (Fig 3B). The most relevant variation in protein levels was

noticed for EspE, EspF and EspH. Their abundance was greatly reduced in the mutant strain

and complemented to wild type levels in ΔespL/pGA-espL (Fig 5D, 5E and 5F). Proteomic data

contrasted with RNA-seq and qRT-PCR results, which proved that espE, espF and espH
mRNAs in the espL knock-out strain were unaltered compared to the wild type (S1 Table and

S6 Fig).

EsxA, EsxB, EspB and EspE amounts increased when whiB6 was provided ectopically (Figs

5B, 5C, 6D and 5D), thus reflecting the qRT-PCR assay in Fig 4A. However, EspF and EspH

levels did not reach those of H37Rv upon WhiB6 expression in ΔespL (Fig 5E and 5F), in con-

trast to their transcripts which were induced by WhiB6 (Fig 4A). These results suggest that an

additional, post-transcriptional control regulates the abundance of EspF, EspH and, most

likely EspE, in M. tuberculosis. In the latter case, transcriptional upregulation bypassed the

destabilization provoked by lack of EspL in strain ΔespL/pGA-whiB6, thus generating

increased protein abundance. This did not happen in the case of EspF (Fig 5E) and EspH (Fig

5F). The espE cistron is probably more efficiently translated as its gene is the first in the operon

and therefore less subject to mRNA degradation. EspL contribution is more evident for EspF

and EspH, as the transcriptional increase caused by WhiB6 is not sufficient to avoid the desta-

bilizing effect on the proteins provoked by lack of EspL.

Further confirmation to these findings was obtained by constructing strains that constitu-

tively expressed HA-tagged EspE in the H37Rv and ΔespL backgrounds. Complementation by

espL and expression of whiB6 were achieved by using the physiological mycP1 promoter,

which represents the natural promoter of espL according to Cortes and colleagues [37]. Expres-

sion of espE.HA was therefore independent from EspL and from WhiB6 as it was placed under

control of the PTR promoter [39]. The wild type phenotype was restored in strain ΔespL/pGA-

espE.HA + espL, as shown in S8A and S8B Fig, thereby confirming that expression of EspE.HA

Mycobacterium tuberculosis EspL
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Fig 4. Phenotype obtained upon expression of whiB6 in the ΔespL mutant. A) qRT-PCR analysis of the expression levels of the

indicated genes in different strains. Data were obtained from two independent replicates, normalized to the housekeeping gene sigA
and expressed as relative to H37Rv. �, p< 0.05. ���, p< 0.0005. ����, p< 0.0001 in two-way ANOVA followed by Tukey’s multiple

comparison test. B) Virulence of ΔespL mutant expressing whiB6 in trans compared to H37Rv, ΔespL and complemented strain in

the THP-1 infection model. ΔΔRD1 carries a deletion of the extended ESX-1 locus. THP-1 cells were infected at multiplicity of

infection (MOI) of 5. Fluorescence measurements directly correlate with THP-1 viability. Data were expressed as the mean and

standard deviation (SD) of four independent replicates. NI: not infected control. ����, p< 0.0001. ns, not significant in one-way

ANOVA followed by Tukey’s multiple comparison test.

https://doi.org/10.1371/journal.ppat.1007491.g004
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did not cause abnormal behavior. In line with what has been described before, expression of

whiB6 did not complement the lack of virulence in ΔespL/pGA-espE.HA + whiB6 (S8B Fig)

but did increase the transcriptional levels of espE and esxA (S8C Fig), the latter result mirrored

by the detection of a strong signal for the EsxA protein in Fig 7. Transcription of espE.HA was

measured by qRT-PCR and confirmed as constitutive, almost identical in all of the strains,

independently of the presence or absence of EspL and WhiB6 (S8A and S8C Fig). However,

immunoblot analysis demonstrated that EspE.HA amounts in ΔespL/pGA-espE.HA were dra-

matically reduced (Fig 7), despite the presence of the espE.HA transcript (S8A Fig). Con-

versely, ΔespL/pGA-espE.HA + espL (expression of espL in trans) produced levels of EspE.HA

equal to those in H37Rv/pGA-espE.HA. Providing whiB6 only (ΔespL/pGA-espE.HA + whiB6)

did not restore the phenotype (Fig 7). Therefore, the effects mediated by EspL and WhiB6

were uncoupled here: WhiB6 was proved to act at the transcriptional level, whereas EspL was

demonstrated to exert its function post-transcriptionally, presumably on protein stability.

Taken together, these results highlight a new role for EspL in stabilizing EspE, EspF and

EspH protein amounts.

