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Abstract
Background  Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given 
its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modi-
fications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are 
regarded as an effective means of regulating blood glucose levels in clinical practice. 
Objective  This review aims to comprehensively summarize the role of GLP-1 RAs in the management of diabetes mellitus 
(DM) and cardiovascular disease (CVD), with a particular emphasis on the underlying signal transduction pathways and 
their therapeutic potential.
Methods  A comprehensive review was carried out through literature research.
Results and Discussion  In pancreatic β-cells, GLP-1 RAs regulate the secretion of insulin and glucagon in a glucosedepend-
ent manner by influencing signaling pathways such as cAMP, PI3K, and MAPK. They also contribute to the regulation of 
blood glucose levels by promoting the proliferation of β-cells and inhibiting apoptosis in these cells. Recent comprehensive 
studies have also demonstrated the favorable impact of GLP-1 RAs on cardiovascular wellbeing. In addition to the cardio-
vascular protection afforded by glucose metabolism regulation, a large body of evidence from animal and cellular studies 
has corroborated the beneficial effects of GLP-1 RAs on conditions such as heart failure (HF), hypertension, and ischemic 
cardiomyopathy. These benefits are mainly attributed to the alleviation of inflammatory responses, reduction of oxidative 
stress, and prevention of cell apoptosis. Clinical data shows that GLP-1 RAs can reduce the risk of major adverse cardiovas-
cular events (MACE) in diabetic patients.
Conclusion  GLP-1 RAs play an important role in the management of both diabetes and cardiovascular diseases. They show 
potential therapeutic value through the modulation of multiple signal transduction pathways. However, there may still be 
some issues in practical applications that require further research and resolution.

Keywords  GLP-1 RAs · Cardiovascular · Type 2 diabetes · Ischemic cardiomyopathy · Diabetic cardiomyopathy · Heart 
failure
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HFpEF	� Heart failure with preserved ejection 
fraction

HFrEF	� Heart failure with reduced ejection fraction
H/R	� Hypoxia/reoxygenation
I/R	� Ischemia/reperfusion
LV	� Left ventricular
MACE	� Major adverse cardiovascular events
MAPK	� RAS/RAF/MEK1/2/ERK1/2
NLRP3	� Nod-like receptor thermal protein domain 

associated protein 3
PAH	� Pulmonary arterial hypertension
PCI	� Percutaneous coronary intervention
PI3K	� Phosphatidylinositol 3-kinase
PKA	� Protein kinase A
SBP	� Systolic blood pressure
STEMI	� ST-segment elevation myocardial infarction
VSMCs	� Vascular smooth muscle cells

Introduction

In recent years, the incidence of diabetes mellitus (DM) and 
cardiovascular disease (CVD) has surged significantly. These 
two conditions are closely interrelated, with DM representing 
a significant risk factor for CVD due to factors such as obesity, 
hypercholesterolemia, atherosclerosis, microcirculation dis-
orders, and hypertension [1, 2]. Epidemiological studies have 
demonstrated a correlation between hyperglycemia and the 
severity of cardiovascular dysfunction and mortality in patients 
with DM [3, 4]. The results of both animal and cellular studies 
have demonstrated that in the context of hyperglycemia, the 
heart’s capacity to utilize glucose is diminished, which in turn 
promotes oxidative stress and inflammation in myocardial cells. 
These factors alter myocardial mitochondrial function, induce 
apoptosis, and impact cardiac contractility [5]. Moreover, 
endothelial cell inflammation results in the proliferation, migra-
tion, and apoptosis of vascular smooth muscle cells (VSMCs), 
thereby fostering intimal thickening and vascular remodeling 
and accelerating the deposition of atherosclerotic plaques [6].

Cardiovascular ailments associated with diabetes have 
become the foremost cause of diabetes-related morbidity and 
mortality, imposing a significant economic burden on society 
[7]. The identification of potential therapeutic agents for diabetic 
cardiopathy remains a crucial area of research. GLP-1 is a gut-
derived hormone secreted in response to oral nutrient intake, 
exhibiting potent insulinotropic activity across several species, 
including humans [8]. GLP-1 primarily acts by binding to the 
GLP-1 receptor (GLP-1 R), which is expressed in various tis-
sues, including the heart, lungs, intestines, bones, and brain. 
GLP-1 RAs are known to regulate glycemic metabolism, miti-
gate myocardial and lung injury, inhibit gastric emptying, reduce 
bone destruction, and provide neuroprotective effects [9–11]. 
However, native GLP-1 has a short half-life of approximately 

2–3 min, limiting its therapeutic potential [12]. To overcome 
this limitation, several GLP-1 RAs with longer half-lives have 
been developed to mimic the role of endogenous GLP-1 [13].

