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� Abstract
Single-cell platforms provide statistically large samples of snapshot observations capable
of resolving intrercellular heterogeneity. Currently, there is a growing literature on algo-
rithms that exploit this attribute in order to infer the trajectory of biological mechanisms,
such as cell proliferation and differentiation. Despite the efforts, the trajectory inference
methodology has not yet been used for addressing the challenging problem of learning
the dynamics of protein signaling systems. In this work, we assess this prospect by test-
ing the performance of this class of algorithms on four proteomic temporal datasets. To
evaluate the learning quality, we design new general-purpose evaluation metrics that are
able to quantify performance on (i) the biological meaning of the output, (ii) the consis-
tency of the inferred trajectory, (iii) the algorithm robustness, (iv) the correlation of the
learning output with the initial dataset, and (v) the roughness of the cell parameter levels
though the inferred trajectory. We show that experimental time alone is insufficient to
provide knowledge about the order of proteins during signal transduction. Accordingly,
we show that the inferred trajectories provide richer information about the underlying
dynamics. We learn that established methods tested on high-dimensional data with small
sample size, slow dynamics, and complex structures (e.g. bifurcations) cannot always
work in the signaling setting. Among the methods we evaluate, Scorpius and a newly
introduced approach that combines Diffusion Maps and Principal Curves were found to
perform adequately in recovering the progression of signal transduction although their
performance on some metrics varies from one dataset to another. The novel metrics we
devise highlight that it is difficult to conclude, which one method is universally applica-
ble for the task. Arguably, there are still many challenges and open problems to
resolve. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of Interna-

tional Society for Advancement of Cytometry.

� Key terms
signaling; pathway; dynamics; single-cell data; trajectory inference; evaluation metrics;
mass cytometry.

A major challenge in understanding the functional properties of cells is to determine
the temporal characteristics of the mechanisms that regulate them. A class of such
mechanisms is signaling pathways, which are essentially biochemical reaction programs
that allow cells to sense and distribute information in a timely fashion (1). Typically,
environmental perturbations activate these programs by modulating specific surface
receptor-molecules. Incoming information is then relayed intracellularly through a cas-
cade of protein–protein interactions whereby the functional activation of one protein
activates the next in the sequence, and so on. Depending on pathway topology and
stochastic variation of endogenous proteins the transient activation signals can vary sub-
stantially (2,3). As a result, the identification of signaling dynamics becomes an intrigu-
ingly difficult task.

To address this challenge, single-cell platforms enable querying the behavior of
molecular mechanisms, while taking into account cell-to-cell heterogeneity in a high-
throughput manner (4). On such basis, mass cytometry was recently introduced as a
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new single-cell format that captures information from about
40 molecular quantities in thousands of cells (5). Such high con-
tent data is ideal for the comprehensive analysis of entire signal-
ing pathways (6). Ideally, to study a signaling pathway, one
needs to observe its components in the context of a time course.
However, a mass cytometer creates cross-sectional data preclud-
ing the follow-up of the same cell over time. An approximation
to a time-course, then, is to perform repeated sampling at time
intervals. Still, information about a cell cannot be reliably shared
across separate measurements (7).

Key to improve the temporal resolution is to consider
that when cells of the same type are exposed to the same trig-
ger, they will respond in the same but not necessarily syn-
chronized manner due to their inherent heterogeneity (8). In
other words, each cell in a population will be executing the
same cascade program at a stochastically different rate. On
this basis, if we regard signaling as a continuous succession of
protein activation states then, a typical mass cytometry mea-
surement constitutes a mixture of cells whose protein levels
map to one of these activation states. This means that the
temporal information is implicit in the distribution of the
data. To recover, therefore, the dynamics of signaling requires
the unmixing of single cells by reordering them in a way that
best leverages the protein activation pattern.

The problem of ordering multivariate units appears in
many different scientific contexts starting from archeology
more than a century ago (9). In biology, Magwene et al. were
the first to adopt this concept and proposed an algorithm that
is able to order temporal microarray samples and reveal dif-
ferentiation patterns in bacteria and yeast (10). Then, Gupta
and Bar-Joseph and Czibula et al. proposed solving this prob-
lem through a probabilistic instance of the traveling salesman
problem or using reinforcement learning, respectively (11,12).
More recently, the advent of single-cell transcriptomics dra-
matically expanded the field of application (13). Already there
is a large arsenal of computational techniques that exploit the
intercellular heterogeneity and arrange cells by their progres-
sion along the dynamic process of interest. To the best of our
knowledge, however, these methods, referred to as trajectory
inference (TI) methods, have so far been applied only to the
reconstruction of the dynamics of differentiation and prolifer-
ation pathways.

In this work, we examine the potential of these develop-
ments to recovering the temporal characteristics of signaling
pathways. To this end, we perform an extensive comparison
of state-of-the-art TI methods using as input four mass cyto-
metry temporal datasets from the public domain. TI perfor-
mance evaluation is not a trivial task since we are missing the
gold standard of the actual biological time of each cell. There-
fore, we employ five different metrics, four of which pres-
ented here for the first time. Each metric evaluates a different
property of TI that is; (i) its consistency with respect to prior
biological knowledge; (ii) its consistency with respect to the
time when the data were collected, (iii) the robustness;
(iv) the association of the data with the proposed cell order-
ing; and (v) the roughness of the output trajectory. Our
results show that, in principle, TI can be used to recover the

temporal characteristics of signal transduction. Despite the
fact that there can be no clear consensus as to which one
method performs best there are several candidates that are fit
for the task.