EspL interacts with EspD

To identify EspL interacting partners, strains carrying HA-tagged EspL were made. Expression

of N- or C-terminally tagged EspL in ΔespL was verified by immunoblot (S9A Fig) and the

ability of the modified proteins to complement the attenuation profile was checked (S9B Fig).

Total cell extracts of strains ΔespL/pGA-espL.HA and ΔespL/pGA-HA.espL were employed in

immunoprecipitation experiments using anti-HA antibodies. Mass spectrometry analysis of

the precipitated material demonstrated that EspD was significantly enriched in the pulled-

down fractions of ΔespL/pGA-HA.espL and of ΔespL/pGA-espL.HA, together with HA.EspL

and EspL.HA (S6 Table). Other proteins were detected but their abundance was not increased

in the immunoprecipitated samples compared to the Input and to the untagged strains H37Rv

and ΔespL (S6 Table). A second readout, i.e. immunoblot, was exploited to validate these data

independently. As shown in Fig 8, both EspD and EspL levels were highly enriched upon anti-

HA immunoprecipitation in both ΔespL/pGA-HA.espL and ΔespL/pGA-espL.HA as compared

to the Input control and strain H37Rv. On the other hand, RpoB and GroEL2 levels were as

expected. To conclude, EspL and EspD may interact directly or be part of a multiprotein com-

plex inside M. tuberculosis cells.

Discussion

The data presented here demonstrate the essentiality of EspL for ESX-1-dependent virulence

and for stabilizing the intracellular levels of EspE, EspF and EspH in M. tuberculosis. ESX-

1-dependent secretion in ΔespL was severely compromised, with undetectable levels of EsxA,

EsxB, EspA and EspD in the culture filtrates. Conversely, secretion of EspB was not affected,

confirming previous data generated by our group [41]. In line with the secretion profile, viru-

lence and innate cytokine production were compromised when THP-1 cells were infected by

the espL knock-out strain. In this regard, ΔespL behaves like the ESX-1-null mutants ΔRD1

[13] and ΔΔRD1 [40], which fail to stimulate the innate immune response [15]. These pheno-

types tally with those previously reported for an espL transposon mutant in a clinical isolate of

Fig 5. Mass spectrometry analysis of protein abundance in the ΔespL mutant. Total protein extracts were prepared in triplicate and

subjected to Mass Spectrometry analysis. Each graph shows the abundance of the indicated protein in the three replicates in the various

strains. A) EspL. B) EsxA. C) EsxB. D) EspE. E) EspF. F) EspH. WT: H37Rv. Delta_L: ΔespL. Comp_L: ΔespL/espL (complemented

strain). Comp_whi: ΔespL/whiB6 (strain expressing whiB6 in trans). Data are expressed as LFQs (Label Free Quantifications).

https://doi.org/10.1371/journal.ppat.1007491.g005
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the W/Beijing family, which was shown to have lost the ability to arrest phagosomal matura-

tion [50], and with the need for espL in order to fully complement an espB mutant in M. mari-
num [51]. While these phenotypic traits are most likely attributable to lack of secretion of the

main ESX-1 substrates, whether all of them are directly caused by lack of EspL or are mediated

by EspE, EspF or EspH is currently unknown and additional research is required.

Although the mechanistic details of these functions remain unknown, a role for EspL as a

chaperone protein can be proposed. Indeed, the presence of heterodimeric complexes, where

one protein acts as a chaperone for the other, is not unusual in the ESX-1 system [24,52]. A

direct effect of EspL on transcription of espE, espF and espH was ruled out by RNA-seq and

further confirmed by qRT-PCR. On the other hand, proteomics identified EspE, EspF and

EspH as the only proteins whose abundance was highly affected by espL deletion. Based on

these findings, an interaction between EspL and EspE, EspF and EspH could be hypothesized.

However, those proteins were not detected by mass-spectrometry and immunoblotting analy-

sis of immunoprecipitated material from strains expressing EspL.HA or HA.EspL.

Fig 6. Mass spectrometry analysis of protein abundance in the ΔespL mutant. Total protein extracts were prepared in triplicate and

subjected to Mass Spectrometry analysis. Each graph shows the abundance of the indicated protein in the three replicates in the various

strains. A) EspA. B) EspC. C) EspD. D) EspB. E) WhiB6. WT: H37Rv. Delta_L: ΔespL. Comp_L: ΔespL/espL (complemented strain).

