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In the last decades, obesity has reached epidemic proportions worldwide. Obesity is a
chronic disease associated with a wide range of comorbidities, including insulin resistance
and type 2 diabetes mellitus (T2D), which results in significant burden of disease and major
consequences on health care systems. Of note, intricate interactions, including different
signaling pathways, are necessary for the establishment and progression of these two
closely related conditions. Altered cell-to-cell communication among the different players
implicated in this equation leads to the perpetuation of a vicious circle associated with an
increased risk for the development of obesity-related complications, such as T2D, which
in turn contributes to the development of cardiovascular disease. In this regard, the
dialogue between the adipocyte and pancreatic beta cells has been extensively studied,
although some connections are yet to be fully elucidated. In this review, we explore the
potential pathological mechanisms linking adipocyte dysfunction and pancreatic beta cell
impairment/insulin resistance. In addition, we evaluate the role of emerging actors, such
as the gut microbiome, in this complex crosstalk.
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1 INTRODUCTION

The global prevalence of overweight and obesity has dramatically increased in the last few decades
with a major impact on health and significant socioeconomic burden (1, 2). Overweight and obesity
are often associated with a cluster of metabolic abnormalities, such as dyslipidemia, hypertension,
and type 2 diabetes mellitus (T2D), which may lead to the development of metabolic syndrome
syndrome (MetS) (3). In parallel with the growing obesity pandemic, the prevalence of T2D is also
increasing worldwide, and it is expected to continue to rise in the coming years, resulting in
devastating consequences (4). It is noteworthy that pancreatic beta cells are key players in the
pathophysiology of T2D (5). Therefore, the central event in this condition consists of a relative
insulin deficiency due to beta cell dysfunction, which often coexists with insulin resistance (5). In
this regard, metabolic stress leads to beta cell apoptosis, which results in progressive loss of
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functional beta cell mass (5). Importantly, reciprocal interactions
may occur among clustering components of MetS, leading to an
increased risk for the development of cardiovascular disease (3).
In line with this, central fat distribution related to MetS has been
demonstrated to play a vital role in the pathophysiology of T2D,
whereas disrupted glucose homeostasis and beta cell dysfunction
may also promote visceral fat accumulation (6). However, some
of the intricate connections and metabolic pathways involved in
the crosstalk between adipose tissue and pancreatic beta cells
remain poorly understood.

In recent years, the gut microbiome has emerged as a central
player in the development, progression, and therapeutics of
obesity and T2D (7). The human gut microbiota is composed
of trillions of microorganisms located in the gastrointestinal tract
that have a close symbiotic relationship with the host (8).
Notably, bacterial metabolites, such as short-chain fatty acids
(SCFAs), vitamins, amino acids, and bile acids (BAs), are also
involved in essential bacteria and host cell-to-cell interactions
(9). Therefore, when the fragile equilibrium between intestinal
microbiota and host metabolism is disrupted, several disorders
may develop, including overweight/obesity, ectopic fat
accumulation, hyperlipidemia, insulin resistance, and
hyperglycemia (10). Taken together, disturbed homeostasis
between adipose tissue and pancreatic beta cells may be driven,
in part, by pathological shifts in the gut microbiome and
derived metabolites.

In this review, we discuss the main mechanisms involved in the
interplay between adipose tissue and pancreatic beta cells, with
special attention to the bidirectional influences leading to beta cell
dysfunction/insulin resistance and adipocyte dysfunction. In
addition, we summarize the novel insights into the role of the
gut microbiome and related metabolites in the mediation of this
complex crosstalk, including an integrative view of the relationship
between adipose tissue-derived bacteria and beta cell/adipose
tissue dysfunction.
2 ADIPOSE TISSUE AND PANCREATIC
BETA CELL COMMUNICATION: A
COMPLEX DIALOGUE