MATERIALS AND METHODS

TI Framework

Consider a dataset that captures a population of single cells as
they progress through a biological process. We denote this
dataset by D and we let D consist of n vectors in Rp, where
n is the number of sampled cells and p is the number of
assayed molecules. Since the main source of variation in D is
the process under study, cell profiles will not be randomly
scattered in Rp; rather, they will lie on a low-dimensional
noisy surface often referred to as a manifold. Effectively, a
path should exist that extends across this manifold and traces
cells as their molecular profiles evolve through the biological
process. Based on this principle, the goal of TI methods is to
learn the shape of the path and arrange cells along its course
such that the position of each cell reflects its similarity to
other cells.

Formally, the process of interest is considered continu-
ous and its path can be described by a vector-valued function

of the form r
!

tð Þ= f 1 tð Þ, f 2 tð Þ,…, f p tð Þ
D E

, where each com-

ponent function f represents the temporal evolution of mea-

sured species. Graphically, imagine that r
!

tð Þ is a vector at
the origin whose terminal point traces a curve in Rp as
t varies; similarly to the trajectory of a moving particle but in

p dimensions. In this way, a point in the image of r
!

is also
a point in Rp representing the state of the cell at a particular

point in time. Let the vector φ
! sð Þ= r

!
sð Þ+ ε

! sð Þ , where ε
!

denotes the noise vector, be a sample of such point on r
!

at an arbitrary time s. Then, the dataset D constitutes a

set of poorly ordered samples of φ
! vectors; that is,

D= φ
! s1ð Þ,φ! s2ð Þ,…,φ! snð Þ

n o
. Sampling time parameter s is a

latent random variable, often referred to as the pseudo-time,
which reflects the progress of the biological process rather
than the time when the data were collected.

To solve the problem of estimating r
!
, TI methods try to

order cell profiles based on their pairwise similarities. To this end,
let there be a similarity function g that reflects the pairwise simi-
larity between any two cells. Then, the goal is to bijectively map
each cell to an integer between 1 to n so that the similarities
remain consistent. Consistency means that given any three
cells whose ordered indexes are i, j, and k, where i< j< k, then it

must hold that g φ
! sið Þ,φ! sj

� �� �
≥ g φ

! sið Þ,φ! skð Þ
� �

and

g φ
! sj
� �

,φ! skð Þ
� �

≥ g φ
! sið Þ,φ! skð Þ

� �
. Intuitively the reordering of

cells could be addressed by sorting their pairwise Euclidean dis-
tances. However, as cells run through Rp in complex ways this
will not preserve the dynamics of the process under study. For
example, the process path may consist of cells in sequential state
transition represented as points along a nonlinear progression
curve (e.g. a signaling process); or, in more complex cell state
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transitions such as branching (e.g. hematopoietic differentiation)
or cyclic ones (e.g. cell cycle). Thus, to reveal the underlying pat-
terns in the data, it is preferable, if not necessary, to assess the
geometry of the low-dimensional manifold in which they lie.

To this direction, the majority of TI algorithms integrate
two independent procedures. The first procedure is to com-
pute a compact representation of the data either by assuming
the trajectory of cells on the manifold or learning one de
novo. The trajectories assumed are typically unidimensional,
that is, linear or cyclic; or multidimensional, that is,
bi/multifurcating, tree-like, connected graphs or disconnected
graphs (14). The second procedure is the TI itself where,
depending on the assumed or learnt representation the best
path is sought. The dependence on the compact representa-
tion allows the division of TI approaches in two classes: the
curve-based and the graph-based class of methods. Both
attempt a reduced dimension learning step at the beginning.
Approaches typically used in this step are, principal compo-
nents analysis (PCA), t-distributed stochastic neighbor
embedding (tSNE), diffusion maps, and independent compo-
nents analysis (ICA) (15–19). Then, each class tries to find
the best possible ordering within its own conceptual
framework.

The main difference between the two classes is that

curve-based methods try to infer the trajectory of r
!

immedi-
ately after the low-dimensional representation is created. Tra-
jectory inference in most curve-based methods is built around
principal curves (20). In essence, principal curves regress a
smooth, nonparametric curve through the center of the data
manifold. Because this curve resolves the variability in the
temporal dimension, the projection point of a cell to it will be
indicating how far this cell has progressed through the
dynamic process. Commonly, the geodesic distance from
the beginning of the curve to the projected point represents
the pseudo-time. Then, the ordering of cells results from the
ordering of the respective pseudo-times assigned to each
one of them. Of particular importance here is to note that the
determined ordering is directionless because the direction of
time cannot be recovered without prior knowledge. For this
reason, most algorithms require the user to provide a starting
position, for example, if the dynamic process involves differ-
entiation, a cell at a pluripotent stage would be chosen as a
starting point. Other approaches used for finding such curve
are Gaussian Processes and Differential Equations (21–23).

Graph-based methods, on the other hand, do not try to

reconstruct r
!
; rather they try fit a segmented line to the data

manifold (in Ref (10), this is called polygonal reconstruction).
For this, they take one extra step during dimensionality
reduction that tries to simplify the data representation further
by use of connected graphs, for example, a minimum span-
ning tree or a nearest neighbor graph (18,24). The nodes in
the graph represent cells or clusters of cells in two dimen-
sions, while the edges indicate proximity based on some (dis)
similarity measure between cells. To reconstruct the process
dynamics graph-based methods subtly connect the nodes in
the graph creating a path. This path can be either the longest
path in the graph (19,25,26) or a consolidation of short paths

(24,27). Commonly, the endpoints of this path are not known
so in both cases the user can define a specific node as an ori-
gin of the process, similarly to the starting position of the
curve in curve-based methods. Additionally, the methods of
this class may also assign a pseudo-time to each cell; again by
projection to the inferred path.