Comp_whi: ΔespL/whiB6 (strain expressing whiB6 in trans). Data are expressed as LFQs (Label Free Quantifications).

https://doi.org/10.1371/journal.ppat.1007491.g006

Fig 7. Validation of EspE levels in total cell lysates. Total cell lysates prepared from the indicated bacterial strains

were analyzed by immunoblot. Note that all of the strains express HA-tagged EspE ectopically. EspE.HA was detected

by immunodecoration with anti-HA antibodies. The experiment was repeated two times. One representative image is

shown.

https://doi.org/10.1371/journal.ppat.1007491.g007
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EspL-mediated stabilization of EspE, EspF and EspH levels might therefore occur by other

means. Interestingly, compelling evidence was obtained for EspL interacting with EspD, which

itself is known to act as a stabilizer [53], further suggesting the existence of a “chaperone com-

plex” which contributes to regulating ESX-1 activity post-transcriptionally and/or post-transla-

tionally. Curiously, while EspD stabilizes EspA and EspC [53], EspL performs the same task on

EspE, EspF and EspH, whose genes are paralogs of espA-espC-espD [9], although EspL and

EspD are different in size and sequence.

Secretion of EspD deserves additional discussion. While EspL is necessary for secretion of

the ESX-1 substrates EsxA, EsxB, EspA, EspC and for extracellular release of EspD, this was

previously reported to be independent of a functional ESX-1 apparatus [53]. These observa-

tions are consistent with the findings presented here as the requirement of EspL for secretion

of EspD does not imply that EspD be released through the ESX-1 system. Of note, espL is only

present in the ESX-1 cluster and its function may serve more than one type VII secretion sys-

tem and target EspD to alternative machineries, namely ESX-2, ESX-3 or ESX-4.

A model for ESX-1-dependent secretion can be proposed based on the current knowledge

and on the data presented here (Fig 9). EspL forms a chaperone complex with EspD and this

in turn stabilizes the EspA-EspC, EspE-EspH dimers and EspF. The chaperone complex may

target EspA-EspC to the secretion machinery in the inner membrane, where co-dependent

secretion with EsxA-EsxB takes place.

Another interesting finding was the discovery of whiB6 as the only deregulated gene in the

ΔespL transcriptome. Despite reduced expression of whiB6, no difference in the mRNA levels

of the genes belonging to the WhiB6 putative regulon [33] was observed. This can be ascribed

Fig 8. Interaction of EspL with EspD. Immunoprecipitation experiments on total protein extracts from the indicated strains were

performed using anti-HA antibodies. Immunoprecipitated material was analyzed by immunoblot for detection of RpoB, GroEL2, EspL

and EspD. The mock control was run in parallel without antibodies. The experiment was repeated three times. One representative image

is shown.

https://doi.org/10.1371/journal.ppat.1007491.g008
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Fig 9. Proposed model for ESX-1-dependent secretion. In this model EspL forms a chaperone complex with EspD and this in turn stabilizes

the EspA-EspC, EspE-EspH dimers and EspF. The chaperone complex may target EspA-EspC to the secretion machinery in the inner

membrane, where co-dependent secretion with EsxA-EsxB takes place. Question marks indicate hypothetical protein-protein interactions. Not

drawn to scale.

https://doi.org/10.1371/journal.ppat.1007491.g009
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to the culture conditions used in these experiments, as it was reported that WhiB6 senses

reducing conditions in M. marinum, and regulates transcription accordingly, thanks to its Fe-

S cluster [33]. Additionally, the 3-fold deregulation of whiB6 may not be mirrored by deregula-

tion of its own regulon. Nonetheless, when WhiB6 was provided in trans, expression of most

of the ESX-1 substrates or components was increased. Thereby, WhiB6 controls transcription

of the ESX-1 genetic locus in M. tuberculosis too. The latter conclusion further supports the

work by Solans and colleagues [35], who discovered that a single nucleotide insertion in the

promoter region of whiB6 determines the response to the transcriptional regulator PhoP and

thus modulates EsxA levels.