2.1 What Is the Role of Adipose Tissue in
Beta Cell Dysfunction?
Central distribution of adipose tissue, as opposed to peripheral
locations (i.e., femoro-gluteal adipose tissue) is a well-known risk
factor for the development of insulin resistance and T2D (11).
Importantly, impaired subcutaneous adipose tissue expandability,
determined by environmental and genetic factors, has been
postulated as the main mechanism leading to visceral fat
accumulation (12–14). Thus, when the adipose tissue storage
capacity limit is reached, excess fat may accumulate in ectopic
deposits, including key organs such as skeletal muscle, liver, and
pancreas, constituting an important cause of insulin resistance and
beta cell dysfunction (15). Beyond its storage function, adipose
tissue is a metabolically active organ with a major role in beta cell
dysfunction via different mechanisms, including adipokine
Frontiers in Endocrinology | www.frontiersin.org 2
production, lipotoxicity, and increased inflammatory
response (Figure 1).

2.1.1 Adipokines
Adipose tissue constitutes an important source of bioactive
hormones, which are key factors in beta cell function and
impairment. Among them, leptin and adiponectin have been
extensively studied. Leptin exerts direct effects on pancreatic beta
cells through the activation of the leptin receptor, which in turn
stimulates the Janus-kinase (JAK)/signal transducer of activation
(STAT) - mitogen-activated protein kinase (MAPK) signaling
pathway (16). Leptin inhibits ectopic fat deposition in beta cells
and reduces triglyceride accumulation in islets, preventing
apoptosis and beta cell dysfunction, although its role in insulin
secretion remains controversial (17, 18). Other mechanisms
involved in apoptosis prevention by leptin include the inhibition
of inducible nitric oxide synthase (iNOS) expression (19) and the
regulation of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X
protein (Bax) (17). However, leptin may also exert harmful effects
onbeta cells. Thus, leptin increases the release of interleukin-1b (IL-
1b) frombeta cells and decreases the expression of the IL-1 receptor
antagonist, leading to impaired beta cell function and apoptosis
(20).Also, leptin has been reported to induce beta cell apoptosis and
impairment of glucose-stimulated insulin secretion via c-Jun N-
terminal kinase (JNK) activation (21). On the other hand,
adiponectin has protective and anti-apoptotic effects on beta cells,
and low levels of this adipokine have been associated with insulin
resistance and beta cell dysfunction (22). Adipsin has also been
reported to improve beta cell function, and its deficiency triggers
beta cell failure and insulinopenia (23). Visfatin stimulates insulin
secretion and inhibits beta cell apoptosis through the MAPK and
phosphatidylinositol 3-kinase pathway (PI3K)/protein kinase B
(AKT) pathway (24), whereas irisin improves glucolipotoxicity
associated with beta cell dysfunction through adenosine
monophosphate- activated protein kinase (AMPK) signaling and
reduces the inflammatory response (25, 26). Decreased omentin
levels may also be related to the development of T2D, since this
adipokine has been demonstrated to have an influence on beta cell
survival (27). Apelin significantly increased beta cell mass in
preclinical models (28), although high concentrations of this
adipokine were previously reported to inhibit insulin response to
glucose (29).On theotherhand, increased levels of someadipokines
havebeenrelated toanegative impactonpancreatic betacells. Thus,
resistin induces insulin resistance and impairs insulin secretion in
pancreatic beta cells via the increased expression of suppressor of
cytokine signaling 3 (SOCS-3) and reduced AKT phosphorylation
(30). In addition, tumor necrosis factor a (TNF- a), a pro-
inflammatory cytokine and adipokine, induces beta cell apoptosis
(31). Fetuin-A, a hepato-adipokine, leads to beta cell failure and
apoptosis via the toll-like receptor-4 (TLR4)- JNK- nuclear factor-
kappa B (NF-kB) signaling pathway (32). Recently, the novel
adipokines asprosin and retinol-binding protein 4 (RBP4) have
been reported as important players in the pathophysiology of T2D
and beta cell dysfunction in preclinical studies. Thus, asprosin
contributed to beta cell apoptosis by the inhibition of protective
autophagy in beta cells through the AMPK-mammalian target of
rapamycin (mTOR)pathway in in vitromodels (33), whereas RBP4
May 2022 | Volume 13 | Article 869951
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has been shown to be stimulated by retinoic acid 6 (STRA6), which
provokedpancreatic beta cell failure andT2Dprogression in rodent
models (34).