The protective effects of GLP-1 RAs on cardiovascular 
health have attracted considerable attention, with research 
focusing on several key areas. In models of heart failure 
(HF), GLP-1 RAs have been observed to alter energy sub-
strate utilization, alleviate myocardial and endothelial 
inflammation, mitigate oxidative stress, and antagonize 
myocardial remodeling [14]. In hypertension models, GLP-1 
RAs exert beneficial effects through multiple mechanisms 
including vascular vasodilation, diuresis, decreased sympa-
thetic activity in the central nervous system, and reduced 
blood pressure variability (BPV) [15]. Furthermore, GLP-1 
RAs play a pivotal role in the alleviation of oxidative stress, 
the maintenance of mitochondrial homeostasis, and the inhi-
bition of cell apoptosis and pyroptosis in models of ischemic 
cardiomyopathy [16]. Furthermore, they inhibit vascular 
remodeling and enhance coronary blood flow in diabetic 
cardiopathy models [17]. In light of these benefits, GLP-1 
RAs present a promising avenue for enhancing outcomes in 
patients with DM and CVD.

The Origin and Classification of GLP‑1 RAs

GLP-1 is an incretin hormone secreted by L cells in the distal 
ileum, rectum, and colon. Its primary functions are to facili-
tate glucose-stimulated insulin release and to inhibit gluca-
gon secretion. However, its relatively short plasma half-life of 
2–3 min, due to rapid degradation by dipeptidyl peptidase-4 
(DPP-4), has prompted structural modifications to enhance 
its pharmacological efficacy. These modifications serve to 
enhance the binding affinity of GLP-1 to the GLP-1 R and 
increase its resistance to DPP-4 degradation, thereby prolong-
ing its half-life and enhancing its clinical utility. It is notewor-
thy that exendin-4 (Ex-4), a peptide derived from the saliva of 
the American Gila monster, exhibits pharmacological func-
tions similar to those of GLP-1 and is resistant to DPP-4 deg-
radation. This has led to the development of Ex-4 as a hypogly-
cemic drug. Drugs that activate GLP-1 R in a similar manner 
are collectively designated as GLP-1 RAs [18].

GLP-1RAs are classified according to their structural and 
pharmacokinetic properties. In terms of their structural com-
position, these agents can be divided into two main categories: 
modified versions of native GLP-1 that are resistant to DPP-4 
and those that mimic Ex-4, activating GLP-1 R in a manner 
that is comparable to that of native GLP-1. In terms of phar-
macokinetics, GLP-1 RAs can be classified as either short-
acting or long-acting. Short-acting options include exenatide 
and lixisenatide, while long-acting ones include liraglutide, 
albiglutide, tirzepatide, dulaglutide, semaglutide, and poly-
ethylene glycol loxenatide (PEX-168) [19]. Table 1 provides 
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a comprehensive overview of the characteristics of the most 
commonly used GLP-1 RAs [12, 20].

In clinical practice, GLP-1 RAs are primarily employed 
to stabilize blood glucose levels in patients with diabetes, 
with established efficacy. Furthermore, research suggests 
that GLP-1 RAs confer a range of advantages to individuals 
without diabetes but with CVD. This review examines the 
evidence pertaining to the mechanisms underlying the hypo-
glycemic and cardiovascular protective effects of GLP-1 RAs.

Beneficial Effects of GLP‑1 RAs on DM

Effects of GLP‑1 RAs on Insulin Secretion

GLP-1 enhances insulin secretion in a glucose-dependent 
manner, thereby primarily stimulating insulin release when 
blood sugar levels are elevated, thus reducing the risk of 
hypoglycemia. This characteristic renders GLP-1 RAs a 
promising area of focus in diabetes treatment research, as 
they facilitate effective blood sugar management without an 
increased risk of hypoglycemia.