TI in the Context of Signaling

In literature, there exist more than 50 TI methodologies for
the analysis of single-cell data all of which have been
employed to infer the trajectory of dynamic gene expression
mechanisms, such as cell proliferation and differentiation
(14). The main difference between these processes and signal-
ing is the timescale in which they occur. A signaling cascade
typically lasts from a few minutes to an hour, while the tran-
sition between consecutive differentiation states may take
hours or days to complete. This means that a single-cell gene
expression dataset would be capturing most of differentiating
cell types whereas a mass cytometry dataset would imprint
only a snapshot of the signaling progression in each of these
populations. In terms of collected single cell data, therefore,
signaling dynamics are better studied in the context of a time
course (28).

Each step in a signaling cascade may itself occur in vari-
able times, hence, even if we collect data snapshots over time,
the physical sampling frequency should be such that ensures
the true dynamics of the system are accurately captured. Fur-
thermore, each snapshot rarely recapitulates a homogenous
set of cells from a single signaling state due to the cell-to-cell
variation of response rates that signaling processes exhibit (29).
As a result, the recorded experimental time is expected to cap-
ture convoluted information of the relevant dynamics. These
reasons underscore the importance of decoupling signaling
states from one another by TI methods.

Regarding the process trajectory, this highly depends on
the strength and duration of the upstream stimuli and the
overall signaling network architecture. For example, if the
perturbation is spontaneous and the network includes a nega-
tive feedback loop the shape of the dynamics will be transient,
resembling a positively skewed curve (30). Then, depending
on the duration of the effect, the response may be prolonged.
In general, the signaling response dynamics can be described
as being transient (positively skewed), sustained, of short-
duration or pulsatile. To depict pulsatile patterns is very diffi-
cult in mass cytometry as it requires time series data to be
collected. However, the other types of dynamic responses are
in principle detectable.

Finally, a typical task in mass cytometry is that of immu-
nophenotyping whereby cells are manually assigned to cell
types so that each population in the data is identified and
analyzed separately. This task is better known as gating. If
cells remain ungated, they would consist of a mixture of cell
types each of which encodes a different signaling program. As
such, the dynamics of signaling would be different between

cells in the dataset and the structure of r
!

would be multi-

dimensional. On the other hand, if cells are gated, r
!

becomes
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unidimensional and potentially easier to reconstruct as each
specific cell type, and its subpopulations are expected to share
many common signaling circuitries. At this point, we should
highlight that the term “linear” trajectory refers to the
sequential state transition of cells in the manifold that can be

represented as points along the progression line r
!
; geometri-

cally, this could also be a curve. Moreover, the shape of the
trajectory should not be confused with the signaling network
architecture that is usually depicted as a graph of interacting
proteins.

TI Methods Suitable for Recovering the Dynamics of

Signaling Pathways

Despite the plethora of TI methods, not all of them are suit-
able in the signal transduction setting. For example, if the
data are gated methods that output only multidimensional
trajectories are not suitable. This is because the signaling pro-
gram should apply the same to all cells of the same popula-
tion regardless of the time the population snapshot was
captured. Of course, it is possible that ungated subpopulations
not following the same signaling program with the parent
population may exist. However, for the most cases, the data
are expected to encode the dynamics of protein activation of
only one singling response. Another feature that does not
apply here is the necessity of user supervision to the algo-
rithm. Many methods request the user to provide key nodes
of the process trajectory beside an estimated origin of the pro-
cess. Locating such nodes in datasets of differentiating cells is
fairly easy using prior knowledge on the maturity of cells. In
signaling datasets, however, the population of single cells does
not change. Even the identification of the starting position is
problematic in the signaling datasets because the activation
level of the initial receptor-molecules is rarely measured.
Therefore, it is preferable to employ methods that require
user supervision as little as possible.

Under these restrictions, we evaluate below 12 TI meth-
odologies whose software is freely available. For consistency,
we based our analysis in the R programming environment in
which the majority of TI methods are also available as free
packages. Our choice for freely available methods is because
the goal of this work is not only to evaluate the ability of TI

methods to solve the signaling reconstruction problem, but
also to provide practical recommendations for the application
of these methods to researchers in the field. We also did not
qualify methods that were unable to run successfully. Further-
more, to evaluate methods with minimum possible bias, we
selected only methods that can operate without any user
intervention.

Table 1 lists the final set of TI methods that we compare
and Supplementary Table 1 briefly summarizes their mechan-
ics. For a more detailed description, the reader is referred to
the original references. The first two methods in Table 1, that
is, Scorpius and Slingshot, were recently found to be the best
performing ones in a comparative study on differentiation
data (14). Because Slingshot allows the user to choose
between several different dimensionality reduction methods,
we assessed its performance in conjunction with PCA, tSNE,
and Diffusion Maps. In total, we employ 12 different TI
approaches; eight graph-based approaches (4 of which are
variants of Slingshot) and four curve-based ones. All graph-
based methods are able to output both unidimensional (linear)
and branched trajectories, while all curve-based ones output
only unidimensional (linear) trajectories. Two of the curve-
based methods we employ, namely tSNE with Principal Curves
(tPC) and Diffusion Maps with Principal Curves (DMPC), are
regarded as baseline methods each of which combines a well-
established dimensionality reduction method as a first step,
that is tSNE (35) and Diffusion Maps (36), followed by a TI
step using Principal Curves. tPC was introduced as an exten-
sion to another curve-based method that constructs branched
trajectories (33). However, the combination of Diffusion Maps
with Principal Curves (DMPC) is first reported in this work.
All methods were run using the default input parameters (see
Supplementary Table 2). Supplementary Table 3 provides justi-
fications for the other methods we considered suitable in this
work but were excluded from the analysis shown below.