2.1.2 Lipotoxicity
Free fatty acids (FFAs) are released into the circulation from
adipose tissue lipolysis, constituting an important energy source
during starvation (35). Also, they are crucial signal transducing
molecules in several pathways, including those involved in
glucose metabolism, insulin resistance, and beta cell function
(36). Despite the fact that the acute release of FFAs increases beta
cell mass and insulin secretion (37), chronically elevated levels of
FFAs inhibit glucose-stimulated insulin secretion and lead to
beta cell dysfunction via cytotoxic mechanisms that result in beta
cell apoptosis (38, 39). Thus, chronic exposure to FFAs is
associated with ceramide synthesis, mitochondrial dysfunction,
and overexpression of apoptotic genes in beta cells (40). Besides,
FFAs trigger intracellular triglyceride accumulation in pancreatic
beta cells promoted by the activation of sterol regulatory
element-binding proteins (SREBPs) (41).

2.1.3 Adipose Tissue Inflammation and Release of
Pro-Inflammatory Factors
Visceral adipose tissue is able to secrete several pro-inflammatory
factors, such as IL-2, IL-6, IL-8, IL-12A, ormonocyte chemoattractant
protein-1 (MCP-1), which may have a role in beta cell dysfunction
(42, 43). Interestingly, recent data show that peripancreatic adipose
tissue may have a strong influence on beta cell function, since close
Frontiers in Endocrinology | www.frontiersin.org 3
contact is establishedbetweenthis ectopic fataccumulationand isletsof
Langerhans, facilitating adipocyte-beta cell paracrine communication.
Thus, increased expression of peripancreatic adipose tissue-derived
factors, such as chemokine (C-X-Cmotif) ligand (CXCL)-1, -2, -3, and
CXCL-5/lipopolysaccharide-inducedCXCchemokine (LIX) actingon
CXCreceptor-2, aswell asmacrophage activation, have been shown to
be implicated in the impairment of beta cell function (44). Moreover,
additional organs may play a role in this equation: increased levels of
hepatokine fetuin-A in non-alcoholic fatty liver disease induce
impaired insulin secretion and islet cell death via the stimulation of
peripancreatic adipocytes, which produce IL-6, IL-8, and MCP-1
through TLR4-dependent mechanisms (45).

Importantly, activated macrophages infiltrating adipose tissue
are essential players in the development and maintenance of the
pro-inflammatory state associated with harmful effects on
pancreatic beta cells (46). Intriguingly, recent research has
revealed that macrophages may also have an impact on beta cells
independently of inflammatory mechanisms (i.e., via the release of
miRNA-containing extracellular vesicles) (47, 48). Extracellular
vesicles released by inflamed adipocytes can also cause beta cell
death (49). Other adipose tissue-resident immune cells, such as B2
lymphocytes, may promote insulin resistance via the chemokine
leukotriene B4 (LTB4) and its receptor, LTB4 receptor-1 (50).