Insulin secretion is biphasic, comprising an initial rapid 
release, followed by a slower, sustained phase. The second 
phase is dependent on ATP-producing secretagogues, which 
serves to underscore its energy dependence [21]. Upon bind-
ing to GLP-1 R on pancreatic β-cells, GLP-1 activates a 
G-protein complex, resulting in the release of the Gαs subu-
nit. This subunit activates adenylyl cyclase, resulting in the 
production of cyclic adenosine monophosphate (cAMP). 
The primary effectors of cAMP, protein kinase A (PKA), 
and the cAMP-regulated guanine nucleotide exchange fac-
tor (Epac) play crucial roles in this process [22]. GLP-1 
phosphorylates glucose transporter 2 (GLUT2) via the PKA 
pathway, thereby facilitating glucose transport into β-cells 
[23]. Upon entering into the cells, glucose is converted to 
glucose-6-phosphate, which in turn triggers the processes of 
glycolysis and the tricarboxylic acid (TCA) cycle, thereby 
increasing the levels of cytoplasmic ATP. This results in the 
closure of ATP-sensitive potassium (KATP) channels, which 
in turn leads to cell depolarization, the opening of voltage-
dependent Ca2⁺ channels (VDCCs), and the subsequent 
influx of Ca2⁺. Additionally, PKA and Epac modulate IP3R 
and RyR on the endoplasmic reticulum (ER), thereby pro-
moting Ca2⁺ release via Ca2⁺-induced Ca2⁺ release (CICR). 
This results in an increase in the cytoplasmic calcium con-
centration, which enhances insulin secretion from β-cells 
[24–26] (Fig. 1).

The results of animal studies indicate that Ex-4 enhances 
glucose uptake, intracellular Ca2⁺ levels, and insulin secre-
tion in β-cells. However, these effects are attenuated by PKA 
inhibitors or dominant-negative Epac overexpression [23, 
25]. In the resting β-cells, the delayed rectifier potassium Ta
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channels (Kv) are typically closed; however, in response to 
glucose-induced depolarization, these channels open. It is 
proposed that Ex-4 acts to counteract potassium outflow, 
thereby delaying repolarization and increasing Ca2⁺ influx, 
which in turn enhances insulin secretion [27]. Furthermore, 
GLP-1 RAs have been demonstrated to enhance β-cell sen-
sitivity to glucose by modulating KATP channel activity, as 
evidenced by observations in both animal and human studies 
[28, 29] (Fig. 1).

GLP-1 RAs are acknowledged for their role in maintain-
ing glucose homeostasis and exerting a range of broader 
biological effects, including cardioprotective properties. 
They enhance myocardial glucose uptake, reduce inflam-
mation and oxidative stress, and prevent apoptosis. For 
example, Ex-4 has been demonstrated to increase cardiac 
glucose uptake and ATP production by promoting GLUT1 
translocation in H9c2 cells. GLP-1 R activation has been 
shown to elevate cAMP levels, activating PKA and Epac 
pathways, which offer antioxidant and anti-apoptotic 
protection against oxidative damage. In cardiac injury 
contexts, immune cells produce inflammatory mediators, 
impairing contractile function; however, liraglutide has 
been shown to significantly mitigate these effects [30, 31].

Effects of GLP‑1 RAs on Promoting Pancreatic Islet 
β‑Cell Proliferation and Inhibiting Its Apoptosis

GLP-1 RAs confer comprehensive benefits through the 
enhancement of glucose-stimulated insulin secretion, resto-
ration of β-cell glucose sensitivity, and stimulation of insulin 
gene expression and biosynthesis. Clinical studies indicate 
that GLP-1 RAs promote β-cell proliferation, improve sur-
vival, and facilitate regeneration, thereby underscoring their 
potential for therapeutic intervention in cases of pancreatic 
β-cell dysfunction [32]. Ex-4 binds to receptors on pancre-
atic β-cell, activating adenylyl cyclase (AC) and cAMP, 
which in turn activate PKA and Epac [33]. In streptozotocin-
induced diabetic mice, Ex-4 has been observed to regulate 
the cell cycle via the PKA/activating transcription factor 
1 (ATF-1)/β-catenin/cyclin D1 pathway, thereby enhanc-
ing proliferation of β-cell [34]. Epac activates the MAPK 
pathway, thereby promoting the activity of cyclin-dependent 
kinase 2 (CDK2) and CDK4, which in turn facilitate β-cell 
differentiation and proliferation [35, 36] (Fig. 2).