Data

We employ data from a public mass cytometry dataset where
11 different signaling activators were applied independently
on Peripheral Blood Mononuclear Cells (PBMCs) and the
levels of 10 surface and 14 intracellular markers were

Table 1. List of the final set of TI methods

METHOD TI PRINCIPAL OUTPUT REF.

SCORPIUS Curve Linear (27)
Slingshot with PCA (with 2, 5 and 10 PCs) Graph Linear or branched (31)
Slingshot with tSNE Graph Linear or branched (31)
Slingshot with diffusion maps Graph Linear or branched (31)
MonocleDDRTree Graph Tree (17)
SLICER Graph Linear or branched (32)
TSCAN Graph Linear or branched (15)
DeLorean Curve Linear (22)
tSNE with principal curve Curve Linear (33)
Diffusion maps with principal curve Curve Linear (20,34)
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measured in eight sequential time points (0 min, 1 min,
5 min, 15 min, 30 min, 60 min, 120 min, and 240 min) (36).
Data were already pre-processed and manually gated for cell
type and the response of 14 distinct cell populations to these
activators are available on http://community.cytobank.org/
cytobank upon request from the authors of the original publi-
cation (37). For TI evaluation, we selected the gated data on
the response of CD4+ and CD8+ T-cells to Orthovanadate
(pVO4) and tetradecanoylphorbol acetate (PMA)/ionomycin
perturbation. The selection of T-cells is based on the fact that
this population is highly abundant; hence, it provides a large
pool of single cell samples. In addition, the signaling path-
ways that the T-cells express are generally well established.
On the other hand, the selected activators are well-known to
lead to the strong perturbation of several intracellular signal-
ing pathways, resulting in the general T-cell activation with
high signal-to-noise ratio. The cell parameters we employ for
TI are the recorded intracellular markers (pNFkB, pp38,
pStat5, pAkt, pStat1, pSHP2, pZap70, pStat3, pSlp76. pBtk,
pPlcg2, pErk. pLat and pS6).

Evaluation methodology

Despite the fact that the field of TI is constantly growing, reli-
able metrics to evaluate the performance of developed
methods are scarce (13). Moreover, in the case of learning the
dynamics of signaling pathways there is, to our knowledge,
no available study. For this reason, we designed four novel
performance evaluation metrics and employed one more from
the available literature. Those that we designed serve to
(i) evaluate the biological interpretation of the inferred
dynamics, (ii) assess the quality of the inferred ordering,
(iii) estimate the robustness with respect to perturbation to
the input data; the sensitivity of the TI methods to the specific
sample and (iv) quantify the relation between the data and
the inferred trajectory. The former metric is context-specific
but can be applied to any kind of TI where signaling dynam-
ics are involved. On the other hand, the second metric is a
general one for when time course data are available, while the
latter two are general metrics suitable for any biological con-
text where TI can be applied. We also adopt a metric devel-
oped to quantify the smoothness of the resulting trajectories
and assess the variability in consecutive protein levels (22).
Supplementary Table 5 (Information Metrics) indicates the
algorithmic steps for each of the proposed metrics. A brief
overview is given next.

The first metric we designed acts as biological validation;
we refer to this metric as the biological consistency metric. Its
main assumption is that signaling dynamics approximate a
transient profile. On such basis, the activation level of one
protein is expected to reach its maximum before the level of
the protein that is next in the sequence of the signaling cas-
cade. This means that the order of peak activation pseudo-
times should correspond to the order of the respective pro-
teins in known signal transduction cascades. Thereupon, our
algorithm first scales the output pseudo-time between 0 and
1 so that the TI results are comparable. To reduce the vari-
ability in the trajectories and locate the position of the peak, a

smoothing spline is fitted between the pseudo-time and the
levels of each protein. The positions of the peaks are located
from the projection of the maximum smoothed values on the
pseudo-time axis. The resulting peak positions from all pro-
teins are, in turn, sorted and all consecutive protein pairs are
recorded. We employ established signaling pathways to exam-
ine the degree that each protein pair conforms to background
biological knowledge (38). To this end, we quantify the con-
sistency of a TI method by calculating the number of times
the correct pairwise sequence is recovered. Because we pro-
vide no supervision to the algorithms the peak positions will
depend on the inferred starting point of the trajectory. For
this reason, we determine the consistency over 100 randomly
chosen starting cells and assign the maximum score to the
algorithm.

The second metric assesses the quality of the inferred
latent variable, which is the pseudo-time, using the physical
time of data collection as prior knowledge. Particularly, we
define the agreement between experimental time and pseudo-
time as the probability of the inferred ordering of two cells
being the same as their ordering with respect to the experi-
mental time. To calculate this quality measure, we sample
10K pairs of cells collected at different experimental
timepoints and enumerate the orderings that are in agree-
ment. Because the cell ordering with respect to the pseudo-
time also depends on the starting point of the inferred trajec-
tory, we calculate the probabilities achieved over 100 randomly
chosen staring cells and, as previously, we assign the maxi-
mum one to the respective algorithm. We refer to this metric
as the experimental time consistency.

The third metric tries to quantify the robustness of TI
methods by virtue of their inherent stochasticity and data
subsampling. To achieve this goal, each method is run once
and the inferred ordering is recorded in a vector. A uniform
random sample of single cells, typically 20%, is then drawn
from the input time-course dataset, and TI is repeated. To
measure the robustness between the two runs, we employ the
Spearman and Kendall Rank correlation. The former mea-
sures the monotonicity in the ordering between the common
cells of the initial ordering vector and the subsampled cell
ordering vector while, the latter, measures how identical the
relative positions of the common single cells are. If the TI
method is robust, both Rank correlations would approximate
+1 or − 1 depending on the starting position of the curve/
path. Because the ordering is directionless, this starting posi-
tion is critical for the calculation of the ranks. To avoid any
stringent rule such as setting a common starting position in
all TI attempts, we find the maximum possible correlation
between the two vectors by cyclically shifting the elements of
the subsampled ordering vector. This procedure is iterated
100 times and the average maximum Rank correlations are
calculated, in absolute values, for each algorithm.