Specific adipose tissue proteomic and transcriptomic profiles
associated with inflammatory pathways may also be involved in
beta cell dysfunction (51). Recently, the transcriptional
coregulator GPS2 in white adipose tissue has been associated
with beta cell insulin secretion (52).
FIGURE 1 | Potential adipose tissue-related mechanisms leading to beta cell dysfunction. TNF-a, tumor necrosis factor a; RBP4, retinol-binding protein 4; FFAs,
free fatty acids; IL, interleukin; MCP-1, monocyte chemoattractant protein-1; CXCL, chemokine (C-X-C motif) ligand; CXCL-5/LIX, chemokine (C-X-C motif) ligand-5/
lipopolysaccharide-induced CXC chemokine; ROS, reactive oxygen species; NF-kB, nuclear factor-kappa B.
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Finally, adipocyte mitochondrial dysfunction and reactive
oxygen species (ROS) overload may contribute to beta cell
impairment. Thus, mitochondrial ROS pathway and NF-kB
signaling have been associated with mitophagy-mediated adipose
inflammation that promotes pancreatic beta cell damage (53).

2.2 What Is the Role of Beta Cells in
Adipose Tissue Dysfunction?
Beta cells are key regulators of adipose tissue metabolism. Insulin
exerts important anabolic effects on adipose tissue, including
those involved in adipocyte function, growth, and differentiation
(54). Insulin resistance and beta cell dysfunction are the two
main mechanisms implicated in the pathogenesis of T2D,
constituting a vicious cycle in which adaptive insulin
hypersecretion to meet elevated metabolic demand is followed
by the progressive loss of beta cell mass and function (55), and
both conditions act synergistically in adipocyte dysfunction. In
this line, chronic hyperinsulinemia has been reported to enhance
adipose tissue inflammation and drive adipose tissue dysfunction
in obese mice, and lowering circulating insulin levels was
demonstrated to decrease macrophage content in adipose
tissue (56). Hyperinsulinemia can also contribute to the pro-
inflammatory M1:M2 macrophage imbalance in adipose tissue,
which promotes iNOS, ultimately resulting in extracellular
matrix deposition and adipose tissue fibrosis (57). Previous
studies conducted in human subjects have revealed similar
results. In this regard, Krogh-Madsen et al. found that
hyperinsulinemia prompts IL-6 and TNF- a gene expression in
adipose tissue (58). Of note, a recent study showed that chronic
hyperinsulinemia leads to premature adipocyte senescence and a
pro-inflammatory secretory profile in vitro and in vivo (59).
3 GUT MICROBIOME AND DERIVED
METABOLITES, ADDITIONAL PLAYERS IN
BETA CELL-ADIPOSE TISSUE
CROSSTALK

3.1 The Gut Microbiome Regulates
Adipocyte and Beta Cell Function
Mounting evidence suggests that altered gut microbiome
composition, known as gut dysbiosis, is involved in the
development of adipose tissue dysfunction and insulin resistance/
T2D(60). In linewith this, gut barrierdysfunctionand increasedgut
permeability, which results in the impairment of biological
homeostasis by the translocation of bacterial toxins inducing
systemic inflammation, may be a major factor related to these
conditions (61). Thus, gut dysbiosis can affect the intestinal
epithelial barrier by the modulation of the immune system,
including TLR signaling, which regulates the integrity of tight
junction complexes (61). Remarkably, some modulators of
intracellular tight junctions and gut permeability, such as zonulin,
may also play a crucial role (62). Accordingly, increased circulating
levels of zonulin, an importantmarker of tight junctiondisassembly
and increased gut permeability, have been correlated with gut
Frontiers in Endocrinology | www.frontiersin.org 4
dysbiosis and the development of metabolic disturbances (63–65).
Apart from gut dysbiosis, additional factors, such as diet, should be
taken intoconsideration in thepathogenesis ofgutpermeability and
pro-inflammatory response in obesity and T2D (60).