A recent report described similar an even more pronounced deregulation of whiB6 and of

the WhiB6-dependent genes in M. marinum lacking eccCb1 [54]. In that case, the existence of

a negative feedback loop connecting the ESX-1 core complex in the membrane to ESX-1 gene

expression was postulated [54]. This is consistent with our findings in M. tuberculosis as EspL

localizes mainly in the cytosol but also in the membrane fraction. Another analogy with the

eccCb1 mutant in M. marinum lies in the EspE and EspF protein levels, which also seem to be

subjected to post-transcriptional control [54]. Of note, we demonstrated that virulence cannot

be restored in ΔespL by expression of WhiB6 in trans.
Altogether, our data indicate an important role for EspL in M. tuberculosis pathogenesis

and encourage further investigations into the contributions of EspE, EspF and EspH to viru-

lence and to ESX-1-dependent secretion. EspF was previously shown to reduce M. tuberculosis
virulence in the mouse model when deleted [40]. EspH was recently identified as necessary for

secretion of EspE and EspF in M. marinum and capable of binding EspE, thus acting as a

potential chaperone [55]. Furthermore, essentiality of EspH for phagocytic infection as well as

for granuloma formation in the zebrafish larvae model was reported [55]. On the contrary, lit-

tle is known about the role of EspE. Conservation of the genes for espH, espD and espL, in the

greatly down-sized genome of M. leprae [56] suggests a conserved function and this justifies

future investigation.

Materials and methods

Bacterial strains and culture conditions

Mycobacterium tuberculosis strains (described in S7 Table) were grown at 37˚C in 7H9

medium (Difco) supplemented with 0.2% glycerol, 0.05% Tween 80 and 10% albumin-dex-

trose-catalase (ADC, Middlebrook) or on 7H10 plates supplemented with 0.5% glycerol and

10% oleic acid-albumin-dextrose-catalase (OADC, Middlebrook). Sauton’s liquid medium

was used for culture filtrate analysis. Streptomycin (20 μg/ml), kanamycin (20 μg/ml), hygro-

mycin (50 μg/ml) or 2.5% sucrose were added when necessary. Experiments involving M.

tuberculosis were performed in a Biosafety Level 3 (BSL3) laboratory, according to the national

and international guidelines (Authorization number A070027/3). For cloning purposes, One

Shot TOP10 chemically competent Escherichia coli (Invitrogen) were grown in Luria–Bertani

(LB) broth or on LB agar with hygromycin (200 μg/ml), kanamycin (50 μg/ml) or spectinomy-

cin (25 μg/ml).

Reagents, plasmid vectors and oligonucleotides

Chemical reagents were obtained from Sigma-Aldrich, unless otherwise stated. Restriction

and modification enzymes were purchased from New England Biolabs. Plasmid vectors are

described in S8 Table. Oligonucleotides were synthesized by Microsynth. Sequences are avail-

able upon request.
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Mutant construction

One kb up- and downstream regions of the espL gene were PCR-amplified, ligated in-frame

with the AvrII site and cloned into the PacI and AscI sites of pJG1100 [38], resulting in the sui-

cide vector pJG1100-espL-UP/DOWN. The complementing plasmid pGA44-espL was con-

structed by cloning the espL gene into vector pGA44 [39], under control of the PTR promoter.

Deletion of the full-length espL gene was achieved by homologous recombination using plas-

mid pJG1100-espL-UP/DOWN. After transformation of M. tuberculosis H37Rv, the first

recombination event was selected on 7H10 plates, supplemented with hygromycin and kana-

mycin. Colonies were screened by colony PCR. Two clones that had undergone homologous

recombination were grown in liquid 7H9 medium with no antibiotics, in order to promote the

second recombination event and plasmid excision. Selection of the recombinant clones was

performed by plating the bacteria on 7H10 plates supplemented with sucrose. The resulting

colonies were tested by PCR to confirm deletion of espL from its native locus and further vali-

dated by whole genome sequencing.

In vitro growth curves

M. tuberculosis strains were grown to mid-logarithmic phase and then diluted to an optical

density at 600 nm (OD600) of 0.05 in 7H9 medium. OD600 was recorded at different time

points to obtain the growth curves.

Genomic DNA preparation and whole genome sequencing

M. tuberculosis genomic DNA was extracted as previously described [57]. Libraries were pre-

pared using the Kapa LTP Library Prep kit (Kapa Biosystems) according to the manufacturer’s

recommendations. Cluster generation was performed using the Illumina TruSeq SR Cluster

Kit v4 reagents and sequenced on the Illumina HiSeq 2500 using TruSeq SBS Kit v4 reagents.

Sequencing data were demultiplexed using the bcl2fastq Conversion Software (v. 2.20, Illu-

mina, San Diego, California, USA). Raw reads were adapter- and quality-trimmed with Trim-

momatic v0.33 [58]. The quality settings were “SLIDINGWINDOW:5:15 MINLEN:40”.