It is postulated that GLP-1 RAs activate the GLP-1 R and 
transactivate the epidermal growth factor receptor (EGFR) 
via metalloproteinases. In C57BL/6 mice, the absence of 

Fig. 1   GLP-1 RAs
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EGFR in β-cell results in glucose intolerance, underscor-
ing the importance of EGFR in insulin secretion and β-cell 
proliferation [37]. Ex-4 exerts regulatory control over the 
PI3K/Akt/Foxo1 pathway, impeding the nuclear entry of 
Foxo1 and consequently enhancing the expression of insulin 
gene transcription factors PDX-1 and MafA. These factors 
have been demonstrated to enhance both β-cell prolifera-
tion and α-to-β-cell trans-differentiation [38–40]. The acti-
vation of Akt by mTOR is essential for the phosphorylation 
of P70s6k, which plays a pivotal role in regulating the cell 
cycle and ensuring cell survival. Ex-4 exerts its influence on 
cell proliferation via the PKB/mTOR/p70S6K pathway [41]. 
PKCζ, a PI3K effector, is essential for β-cell proliferation 
and differentiation (Fig. 2).

In the past decades, several groups have found that drugs 
that harmine and other dual specificity tyrosine phosphoryl-
ation-regulated kinase 1A (DYRK1A) inhibitors are able to 
induce proliferation of human β-cell and increase islet mass 
in vitro and vivo, and its pro-proliferative effects primar-
ily operate via translocation of nuclear factor of activated 
T-cells (NFAT) transcription factors to the nucleus, with 
the consequent transactivation of cyclins such as cyclin A, 
CDKs such as CDK1, and repression of CDK-inhibitors such 
as p15INK4, p21CIP1, and p57KIP2 [42, 43]. It is noted that, 

whether in vitro or in vivo experiments, the combination of 
harmine and Ex-4 can significantly promote the proliferation 
of human β-cells compared with harmine alone, which may 
also be related to the promotion of trans-differentiation from 
α-cells to β-cells [44].

Studies have demonstrated that GLP-1 RAs inhibit β-cell 
apoptosis. They reduce caspase-3 mRNA activity and 
enhance the expression of anti-apoptotic genes, including 
Bcl-2 and Bcl-xl [45, 46]. Additionally, GLP-1 RAs have 
been demonstrated to activate AP-1, which regulates the 
expression of apoptotic genes, and to phosphorylate Bad, 
a pro-apoptotic factor, thereby reducing apoptosis [47] 
(Fig. 2). These pathways play a critical role in enhancing 
cell survival and inhibiting apoptosis in pancreatic β-cell, 
thereby showcasing multifaceted protective effects of GLP-1 
RAs on β-cell viability.

Effects of GLP‑1 RAs on Promoting Somatostatin 
Release and Inhibiting Glucagon Secretion

The effects of GLP-1 RAs on the release of somatosta-
tin and the inhibition of glucagon secretion are complex 
and multifaceted. The precise mechanism through which 
GLP-1 RAs reduce glucagon secretion remains a topic 

Fig. 2   PKCζ, a PI3K effector, is essential for β-cell proliferation and differentiation



293Cardiovascular Drugs and Therapy (2025) 40:287–301	

of contention and investigation. Some researchers posit 
that this effect occurs via an intrinsic mechanism, while 
others hypothesize that it may be mediated through the 
paracrine actions of insulin or somatostatin. Somatostatin, 
renowned for its potent inhibitory effects on both insulin 
and glucagon release, plays a pivotal role in the regula-
tion of hormones. In perfused pancreas models, it has 
been observed that GLP-1 significantly inhibits glucagon 
secretion from pancreatic α-cells across various glucose 
levels. This reduction in glucagon secretion is consist-
ently accompanied by an increase in somatostatin release. 
The specific blockade of somatostatin receptor 2 (SSTR2) 
resulted in a notable increase in glucagon secretion, effec-
tively reversing the inhibitory effect of GLP-1 [48, 49]. 
The research conducted by J. de et al. demonstrated that 
in isolated rat pancreatic cells, the infusion of a highly 
selective SSTR2 antagonist entirely blocked the inhibitory 
effect on glucagon secretion, resulting in a swift increase in 
basal glucagon secretion levels. In contrast, the introduc-
tion of a monoclonal somatostatin antibody resulted in only 
partial inhibition [50, 51]. These findings provide com-
pelling evidence in support of the hypothesis that GLP-1 
RAs inhibit glucagon secretion by stimulating the release 
of somatostatin, an effect that is independent of insulin and 
the secretory products of β-cells.

However, Ramracheya et al. proposed that GLP-1 RAs 
might exert a direct effect on α-cells, as the inhibition was 
not reversed by the insulin receptor antagonist or the SSTR2 
antagonist [52]. The dual actions of GLP-1 RAs, namely, the 
promotion of insulin secretion and the inhibition of glucagon 
release, exert a significant influence on the plasma ratio of 
these hormones, thereby contributing to the maintenance of 
glucose homeostasis in the body.