The fourth metric we devised seeks to assess the correla-
tion of the inferred ordering with the input time-course
dataset. Possible highly correlation implies that the TI method
exploited the most of the information embedded in the data.
To evaluate this, we calculate the distance correlation between

Cytometry Part A � 97A: 241–252, 2020 245

ORIGINAL ARTICLE

http://community.cytobank.org/cytobank
http://community.cytobank.org/cytobank


the vector of cell orders and the data (39). Distance correla-
tion is a general statistical measure of multivariate association
that is insensitive to nonlinear relationships and can be drawn
to characterize independence between vectors in arbitrary
dimensions. On such basis, a distance correlation equal to
zero indicates independence between the inferred ordering
and the original data. These properties render distance corre-
lation suitable in the context of quantifying the association
between the pseudo-time and the initial variables of the
dataset.

Finally, the fifth metric we employ evaluates how rough
the trajectory of each protein is by calculating the differences
in consecutive protein levels after ordering (22). Low metric
values indicate smooth trajectories. To see whether the score
is statistically significantly different than that of a random
ordering, a one-sided t-test is also applied. As performance
score for this metric we find the average of all individually
significant scores.

RESULTS

Signaling Dynamics Reconstruction

Figure 1A shows the distribution of cells across experimental
time for each protein after the activation with PMA. Similarly,
the distribution of cells against pVO4 is seen in Figure 1B. Each
point refers to a cell and different colors refer to the different
experimental time. The continuous curve in each subplot
denotes the smoothing spline model that was fit in order to
identify the positions of peak activation for each protein. We will
regard these inferred dynamics as being the baseline and will
refer to this peak detection approach as the naïve approach. It is
easily seen that the peak activation occurs almost simultaneously
for most of the activated proteins. This implies that the temporal

resolution requires significant improvement in order to accu-
rately depict the process dynamics.

Before applying any TI method on the data, we examined
whether the heterogeneity at each time point is confounded by
cell parameters such as cell cycle and cell size. Similarly, we
examined whether the main effect in the data is signaling or
some other cell behavior such as differentiation or proliferation.
For the former case, we employed information on cell size and
the DNA content for each cell and tried to establish the correla-
tion of these two features with the phosphorylated protein
abundances. Supplementary Figure 11A shows the respective
statistically significant correlations (p < 0.01) in the case of
pVO4 data. In general, with the exception of pBtk, the effect of
both cell features is relatively small on the phosphorylated pro-
teins. On top of that, this faint association pattern changes in
the case of PMA activation as seen in Supplementary
Figure 11B. Therefore, the main driver of the heterogeneity
should be the signaling process and not some other cell behav-
ior. Accordingly, Supplementary Figure 12 displays the distri-
bution of DNA content and cell size at each timepoint. As seen,
no apparent association between experimental time and any of
the two cell features exists. Therefore, the main driver of the
observed dynamics is signaling and not some other biological
process.

Next, we applied TI on the protein activation data.
Figure 2 shows the result of using Slingshot with t-SNE on the
dataset where CD4+ T cells were perturbed with PMA. Similar
figures of results for the other TI methods and datasets can be
found in the Supplementary Figures 1–10. Figure 2A illustrates
the distribution of cells in the low-dimensional space. To be
comparable with the results of the naïve approach in Figure 1,
the same color-coding was used. From the geometry of the
low-dimensional embedding, it is easily observed that t-SNE
manages to separate adequately the samples from each

Figure 1. Baseline trajectory inference after the activation with PMA/ionomycin (A) and pVO4 (B). Each subplot in both (A) and (B) depicts

the abundance of each of the 14 activated proteins against experimental time, where each point refers to a cell. Different cell colors refer

to the different experimental timepoints. The time is measured in minutes. The continuous curve in each subplot denotes the smoothing

spline that was fit in order to identify the positions of peak activation for each protein. The peak activation occurs almost simultaneously

for most of the activated proteins implying that the temporal resolution requires significant improvement in order to accurately depict the

process dynamics. [Color figure can be viewed at wileyonlinelibrary.com]
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temporal measurement. Then, if we imagine a trajectory that
starts from the top left corner and follows a counter-clockwise
direction, we can see that the order of experimental timepoints
is 0, 240, 120, 60, 30, 15, 5, 2, and 1 min. Such trajectory illus-
trates a critical point in TI, that is, that the ordering is direc-
tionless. This proves the necessity (in some cases) of setting an
initial position to the trajectories and the strong need of met-
rics that takes this into account. Figure 2B displays the protein
abundances against pseudo-time after reordering cells by the
final trajectory. To identify the position of the peak, a cubic
spline was fit. Arguably, spline fitting is necessary in graph-
based methods whose output is a connected path rather than a
continuous line as in the case of curve-based methods. How-
ever, to maintain equality, we employ a spline model for peak
detection in curve-based results as well. Compared to the naïve
approach, the positions of the peaks between the proteins are
well separated. These results imply that TI can, in principle,
improve the temporal resolution of the collected data.