Preprocessed reads were mapped onto the M. tuberculosis H37Rv reference genome sequence

(RefSeq NC_000962.3) with Bowtie2 v2.2.5 [59]. SNP calling was done using VarScan v2.3.9

[60]. To avoid false-positive SNP calls the following cutoffs were applied: minimum overall

coverage of ten non-duplicated reads, minimum of five non-duplicated reads supporting the

SNP, mapping quality score >8, base quality score >15, and a SNP frequency above 80%. All

SNPs were manually checked by visualizing the corresponding read alignments. Sequencing

data have been deposited to the Sequence Read Archive (SRA) under accession number

SRP158673.

RNA preparation, reverse-transcription and quantitative polymerase chain

reaction (RT-qPCR)

M. tuberculosis cultures were grown to OD600 of 0.3–0.4, harvested by centrifugation, pellets

were resuspended in TRIzol Reagent (ThermoFisher) and stored at -80˚C until further pro-

cessing. Total RNA was extracted by bead-beating as previously described [39]. Integrity of

RNA was checked by agarose gel electrophoresis, purity and amount of RNA were assessed

using a Nanodrop instrument and Qubit Fluorometric Quantitation (ThermoFisher), respec-

tively. SuperScript III First-Strand Synthesis System (Invitrogen) was used to generate ran-

domly primed cDNA from 1 μg of RNA, according to the manufacturer’s recommendations.

qPCR reactions were performed on an ABI 7900HT instrument, using Power SybrGreen PCR
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Master Mix (Applied Biosystems), according to the manufacturer’s instructions. The house-

keeping gene sigA was used for normalization.

RNA-seq: Library preparation, high-throughput sequencing and analysis

RNA was extracted from biological duplicates as described above. RNA-seq libraries were pre-

pared from 1 μg of total RNA. The RNA samples were depleted of r-RNAs with the Illumina

Ribo-Zero rRNA Removal Kit (Gram-Positive Bacteria) then used to generate sequencing

libraries with the Illumina TruSeq Stranded mRNA reagents, omitting the polyA selection step

(Illumina, San Diego, California, USA). Cluster generation was performed with the resulting

libraries using the Illumina TruSeq SR Cluster Kit v4 reagents and sequenced on the Illumina

HiSeq 2500 using TruSeq SBS Kit v4 reagents. Sequencing data were demultiplexed using the

bcl2fastq Conversion Software (v. 2.20, Illumina, San Diego, California, USA).

Reads were processed and mapped to the reference genome sequence as described above.

Counting reads over features was done with featureCounts [61] from the Subread package

v1.4.6. Annotation was taken from TubercuList release R27 (https://mycobrowser.epfl.ch/

releases). Differential gene expression analysis was done using DESeq2 [62]. RNA-seq data

have been deposited to the Gene Expression Omnibus (GEO) repository under accession

number GSE118994.

Mass spectrometry analysis of total protein extracts and culture filtrates

M. tuberculosis cells, grown to mid-exponential phase in 15 ml cultures, were pelleted by cen-

trifugation, washed once in PBS (Phosphate Buffered Saline) supplemented with 0.05% Tween

80 and the pellets stored at -80˚C until further use. Total lysates were obtained by sonication in

lysis buffer (100 mM Tris pH 8, 2% SDS, cOmplete mini EDTA free Roche) and boiled at

100˚C for 1 h. Proteins were quantified by using the Pierce BCA Protein Assay kit and 30 μg

were submitted for mass spectrometry analysis. For the analysis of the culture filtrates, M.

tuberculosis cultures were grown in 7H9 to mid-logarithmic phase. The culture medium was

then replaced by Sauton’s supplemented with 0.05% Tween 80 and growth was continued for 3

d. Finally, bacteria were pelleted and resuspended in Sauton’s medium without Tween 80 for

collection of the culture filtrates. These were filtered through 0.22 μm Steriflip Millipore

Express Plus Membranes (Millipore), concentrated 100x using Amicon Ultracel-3K centrifugal

filters (Millipore), quantified by using the Pierce BCA Protein Assay kit and 30 μg were sub-

mitted for mass spectrometry analysis.