Beneficial Effects of GLP‑1 RAs 
on Cardiovascular System

The Influence and Mechanism of GLP‑1 RAs 
in Improving HF

HF is a clinical syndrome marked by rising incidence, 
prevalence, and high mortality [53]. Normally, myocar-
dial energy metabolism relies mainly on fatty acids (70%), 
with glucose, ketone bodies, and lactate as supplementary 
sources. In failing heart tissue, the uptake and metabo-
lism of these substrates are compromised, reducing oxi-
dative phosphorylation and energy production [54]. In a 
model of non-ischemic HF in dogs (tachycardiomyopathy 
induced by pacemakers), IV infusion of GLP-1 increases 
left ventricular (LV) contractility (LV dP/dt increased 
by 98%, stroke volume by 102%, and cardiac output by 
57%) and decreases LV end-diastolic pressure, heart rate, 

and systemic vascular resistance. In addition, GLP-1 also 
improves myocardial insulin sensitivity and myocardial 
glucose uptake [55]. These benefits are also present in the 
presence of active metabolite of GLP-1 [56]. Above all, 
these benefits of IV infusion of GLP-1 are confirmed in 
preliminary studies in humans [57, 58]. However, the short 
half-life of GLP-1 greatly precludes its clinical utilization. 
Therefore, microsphere sustained-release technology is 
being utilized to enable GLP-1 drugs to be released slowly 
and continuously, or GLP-1 molecules are being modified 
and optimized through structural modifications to develop 
GLP-1 RAs with longer half-lives. Various studies have 
shown the beneficial effects of GLP-1 RAs in HF treat-
ment, primarily by enhancing the expression of glucose 
transporters GLUT1 and GLUT4 via the AMPK/cAMP/
PKA pathway, which boosts glucose uptake and improves 
cardiac function [59].

Inflammation significantly contributes to HF pathogen-
esis and progression [60]. Zhang et al. found that liraglutide 
alleviates IL-1β-induced suppression of AMPK phospho-
rylation, increasing ACC, PGC-1α, CPT-1, and DGAT1 
expression, which improves triglyceride deposition and 
reduces myocardial inflammation [30]. Moreover, liraglutide 
can activate ERK5 signaling in endothelial cells, mitigating 
endothelial dysfunction [61]. Oxidative stress, inflamma-
tion, and apoptosis are critical in HF progression. GLP-1 
RAs such as exenatide and liraglutide modulate signaling 
pathways to reduce oxidative stress, reactive oxygen species 
(ROS) production, and apoptosis [62, 63] (Fig. 3). Ex-4 also 
restores SERCA2a expression and activity via the eNOS/
cGMP/PKG pathway, reducing cytoplasmic Ca2+ levels and 
suppressing structural remodeling in HF rats [64].

While GLP-1 RAs are beneficial in reducing body weight 
and improving cardiovascular outcomes in type 2 diabetes 
mellitus (T2DM) patients, their effects vary in HF with dif-
fering ejection fractions [65]. In HF with preserved ejection 
fraction (HFpEF), GLP-1 RAs may not reduce HF hospitali-
zation but might lower atherosclerotic event risks [66, 67]. 
However, it is especially remarkable that within the SUM-
MIT trial, among patients with HFpEF, the dual glucagon-
like peptide-1/glucose-dependent insulinotropic polypeptide 
agonist, tirzepatide, significantly reduces the combined risk 
of cardiovascular death or the exacerbation of HF. Specifi-
cally, it brings down the hospitalization rate for HF by 38% 
[68]. Additionally, it is demonstrated that it can improve 
multiple biomarkers (such as C-reactive protein, N-termi-
nal prohormone B-type natriuretic peptide, and troponin T, 
among others), relieve systemic inflammation, and curtail 
myocardial injury [69]. In the cardiac magnetic resonance 
(CMR) sub-study of the SUMMIT trial, in comparison with 
the placebo, the treatment of obesity-related HFpEF with 
tirzepatide can lead to a reduction in LV mass and pericar-
diac adipose tissue. Notably, the variation in LV mass is 
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correlated with weight loss. The decrease in LV mass and 
pericardiac adipose tissue might be closely associated with 
the reduction in HF events that were observed in the main 
SUMMIT trial [70]. Conversely, in HF with reduced ejec-
tion fraction (HFrEF), especially in advanced stages, cau-
tion is necessary due to potential increases in heart rate and 
arrhythmic events [71]. Tailored therapy according to HF 
type and severity is advised for optimal management.