Figure 3 describes the result from applying the DMPC
method on the CD4+, pVO4 dataset. As before, Figure 3A dis-
plays the distribution of cells in the low-dimensional space
created during dimensionality reduction, the diffusion maps
in this case. According to the geometry of the manifold one
optimal trajectory should start from the top-left corner and
follow, again, a counter-clockwise direction. This time, how-
ever, the experimental timepoints appear to be in their physi-
cal ordering. Indeed, based on the resulting ordering of cells,
the inferred trajectory appears to have recovered the dynam-
ics of the signaling pathway realistically without the need of
shifting or reversing the final ordering (Fig. 3B).

Our results also indicate that some algorithms may output
multidimensional trajectories. Supplementary Figure 14 depicts
such an example from when we apply Slingshot in conjunction
with PCA where the five first principal components are used in
the dimensionality reduction step. In the main, if the underlying
trajectory is multidimensional, one would expect each inferred
branch to include cells from all experimental timepoints since
signaling is a continuous process. However, we systematically
find that some temporal measurements are exclusively detected
in one of the inferred branches. In the analysis that follows,
therefore, we excluded those algorithms whose inference was a
multidimensional trajectory.

Performance Evaluation Results

Figure 4 depicts the comparative performance evaluation of
the TI methods according to the different metrics. The exact
values are indicated in Supplementary Table 4. As back-
ground pathway for calculating the biological consistency, we
employed the one that was described in the original manu-
script of the data (36). In general, there is no clear consensus
as to which method performs the best in all datasets. How-
ever, in all cases, we examine the majority of methods that
did not predict a multidimensional trajectory outperform the
naïve approach in terms of the biological consistency. Fur-
thermore, all methods have scored high in experimental time
consistency with respect to a random reconstruction. Taken
together these results indicate that TI is indeed improving the
temporal resolution of the data in a way that is both biologi-
cally and experimentally consistent.

Figure 2. Result of slingshot with tSNE on the PMA dataset. (A) The distribution of cells in the first two tSNE components. Each cell is

depicted as a dot. Colors match the experimental time points from which the cells where measured. (B) The abundances of the

14 proteins are plotted against the pseudo-time derived from slingshot (using a minimum spanning tree and principal curves). The

continuous lines denote the fitted spline model used for peak detection. As far as the peaks in phosphorylation models are concerned, the

method lead to a variety in the pseudo-time, constructing realistic trajectories. [Color figure can be viewed at wileyonlinelibrary.com]
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In more detail, Figure 4A summarizes the scores on the
CD4+ T cells dataset when these were perturbed by PMA.
Clearly, all methods that predict a sensible trajectory out-
perform the random model in all metrics with the exception
of tPC for the roughness, which shows a comparable score.
Then, in terms of biological consistency, the methods DMPC,
Slingshot with tSNE and tPC perform equally well. In terms
of time consistency, DMPC scores highest followed closely by
Slingshot with tSNE. Similarly, DMPC achieved the lowest
roughness value and high-distance correlation. The highest
distance correlation was scored by TSCAN. On the other
hand, SCORPIUS and Slingshot with tSNE are the most
robust methods in terms of both Kendal and Spearman Rank
correlation. Taken together, one may conclude that the
DMPC has an overall better performance followed by Sling-
shot with tSNE. However, in terms of robustness its score is
average.

Along the same lines, Figure 4B describes the respective
TI scores on CD4+ T cells when perturbed by pVO4. As before,
all methods outperform the random model with the exception
of tPC and SCORPIUS that scored worse in biological consis-
tency. Regardless, it is difficult to conclude which method is
the best. For example, in terms of biological consistency,
distance correlation and roughness, Slingshot with two-
dimensional PCA scored highest. However, its robustness
scores are of the lowest ones. On the other hand, Slingshot
with t-SNE performs best in terms of experimental time consis-
tency and robustness (Spearman), while it is second best in
terms of roughness and biological consistency. In contrast, it is
has among the lowest scores in distance correlation. These
results indicate that selecting the best scoring method is not
trivial. In addition, the performance of each method according
to the same metrics appears to change between different

datasets. Figure 4C,D illustrates the performance of TI algo-
rithms on the datasets, where CD8+ T cells were collected. Par-
ticularly, Figure 4C illustrates result for when PMA was used.
As in the case of CD4+, T cells for the same perturbation, all
TI methods scored better than the random or the naïve model
with the exception of SCORPIUS. Then, the most biologically
consistent method was DeLorean followed by
MonocleDDRTree, while the most consistent one with the
experimental time measurements was DMPC. DMPC scores
also highest in distance correlation followed, again by
MonocleDDRTree. MonocleDDRTree scores also high in
roughness but is not as robust as tPC and SCORPIUS were
the most robust algorithms. Overall, we could say that the
trajectory inferred by DMPC maintains its relation to the
input data using most of the information they contain in a
fairly robust manner. However, it performs marginally
when detecting biologically relevant protein sequences. On
the other hand, MonocleDDRTree performs comparably to
DPMC for most metrics. On top of that, it has the second
best consistency with the underlying biology. Finally,
Figure 4D depicts the performance of TI methods when
pVO4 was applied. Surprisingly, TSCAN shows an overall
better performance being among the highest scoring
methods in all performance measures.

Taken together, one could say that DPMC is a TI
method that performs well under PMA perturbation. Then,
in all cases, we tested SCORPIUS is among the most robust
and consistent with respect to the experimental time methods.
However, in the majority of cases, it fails to detect the under-
lying biology. On the other hand, Slingshot with tSNE or
two-dimensional PCA appear to perform well in the CD4+ T
cell datasets. This is however an exception because all other
dimensionality reduction variants of Slingshot have failed to

Figure 3. Result of diffusion maps with principal curves (DMPC) on the pVO4 dataset. As shown in Figure 2, (A) denotes the distribution of

cells in the low-dimensional space generated by the diffusion maps algorithm. Similarly, (B) illustrates the abundances of the 14 proteins

against the inferred pseudo-time along with their peak detection model fit. [Color figure can be viewed at wileyonlinelibrary.com]

248 Learning Signaling Pathway Dynamics

ORIGINAL ARTICLE

http://wileyonlinelibrary.com


detect a sensible trajectory in all other datasets. For this rea-
son, their performance was not evaluated. Of note is that in
all results of Figure 4 there appears to be a correlation
between the biological consistency scores and distance corre-
lation and between experimental time consistency and robust-
ness scores.