Each sample was digested by Filter Aided Sample Preparation (FASP) [63] with minor

modifications. Dithiothreitol (DTT) was replaced by Tris(2-carboxyethyl)phosphine (TCEP)

as reducing agent and Iodoacetamide by Chloracetamide as alkylating agent. A combined pro-

teolytic digestion was performed using Endoproteinase Lys-C and Trypsin. Acidified peptides

were desalted on C18 StageTips [64] and dried down by vacuum centrifugation. For LC MS/

MS analysis, peptides were resuspended and separated by reversed-phase chromatography on

a Dionex Ultimate 3000 RSLC nanoUPLC system in-line connected with an Orbitrap Fusion

Lumos Mass-Spectrometer (Thermo Fischer Scientific). Database search was performed using

MaxQuant 1.6.0.1 [65] against the TubercuListR27 database (http://tuberculist.epfl.ch/). Car-

bamidomethylation was set as fixed modification, whereas oxidation (M), phosphorylation (S,

T,Y) and acetylation (Protein N-term) were considered as variable modifications. Label Free

Quantification (MaxLFQ) was performed by MaxQuant using the standard settings [66]. Per-

seus [67] was used to highlight differentially quantified proteins. Reverse proteins, contami-

nants and proteins only identified by sites were filtered out. Biological replicates were grouped

together and protein groups containing a minimum of two LFQ values in at least one group
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were conserved. Empty values were imputed with random numbers from a normal distribu-

tion. The average LFQ values for the different proteins in the different strains were obtained

from columns DM-DO, DP-DR and DS-DU in S2 Table, from columns EK-EM, EN-EP,

EQ-ES, ET-EV in S3 Table. The difference between these numbers represents the “difference

in protein abundance”. Significant hits were determined by a volcano plot-based strategy,

combining t test p-values with ratio information [68]. Significance curves in the volcano plot

corresponding to a SO value of 0.5 and 0.05 FDR (for culture filtrates) and to a SO value of 0.1

and 0.05 FDR (for cell lysates) were determined by a permutation-based method. Further

graphical displays were generated using homemade programs written in R [69]. Raw data

obtained from mass spectrometry experiments have been deposited to the ProteomeXchange

Consortium via the PRIDE partner repository with the dataset identifiers PXD010929 (total

cell lysate) and PXD011466 (culture filtrate).

Immunoblot analysis of bacterial lysates and culture filtrates

Culture filtrates were obtained as described above for mass spectrometry analysis, quantified

by using the Qubit Fluorometric Quantitation device (ThermoFisher) and loaded on

SDS-PAGE 12–15% NuPAGE gels (Invitrogen) for immunoblot analyses. Bacterial pellets

were washed once in Tris-Buffered Saline (TBS, 20 mM Tris-HCl pH 7.5, 150 mM NaCl) and

stored at -80˚C until further processing. Cells were sonicated in TBS supplemented with a pro-

tease inhibitor tablet (cOmplete mini EDTA free, Roche) for 15 min and the protein solution

was then sterilized by filtration through a 0.22 μm filter (Pall Life Sciences) to remove residual

intact cells. Protein samples were quantified using Qubit. Equal amounts of protein prepara-

tions (10 μg for cell lysates, 15–20 μg for culture filtrates) were loaded on SDS-PAGE 12–15%

NuPAGE gels (Invitrogen) and transferred onto PVDF membranes using a semidry electro-

phoresis transfer apparatus (Invitrogen). Membranes were incubated in TBS-Tween blocking

buffer (25 mM Tris pH 7.5, 150 mM NaCl, 0.05% Tween 20) with 5% w/v skimmed milk pow-

der for 2h at 4˚C prior to overnight incubation with primary antibody. Membranes were

washed in TBS-Tween three times at room temperature, and then incubated with secondary

antibody for 3 h before washing again. Signals were detected using Chemiluminescent Peroxi-

dase Substrate 1 (Sigma-Aldrich).

Polyclonal anti-EspL, anti-EspB, anti-EspA [53], anti-EspD [53] antibodies were produced

by Dr. Ida Rosenkrands (Statens Serum Institut, Copenhagen, Denmark). Monoclonal anti-

RpoB antibodies were purchased from NeoClone, polyclonal anti-EsxB antibodies from

Abcam, monoclonal anti-HA antibodies conjugated to Horseradish Peroxidase (HRP) from

Cell Signaling. Polyclonal anti-Rv3852 antibodies were generated by Eurogentec [42]. The fol-

lowing reagents were obtained through BEI Resources, NIAID, NIH: monoclonal anti-Antigen

85, monoclonal anti-GroEL2 and polyclonal anti-EsxA antibodies.