With regard to the influence of the gut microbiome on adipose
tissue, Bäckhed et al. reported for the first time that the gut
microbiota was a key environmental factor in the predisposition
towards adiposity, since it can regulate body fat storage and
adipocyte metabolism (66). Indeed, the causative role of gut
microbiota in the development of obesity is supported by mice
models,whichshowedthat anobesephenotype couldbe transferred
through fecal microbiota transplantation (67, 68). Notably, a
number of studies have revealed that some gut microbial patterns
have a strong influence on adipose tissue inflammation, which
constitutes one of the essential features in adipocyte dysfunction
and may also lead to beta cell impairment, as previously described.
In animal models, specific gut microbiota profiles have been
demonstrated to drive Western-type diet-induced adipose tissue
inflammation via myeloid differentiation primary response 88
(Myd88) and TLR signaling (69). Besides, increased intestinal
permeability due to dysbiosis triggers the translocation of
bacterial endotoxins that may have deleterious effects on adipose
tissue. In line with this, intestinal permeability has been associated
with increased visceral lipid deposition in healthy women (70).
Also, elevated serum levels of lipopolysaccharide (LPS) from the
Gram-negative bacterial membrane promote the inflammatory
reaction in adipose tissue in obesity, including the pro-
inflammatory activation of macrophages and adipocyte death by
pyroptosis (71). Gut dysbiosis leads to the release of zonulin, which
modulates immune response and increases gut permeability in
distinctmetabolic disorders, including obesity (64, 65).Of note, low
serum levels of zonulin have been associated with high alpha
diversity in pregnant women with obesity (72). Importantly,
disruptions in the microbiome-immune-metabolic axis in early
life, including gut barrier alterations and secondary immune-
mediated inflammatory chronic activation related to childhood
obesity, could impact adult overweight and obesity (73).

On the other hand, a growing body of evidence shows that the
gut microbiome has a major role in the pathophysiology of T2D
(74). Thus, bacterial genera such as Ruminococcus, Fusobacterium,
and Blautia have been positively associated with this condition,
whereas Bifidobacterium, Bacteroides, Faecalibacterium,
Akkermansia, and Roseburia are inversely related to T2D (74).
Moreover, increased gut permeability derived from gut dysbiosis
may be related to the pathogenesis of T2D, as shown in preclinical
studies (75). In this regard, higher zonulin levels have been
reported in patients with a recent diagnosis of T2D, and may
play a role in the pathophysiology of this disease, although further
research is needed (76). Insulin sensitivity/resistance is also
mediated by the gut microbiota (77). Interestingly, preclinical
studies show that the loss of some beneficial bacteria, such as
Akkermansia muciniphila, causes impaired intestinal integrity and
systemic inflammation, leading to insulin resistance, while the
increased abundance of this bacterium restores normal insulin
response (78). Also, circulating levels of zonulin have been shown
to be closely related to insulin resistance in clinical studies (64, 76).
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On the other side, clinical studies have revealed that calorie restriction
may ameliorate insulin sensitivity through positive changes in the gut
microbiota (79). Further research in humans has also corroborated
that gut microbiota composition is closely linked to insulin resistance
(80, 81). In addition, animalmodels have shown that gutmicrobiota is
required for earlybeta cell developmentandproliferation(82), andgut
microbiota signals (e.g., nucleotide-binding oligomerization domain-
containing protein 1–NOD1-ligands derived from gut microbes) are
needed for normal insulin biogenesis (83). In animalmodels showing
that an obese phenotype can be transferred by fecal microbiota
transplantation, mild glucose intolerance was an early manifestation
in thehost, a fact that suggests that thegutmicrobiomemayaffectboth
adipose tissue and beta cell function (68). Importantly, beta cell
hyperactivity and subsequent hyperinsulinemia, which has a strong
influence on adipose tissue dysfunction, can be transmitted early to
recipient mice of obese microbiota despite only a minor increase in
weight gain and adiposity (84). Also, hyperglycemiamay increase gut
permeability,whichcouldaggravatemetabolic inflammationand lead
to the development of adipose tissue dysfunction and obesity (60).