DISCUSSION

TI Methods Can in Principle Be Used for the

Reconstruction of Signaling Dynamics

The focus in this work was to explore the possibility of using
TI methods in order to describe the dynamics of signaling

pathways from single-cell data. The reason we employ tempo-
ral data and not just one cross-section as when modeling the
progression of differentiation is because differentiation is a
relatively slow process and a typical cross-section should cap-
ture cells from all its different stages. In contrast, the time-
scale of signaling is a lot shorter and one single-cell
measurement is not guaranteed to capture the transition of
cells between all states of an activated pathway. On the other
hand, in the case of temporal data, there is no direct mapping
between cells measured at sequential intervals. This means
that to capture the underlying dynamics correctly the sam-
pling frequency must be such that the abundance distribu-
tions of the proteins measured will remain unimodal over

Figure 4. Performance evaluation summary. Each subfigure illustrates a spider plot where the TI scores on each metric are indicated for

each method. Each metric is appended to the corner of the plot, while the performance of each TI method is described with a different

color. The random (baseline) approach is indicated as a seventh method. For the biological consistency metric, the random approach

refers to the naive approach described in the text where the true biological time is used. Because in roughness smaller values are better,

the reported values are in reverse, that is, 2− roughness. (A) The scores of each TI method on the CD4+ PMA dataset. (B) The scores of

each TI method on the CD4+ pVO4 dataset (C) The scores of each TI method on the CD8+ PMA dataset. (D) The scores of each TI method

on the CD8+ pVO4 dataset. [Color figure can be viewed at wileyonlinelibrary.com]
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time. Unfortunately, in mass cytometry the sampling fre-
quency is such that the time snapshots rarely represent a
homogenous set of cells from one single signaling state. For
example, in the data, we employed the protein distributions
often display bimodal or other forms of broad distributions
(Supplementary Fig. 13). Therefore, the first goal in this work
was to examine whether TI methods increase the temporal
resolution of the data, thus setting the ground for the recov-
ery of the underlying process progression.

To address this hypothesis we devised a novel metric that
quantifies whether the inferred dynamics are consistent with
known signaling pathways (biological consistency metric). Vali-
dation of TI methods with known biology is common among
studies in the field. However, it is less complicated for these
studies because they refer to differentiation where tracking
known phenotypic markers along progression lines or compar-
ing against a known trajectory is straightforward (15,24). At
the same time, however, this makes such validation schemes
study-specific and cannot be generally applied for the evalua-
tion of the TI methods under any given circumstance. There-
fore, the validation methodology we proposed employs the cell
ordering for setting the order of the measured variables
(Supplementary Table 5). The latter ordering directly reflects
the causality of the underlying biology; if a protein comes
before another in a dynamic process then its activation will
happen earlier in time. Here, one may object that this metric
cannot be applied in the case of a pulsatile pattern. Still, even
in the case of such dynamic profile, the time of maximum of
the first pulse will be denoting the time when the respective
protein was activated. On the other hand, this philosophy can
be directly transferred to the differentiation domain. Although,
there, the dynamics are multimodal and the second ordering
problem becomes more complicated. We leave such an exten-
sion as future work.

Returning to our hypothesis, we have shown that the
main contributor to the system dynamics is signaling rather
than confounding factors such differentiation or proliferation.
On such basis, our results indicated that almost all methods
that predict sensible trajectories are able to score higher than
the naïve model in all datasets. This shows that TI methods
are able to leverage important biological information on the
process of signal transduction by enhancing the temporal res-
olution of single cell signaling data.

Robustness of TI Methods

Despite the positive first outcome, the results also indicate that
there can be no clear consensus as to which method is the best
performing one. This is commonplace in the field because
almost every study wherein a new TI method is proposed also
describes a new metric (13,14). Many of these metrics are case-
study-specific; hence, they cannot be used for the general evalua-
tion of TI methods. For example, TI methods are independently
evaluated on whether they are robust to: (i) changes in variables
(40,41), (ii) subsampling (15,17,18,33,42) and (iii) their inherent
stochasticity (24,43,44). Robustness to changes in the variables
we employ for TI cannot be applied in mass cytometry data
because the number of measured quantities is low compared to

that of single-cell RNAseq data. Therefore, the evaluation meth-
odology we propose here quantifies robustness in subsampling
and inherent stochasticity based on two important principles.
First, it is agnostic of any prior cell labeling or known trajectory
and second; it ignores any user supervision even that of setting
the starting point of the trajectory. Both of these allow our
robustness evaluation methodology to be generally applicable in
any TI method performance evaluation.

From our results, we learnt that the performance of the
same method may vary considerably between different datasets.
This is because the signal-to-noise ratio can vary substantially
between single cell measurements and TI methods are very
sensitive to noise. Along the same lines, there is also the artifi-
cial noise introduced during preprocessing of the data that has
been shown to disturb the quality of multivariate analyses (45).
Then, in terms of robustness, SCORPIUS was the overall best
performing method followed by tPC in three datasets (CD4+

under pVO4 and CD8+ under PMA and pVO4) and Slingshot
with tSNE in two datasets (CD4+ under PMA and pVO4). One
reason for the solid performance of SCORPIUS is that it is a
curve-based method built to operate without any prior infor-
mation about the dynamic process of interest (27). In addition,
its dimensionality reduction mechanism is based on correlation
distance between any two cells, a fact that makes its inferences
quite resilient to noise.