Fractionation of total bacterial lysate

Cell fractions were obtained as described previously [42]. Briefly, M. tuberculosis was grown in

Sauton’s medium with 0.05% Tween 80 to mid-exponential phase, cells were collected by cen-

trifugation, supernatants were filtered through 0.22 μm Steriflip Millipore Express Plus Mem-

branes (Millipore) and concentrated 100x using Amicon Ultracel-3K centrifugal filters

(Millipore) to obtain the culture filtrate fraction. The pellet was treated with 0.25% Genapol-

X080 for 30 min at room temperature, followed by centrifugation at 14,000 g for 10 min. The

proteins in the resulting supernatant were precipitated with Trichloroacetic acid (TCA), yield-

ing the capsular fraction. The remaining pellet was subjected to sonication to break the cells,

sterilized by filtration through a 0.22 μm filter (Pall Life Sciences) followed by ultra-
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centrifugation at 45,000 rpm for 1h at 4˚C. The supernatant contained the cytosolic fraction,

while the pellet was enriched with membrane proteins. Analysis of the protein fractions was

carried out by immunoblot as described above.

Co-immunoprecipitation experiments

M. tuberculosis cells in 30 ml cultures were pelleted by centrifugation, washed once in PBS

(Phosphate Buffered Saline) supplemented with 0.05% Tween 80 and the pellets stored at

-80˚C until further use. Total lysates were obtained by sonication in TBS-T (25 mM Tris pH

7.5, 150 mM NaCl, 0.05% Tween 20), followed by filtration through 0.22 μm filters (Pall Life

Sciences). Fifty microliters of Monoclonal Anti-HA Agarose Antibody beads (Sigma-Aldrich)

were incubated with approximately 1 mg of bacterial extract in Spin-X centrifuge tubes

(Costar) for 4 h at 4˚C on an orbital shaker. The resin was washed four times in PBS and the

immunoprecipitated material was eluted from the beads in PBS-SDS sample buffer (100 mM

Tris HCl pH 6.8, 200 mM dithiothreitol, 4% SDS, 0.2% bromophenol blue, 20% glycerol) dur-

ing a 5 min incubation at 95˚C. Immunoprecipitated proteins were analyzed either by mass

spectrometry as described [24] or by immunoblot. A mock (no antibody) control was run in

parallel with agarose beads only.

Cell cultures and infection with M. tuberculosis strains

THP-1 cells (ATCC-TIB202, LGC Standards GmbH, Germany) were cultured in RPMI1640

(Life Technologies) supplemented with 10% (v/v) Fetal Calf Serum (Life Technologies) and

1% sodium pyruvate (Life Technologies). Cells were differentiated in 96- or 12-well plates by

addition of 4 nM phorbol 12-myristate 13-acetate (PMA) for 24 h at 37˚C in 5% CO2. Differ-

entiated cells were then infected with M. tuberculosis as follows. Bacteria were grown to expo-

nential phase (OD600 between 0.4 and 0.8), washed once in 7H9 medium, resuspended in 7H9

to an OD600 of 1, equivalent to 3 x 108 bacteria/ml. The required volume of bacterial suspen-

sion was then added to RPMI1640 for infection of human THP-1 cells at the multiplicity of

infection (MOI) reported in the text. Plates were sealed with gas-permeable sealing film and

incubated at 37˚C under 5% CO2. Intracellular bacteria were released by the infected cells by

addition of 0.5% Triton-X. The suspension was serially diluted in 7H9 and plated on 7H10

plates. Colony forming units (CFU) were counted after incubation at 37˚C for 4–5 weeks. Pre-

stoBlue Assay (Thermofisher) to evaluate cell viability was performed according to the manu-

facturer’s instructions. Fluorescence was measured using a Tecan Infinite M200 microplate

reader.

ELISA assays

Cell culture supernatants from infections in 96-well plates were removed from infected cells 24

h post-infection. Supernatants were filtered through NANOSEP centrifugal devices (Pall Life

Sciences) and assayed for human IL-1β (BD Biosciences) according to the manufacturer’s

instructions.

Quantitative polymerase chain reaction (qPCR) analysis of cytokine

expression

RNA from infected cells in the 12-well format was extracted by using Qiagen RNeasy kit

according to the manufacturer’s instructions 24 h post-infection and reverse-transcribed using

the RevertAid First Strand cDNA Synthesis kit (Fermentas). Quantitative PCR analysis was
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performed on an ABI 7900HT instrument. All gene expression data are presented as relative

expression to GAPDH.

Statistical analysis

Statistical analyses were performed in GraphPad PRISM by one-way or two-way ANOVA fol-

lowed by Tukey’s multiple comparison test.
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S2 Fig. Phenotypic analysis of ΔespL mutant. A) Growth curves obtained by measuring the

optical density at 600 nm of the different strains grown in 7H9 medium at 37˚C with shaking.

B) Uptake of various bacterial strains by THP-1 cells. THP-1 cells were infected at multiplicity

of infection (MOI) of 1. The number of intracellular bacteria was evaluated by CFU 3 h post-
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infection. Data were expressed as the mean and SD of two independent replicates. ΔΔRD1 car-

ries a deletion of the extended ESX-1 locus. ns, not significant in one-way ANOVA followed

by Tukey’s multiple comparison test.