The Influence and Mechanism of GLP‑1 RAs 
in Modulating Hypertension

Hypertension, a chronic cardiovascular disease, affects a 
large number of individuals, with its prevalence increas-
ing, making it a major cause of mortality and disability 
[72]. Thus, finding effective treatments is crucial. Hyper-
tension is multifactorial, influenced by genetics, environ-
ment, and other factors. Animal studies have shed light on 
the mechanisms by which GLP-1 RAs may benefit patients 
with hypertension. Recent research indicates that GLP-1 
RAs reduce hypertension development in animal models 
like Dahl salt-sensitive (DSS) rats [73], spontaneously 

hypertensive rats (SHRs) [74], and angiotensin II-infused 
C57BL/6 J mice [75]. These studies reveal that GLP-1 
RAs not only decrease oxidative stress and inflammation 
in endothelial cells but also inhibit cardiac hypertrophy and 
fibrosis by regulating myocardial proliferation and apop-
tosis [76]. The antihypertensive effects of GLP-1 RAs are 
due to several mechanisms: natriuretic effects, vasodilation, 
and reduced sympathetic activity. GLP-1 RAs promote diu-
resis and natriuresis by inhibiting sodium reabsorption in 
the renal proximal tubule through the Na+/H+ exchanger 
isoform 3 (NHE3) [77]. Vasodilation is achieved by activat-
ing endothelial nitric oxide synthase (eNOS) and increasing 
nitric oxide (NO) production via the cAMP/PKA, AMPK, 
and PI3K/Akt signaling pathways [17]. Solitary tract neu-
rons in the brainstem, reactive to dopamine beta-hydrox-
ylase (DBH), play crucial roles in reducing sympathetic 
activity in response to GLP-1 RAs [78].

BPV is also crucial in hypertension development [79]. Xu 
et al. demonstrated that GLP-1 RAs could alleviate cytoplas-
mic Ca2+ overload in VSMCs in SHRs, improve the arteri-
oles’ systolic and diastolic functions, and reduce BPV by 
upregulating Na+/Ca2+ exchanger 1 (NCX1) expression via 

Fig. 3   GLP-1 RAs such as exenatide and liraglutide modulate signaling pathways to reduce oxidative stress, reactive oxygen species (ROS) pro-
duction, and apoptosis
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the Akt signaling pathway [80]. In pulmonary arterial hyper-
tension (PAH), specific studies using monocrotaline (MCT)-
induced PAH models suggest that liraglutide acts through 
the NO/sGC/cGMP pathway, increasing NO release, activat-
ing soluble guanylate cyclase (sGC), and enhancing cyclic 
guanosine monophosphate (cGMP) synthesis. This pathway 
regulates vascular tension, prevents remodeling, and allevi-
ates PAH symptoms [81]. Current studies support that lira-
glutide can prevent and treat worsening PAH symptoms [82]. 
The United Kingdom Prospective Diabetes Study (UKPDS) 
shows that intensive blood pressure (BP) control reduces the 
risks of stroke, myocardial infarction, and other cardiovas-
cular complications [83]. A 5.6 mmHg reduction in systolic 
blood pressure (SBP) in T2DM patients can decrease car-
diovascular disease-induced mortality by 18% [84]. Several 
large randomized controlled trials highlight the benefits of 
GLP-1 RAs in lowering BP in T2DM patients. Liakos et al. 
noted that short-term liraglutide treatment favorably affected 
SBP based on 24-h ambulatory measurements, with minimal 
impact on diastolic blood pressure (DBP) [85]. A meta-anal-
ysis evaluating GLP-1 RAs, including exenatide and liraglu-
tide, found these agents more effective in reducing both SBP 
and DBP compared to insulin and other oral antidiabetics, 
providing additional cardiovascular benefits [86].

However, the outcomes remain controversial. Gill et al. 
observed a non-significant trend towards lower SBP and 
DBP with exenatide compared to placebo in T2DM patients 
[87]. Muskiet et al. found exenatide did not significantly 
lower DBP compared to insulin glargine [88]. Similarly, 
Jendle et al. reported that 1.8 mg/day liraglutide did not 
effectively reduce SBP compared to 4 mg/day glimepiride (a 
sulfonylurea) [89]. These contradictory findings suggest that 
GLP-1 RAs’ effects on DBP may vary across studies [90, 
91]. This inconsistency might be due to most trials being 
small, short-term, and not specifically designed for hyper-
tension assessment. As hypertension development typically 
takes longer, study durations might be insufficient to capture 
GLP-1 RAs’ full effects on BP regulation. Consequently, 
large, long-term, and specifically designed randomized con-
trolled trials (RCTs) are necessary to accurately evaluate 
GLP-1 RAs’ impact on hypertension and determine their 
potential benefits and limitations [86].