Quality of the Inferred Trajectories and Association

with the Original Data

In terms of quality of the inferred orderings, we devised a
metric that evaluates the consistency between the inferred
and the experimental cell orderings (experimental time con-
sistency). That is, the quality of the increase in the temporal
resolution that each TI method achieves. This measure is sim-
ilar to the consistency measure described by Canoodt et al
(27). Our results strongly indicate that TI methods manage to
learn, to a significant extent, the order of cells over the physi-
cal time they were collected only by looking at the protein
abundance levels. The main limitation of this metric is that
we do not know how well the inferred pseudo-time reflects
the true underlying biological time. For example, let us
assume that the score of an algorithm is 0.8. This means that
about 20% of the cells, it reorders were not positioned as
expected from their time of measurement. However, this does
not mean that they have been misplaced. In fact, this is what
the inference concerns; to identify those cells whose experi-
mental time is not in line with their biological time and repo-
sition them accordingly. Therefore, in contrast to the
biological consistency metric, since we cannot control for the
true biological time the value of this metric should be care-
fully considered when drawing conclusions about the true
underlying biology.

Another limitation of the temporal consistency perfor-
mance measure is that it can be applied only when the
inferred trajectory is unidimensional. In general, our analysis
is liberal in that it includes several TI methods that predict
multidimensional process trajectories even though this is
highly unlikely when gated data are available. Our results
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provide evidence of this hypothesis as the algorithms
predicting a multidimensional trajectory fail to reflect the fact
that signaling is a continuous process. For this reason, we
have excluded some algorithms from our comparative analy-
sis. Regardless, in the case of a sensible multidimensional tra-
jectory, this metric would have to be adjusted for each
branched path. We also leave such extension as future work.

Another metric we employ for quantifying the quality of
the output trajectories is the roughness. In theory, the less vari-
ant is the outcome, the better the dynamics of the process are
described. For the CD4+ T cell datasets Slingshot and DMPC
showed that they reliably output the smoothest trajectories.
Likewise, SCORPIUS and DMPC for the CD8+ T cell datasets.
Even so, there is no guarantee that less variable trajectories will
possess any information about the process imprinted on the
multivariate data or describe just a pattern of noise. In fact, a
close inspection of the roughness scores in all datasets con-
cludes that the variability of the outcome of some methods can
be comparable to that of a random ordering. It is critical there-
fore to examine how associated the generated dynamics are to
the process that the original data have documented.

Typically, this can be achieved by comparing against a
known process progression (27,44) or features derived from
the original data such as clusters (46). Instead, what we pro-
posed here is to employ the distance correlation, a statistical
measure that directly assesses the independence between the
ordering vector and the input data without the requirement
of background knowledge or performing any other data anal-
ysis (e.g. clustering). Then, as expected, our distance correla-
tion results show that the random ordering and the original
data are indeed independent. In addition, most methods score
relatively high indicating that they retain most of the infor-
mation embodied in the data. Based on these scores DMPC
performs best in two datasets, while TSCAN and Slingshot
with two-dimensional PCA in the other two.

There are two interesting observations here. One is that
whenever a method scores best in distance correlation, it also
scores high in biological consistency. In fact the correspon-
dence between the two metrics appears in the scores of several
TI methods. Simply, this shows that the more information an
algorithm retrieves from the data (i.e. higher distance), the bet-
ter its prediction will be with respect to the underlying biology.
Likewise, our second observation is that in many cases a
method’s robustness score relates positively to its experimental
time consistency score. This is intuitive in the sense that for an
algorithm to provide reproducible results the consistency of its
inferred trajectories with the known physical time of data col-
lection should be high. Taken together, these observations
highlight the merits of the proposed metrics in validating and
interpreting the result of TI algorithms.

CONCLUSIONS

The purpose of this work was to explore the possibility of using
TΙ to model the dynamics of signaling. This first investigation
clearly shows that the task is, in principle, possible. Although no
particular method performed best in all datasets, we can safely

suggest Scorpius and DMPC as good candidates. What we learnt
from our analysis is that good performance depends on many
different aspects, to name a few, biological perturbation, data
quality, dimensionality reduction method selection and method
stochasticity. Preliminary and anecdotal testing, which we leave
as future work, also showed that filtering out proteins with mini-
mal abundance variability improves the quality of TI. We also
learnt that good-quality algorithms (e.g. Slingshot) that have
been tested on high-dimensional data with small sample size,
slow dynamics, and complex structures (e.g. bifurcations) do not
work out-of-the-box for this setting. Fortunately, the modular
framework of TI allows the combination of virtually any dimen-
sionality algorithm method with any trajectory inference algo-
rithm creating a large space of candidate methods for solving
this problem. For example, we show here for the first time a
new TI method that combines Diffusion Maps with Principal
Curves (DMPC) and performs more than adequately across the
proposed metrics. Regarding these metrics, our goal was to pro-
vide the community with multiple performance quality mea-
sures that are generally applicable for the evaluation of TI
methods. Our findings indicate that the metrics we developed
not only assess the algorithmic performance from many differ-
ent perspectives but also provide intuitive interpretations of
the respective results. Of course, there are still some aspects
that require improvement in order to address more compli-
cated process structures such as those with bimodal dynamics,
branched trajectories, etc. Arguably there are still many chal-
lenges and open problems to be solved. Scripts to reproduce
the preceding results are available from GitHub (https://github.
com/mensxmachina/SignalingDynamicsReconstruction).
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