(PDF)

S3 Fig. Immunoblot analysis of EspB secretion. A) Total cell lysates prepared from the indi-

cated bacterial strains were analyzed by immunoblot. Membranes were probed for EsxA, EspB

and GroEL2. B) Culture filtrates were analyzed as described for the total cell lysates. Antigen

85 (Ag85) represents the loading control. The experiment was repeated two times. One repre-

sentative image is shown.

(PDF)

S4 Fig. Mass spectrometry analysis of the secretome of the ΔespL mutant. Volcano plot

representation of the secretome comparison between ΔespL mutant and wild type strain. Blue

lines indicate an FDR of 0.05 with a S0 = 0.5. Red points represent ESX-1 substrates.

(PDF)

S5 Fig. Localization of EspL in subcellular fractions. The culture filtrate, capsular, mem-

brane and cytosolic fractions were analyzed by immunoblot. Membranes were probed for

RpoB (cytosolic control), Rv3852 (membrane control), EsxB (culture filtrate control) and

EspL.

(PDF)

S6 Fig. Validation of RNA-seq results by qRT-PCR. qRT-PCR analysis was performed on

total RNA extracted from the indicated strains. Expression levels of the various genes were

obtained from two independent replicates, normalized to the housekeeping gene sigA and

expressed as relative to H37Rv. ��, p< 0.005. ns, not significant in two-way ANOVA followed

by Tukey’s multiple comparison test.

(PDF)

S7 Fig. Mass spectrometry analysis of the total proteome of the ΔespL mutant. Volcano plot

representation of the total proteome comparison between ΔespL mutant and wild type strain.

Blue lines indicate an FDR of 0.05 with a S0 = 0.1. Red points represent ESX-1 substrates that

were found to be underrepresented in ΔespL. Green points represent EsxA and EsxB, which

were more abundant in ΔespL compared to the wild type strain.

(PDF)

S8 Fig. Expression of EspE.HA in H37Rv and in ΔespL mutant. A) qRT-PCR analysis of

espL, whiB6, esxA, espE and espE.HA gene expression levels in different strains. Data were

obtained from two independent replicates, normalized to the housekeeping gene sigA and

expressed as relative to H37Rv/pGA-espE.HA. �, p< 0.05. ��, p< 0.005. ns, not significant in

two-way ANOVA followed by Tukey’s multiple comparison test. B) Virulence of ΔespL
mutant expressing whiB6 in trans compared to H37Rv, ΔespL and complemented strain in the

THP-1 infection model. THP-1 cells were infected at multiplicity of infection (MOI) of 5. Note

that all of the strains, except ΔΔRD1, express espE.HA. ΔΔRD1 carries a deletion of the

extended ESX-1 locus. Fluorescence measurements directly correlate with THP-1 viability.

Data were expressed as the mean and standard deviation (SD) of four independent replicates.

NI: not infected control. ����, p< 0.0001. ns, not significant in one-way ANOVA followed by

Tukey’s multiple comparison test. C) qRT-PCR analysis of the expression levels of the indi-

cated genes in different strains, upon ectopic expression of whiB6. Data were obtained from

two independent replicates, normalized to the housekeeping gene sigA and expressed as rela-

tive to H37Rv/pGA-espE.HA. ����, p< 0.0001. ns, not significant in two-way ANOVA
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followed by Tukey’s multiple comparison test.

(PDF)

S9 Fig. Validation of the expression of HA-tagged EspL and virulence analysis. A) Immu-

noblot showing expression of EspL.HA and HA.EspL in total protein extracts from two inde-

pendent clones (1 and 2) obtained upon transformation of ΔespL with a plasmid encoding

espL.HA or HA.espL, respectively. Protein extract from espC::Tn/pMDespACHAD [24] was

used as a control. B) Virulence of ΔespL mutant complemented by espL.HA or by HA.espL
compared to H37Rv, ΔespL and complemented strain in the THP-1 infection model. ΔΔRD1

carries a deletion of the extended ESX-1 locus. THP-1 cells were infected at multiplicity of

infection (MOI) of 5. Fluorescence measurements directly correlate with THP-1 viability. Data

were expressed as the mean and standard deviation (SD) of four independent replicates. NI:

not infected control. ����, p< 0.0001. ns, not significant in one-way ANOVA followed by

Tukey’s multiple comparison test.

(PDF)
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