The Influence and Mechanism of GLP‑1 RAs 
in Ameliorating Ischemic Cardiomyopathy

Myocardial ischemia and reperfusion injury play a pivotal 
role in the onset and progression of myocardial infarction 
and heart failure. These processes are characterized by oxi-
dative stress, mitochondrial dysfunction, and apoptosis. A 
substantial body of evidence from animal studies [92–95] 
and clinical trials [96–101] indicates that GLP-1 RAs have a 
marked effect in ameliorating myocardial ischemia, reducing 

reperfusion injury, decreasing infarct size, and enhancing 
cardiac function.

In a pioneering study conducted by Eid on male rats, it was 
revealed that the administration of Ex-4 just 10 min post-left 
anterior descending (LAD) coronary artery ligation activated 
the Sirt1/AMPK axis. This resulted in Sirt3 upregulation, sus-
tained deacetylation of p53, PGC-1α, Foxo1, NF-κB, and the 
inhibition of oxidative stress and apoptosis in the infarcted 
myocardium. Ultimately, this led to a reduction in infarct 
size and the preservation of cardiac function and structure 
[92]. Recent research has identified mitochondrial dysfunc-
tion as a key feature of hypoxia/reoxygenation (H/R) models. 
Chang et al. proposed that exenatide upregulates uncoupling 
protein-3 (UCP-3) and nuclear respiratory factor-1 (Nrf-1) in 
cardiomyocytes subjected to ischemia/reperfusion (I/R) via 
the cAMP/PKA pathway, thereby facilitating mitochondrial 
homeostasis [93]. Furthermore, exenatide has been dem-
onstrated to mitigate mitochondrial oxidative stress, reduce 
Ca2⁺ overload, inhibit fission, and close the mitochondrial 
permeability transition pore (mPTP), collectively preventing 
cardiomyocyte apoptosis by inhibiting the release of proa-
poptotic proteins such as cytochrome c and caspase-3 [94]. 
Furthermore, liraglutide was demonstrated to inhibit NLRP3 
inflammasome-induced pyroptosis in ischemia–reperfusion 
rats via the Sirt1/NOX4/ROS signaling pathway, thereby pro-
viding additional myocardial protection [95] (Fig. 4).

Ischemic cardiomyopathy remains a significant global 
cause of mortality, with treatments focusing on medical or 
surgical reperfusion. However, restoration of acute myocar-
dial blood flow can pose a risk to cardiomyocytes, result-
ing in reperfusion injury and a notable impact on infarct 
size and prognosis [96]. The study of Lazaros et al. firstly 
demonstrates the utility of a novel metabolic agent, GLP-1, 
in attenuating myocardial stunning after ischemia–reperfu-
sion in canine models [97]. Moreover, in a porcine model, 
exenatide is ascertained to attenuate cardiomyocyte apop-
tosis and oxidative stress levels, which plays a role in cur-
tailing the myocardial infarction area and precluding the 
impairment of cardiac systolic and diastolic functions [98]. 
These salutary effects seemingly pertain to humans as well. 
In clinical trials, with respect to patients diagnosed with 
STEMI who are undergoing primary percutaneous coro-
nary intervention (pPCI), the administration of exenatide 
during the reperfusion period is capable of remarkably aug-
menting the myocardial salvage ratio and diminishing the 
ultimate infarct dimension [99, 100]. Notwithstanding the 
fact that the aforestated investigations have uniformly dem-
onstrated that GLP-1 RAs are endowed with a multiplicity 
of cardioprotective efficacies, the consistency of such find-
ings has not been ubiquitously maintained throughout all 
the research undertakings [101]. This highlights the neces-
sity for larger studies to rigorously evaluate myocardial 
salvage and clinical outcomes.
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The Influence and Mechanism of GLP‑1 RAs 
in Improving Diabetic Cardiopathy

At present, diabetic cardiopathy is acknowledged as a condi-
tion defined by cardiac dysfunction resulting from aberrant 
cardiac structure and function in diabetic patients, irrespec-
tive of other cardiac risk factors. Pathological changes typi-
cally manifest as myocardial interstitial fibrosis, peripheral 
vascular fibrosis, and cardiomyocyte hypertrophy. Diabetic 
cardiopathy can be classified into three categories: coronary 
atherosclerotic heart disease, diabetic cardiomyopathy, and 
cardiac autonomic neuropathy. The effects of GLP-1 RAs on 
cardiac structure and function have been examined in both 
animal models and human patients with DM.

Previous animal experiments have demonstrated that 
liraglutide could inhibit the proliferation and migra-
tion of VSMCs by suppressing the PI3K/Akt and MAPK 
signaling pathways while activating the AMPK signal-
ing pathway. The excessive proliferation of VSMCs could 
accelerate the deposition of atherosclerotic plaques in 
the vascular intima, leading to intimal thickening and 
vascular remodeling [102, 103]. Both short-acting and 
long-acting GLP-1 RAs have demonstrated beneficial 
effects by activating the AMPK-Sirt1 pathway, which 
has the potential to mitigate cardiac steatosis, oxidative 
stress, and apoptosis. Additionally, Ex-4 has been dem-
onstrated to activate eNOS and inhibit Rho, an important 
signaling molecule in oxidative stress. This results in 
increased NO bioavailability, improved oxidative stress, 

and enhanced coronary blood flow in diabetic rats [104]. 
Moreover, mitochondrial dysfunction and ER oxidative 
stress have been identified as key factors in the induction 
of myocardial apoptosis in diabetic myocardial models. 
GLP-1 RAs have been demonstrated to effectively support 
cardiomyocyte survival by addressing a number of key 
mechanisms, including impaired mitochondrial Ca2⁺ pro-
cessing, abnormal energy metabolism, structural abnor-
malities, increased oxidative stress, and ER stress medi-
ated by NF-κB (Fig. 5). These mechanisms contribute 
to the cardioprotective effects of GLP-1 RAs in diabetic 
myocardial diseases [105].

Clinical evidence demonstrates that GLP-1 RAs are an 
effective means of reducing the risk of MACE in diabetic 
patients. This protective effect is attributed not only to their 
influence on systemic metabolism, which safeguards the 
heart, but also to their direct actions on cardiac tissues. The 
direct cardioprotective effects of GLP-1 RAs encompass 
the reduction of inflammation, the lowering of oxidative 
stress, the decrease of fibrosis, the regulation of lipids, and 
the preservation of mitochondrial function. For instance, 
in carotid endarterectomy procedures for diabetic patients, 
preoperative administration of GLP-1 RAs has been dem-
onstrated to markedly enhance the expression of proteins 
that improve inflammatory pathways in diabetic atheroscle-
rotic lesions, thereby promoting plaque stabilization [106]. 
Furthermore, clinical trials have indicated that GLP-1 RAs 
can reduce carotid intima-media thickness in patients with 
DM, suggesting a favorable impact on vascular health [107].

Fig. 4   Liraglutide was demon-
strated to inhibit NLRP3 inflam-
masome-induced pyroptosis in 
ischemia–reperfusion rats
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Conclusion and Future Perspective

The therapeutic benefits of GLP-1RAs in the management of 
DM extend well beyond glycemic control, offering a broad 
range of cardiovascular advantages. By promoting insulin 
secretion, enhancing pancreatic β-cell proliferation, and inhib-
iting β-cell apoptosis in a glucose-dependent manner, GLP-1 
RAs effectively regulate blood glucose levels with a low risk 
of hypoglycemia. In addition to their glucose-regulating capa-
bilities, GLP-1 RAs provide significant cardiovascular protec-
tive effects. They enhance cardiac function, combat heart fail-
ure, facilitate myocardial energy uptake, reduce inflammation, 
alleviate oxidative stress, and inhibit myocardial structural 
remodeling. Moreover, GLP-1 RAs contribute to the manage-
ment of hypertension by lowering BP and reducing variabil-
ity. Additionally, they facilitate recovery from ischemic car-
diomyopathy by mitigating ischemia–reperfusion injury and 
ameliorating diabetic cardiopathy through multiple pathways.

In light of the substantial in vivo and in vitro evidence 
supporting the efficacy of GLP-1 RAs, further research into 
their protective mechanisms is imperative. Such studies may 
facilitate the identification of novel therapeutic targets and 
the development of innovative treatment options. To resolve 
the current controversies regarding the use of GLP-1 RAs in 
treating hypertension and ischemic cardiomyopathy, large-
scale clinical RCTs or real-world studies should be designed 
to provide more robust evidence.
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