Remarkably, gut microbiota-related metabolites have direct
effects on adipocyte and beta cell function (Figure 2). The gut
microbiota secretes several molecules that reach key cells through
specific receptors. By the fermentation of non-digestible dietary
fibers, gut microbes produce SCFAs, including propionate, acetate,
and butyrate, which exert direct actions through cell-surface G-
protein-coupled receptors (GPCRs) (85). Additional bacterial
products, such as amino acids, triglyceride metabolites, and BAs
can also target these receptors (85). Pancreatic beta cells express
SCFAs receptors-2 and 3 (FFA2/GPR43 and FFA3/GPR41), which
have direct effects on insulin secretion; however, mixed results have
been reported in this regard.On the one hand, acetatewasproven to
inhibit glucose-stimulated insulin secretion via FFA2 and FFA3 in
mouse and human beta cells (86). Conversely, another study
showed that acetate enhances glucose-stimulated insulin secretion
through the activation of the parasympathetic nervous system,
although these effects appear to be related to hyperphagia, ectopic
lipid deposition, and insulin resistance (87). Further studies have
confirmed that acetate stimulates insulin secretion (88, 89).
Butyrate may prevent pro-inflammatory cytokine-beta cell
dysfunction and induce insulin secretion (90, 91), whereas
propionate improved beta cell function and insulin release in
humans (92), although contrary results have also been described
(93). Besides, transmembrane bile acid receptor Takeda G-protein
coupled receptor 5 (TGR5) can enhance insulin secretion and
improve glucose homeostasis (94, 95). FFA2 and FFA3 are also
expressed by adipocytes and are mainly associated with the
regulation of adipokine release and adipose tissue metabolism
(96, 97). SCFAs may also induce the browning of adipose tissue
(98). Interestingly, butyrate canmodulate adipocyte expansion and
favor adipogenesis and adiponectin production through the
upregulation of peroxisome proliferator-activated receptor
gamma (PPAR-g) (99) and suppresses adipocyte inflammation
via the inhibition of the NOD-like receptor family pyrin domain
containing 3 (NLRP3) pathway (100). Similarly, propionate
ameliorates adipose tissue inflammation (101), whilst acetate
Frontiers in Endocrinology | www.frontiersin.org 5
could lead to adipose tissue dysfunction by TNF-a-induced
MCP-1 production (102).

3.2 Gut Microbiota: A Potential Link
Between Adipose Tissue and Beta
Cell Communication
In previous sections, we have discussed the role of lipotoxicity,
adipose tissue inflammation, and altered adipokine expression in
the development of beta cell dysfunction and insulin resistance.
Since pathological shifts in gut microbiota composition and related
metabolites may lead to adipose tissue dysfunction via the
aforementioned mechanisms, derived consequences are expected
in beta cell survival and function. Thus, Faecalibacterium prausnitzii
decreases adipocyte inflammation and increases adiponectin
expression in visceral adipose tissue, which is related to insulin-
sensitizing effects (103). Similarly, A. muciniphila reverses adipose
tissue inflammation and restores insulin sensitivity in T2D (104). In
addition, Akkermansia has been shown to be an important
predictor of serum levels of FFAs, which are involved in
lipotoxicity and beta cell impairment, presenting an inverse
relationship with them and the pro-inflammatory cytokine IL-6
(105). Notably, in a study evaluating the role of angiopoietin-like 4
(ANGPTL4) in metabolic dysfunction, the loss of the expression of
this adipokine uncoupled visceral fat accumulation from glucose
intolerance via the gut microbiota (106).

Gut microbiome-derived metabolites are also important
intermediates of the adipose tissue-beta cell crosstalk.
Tryptophan-derived compounds produced by the gut microbiota
regulatemiRNA-181 expression inwhite adipose tissue, involved in
glucose tolerance and insulin sensitivity (107). Thus, a decrease in
tryptophan-derived metabolites is associated with the
overexpression of miRNA-181, which favors the development of
adipose tissue inflammation, impaired glucose tolerance, and
insulin resistance (107). It is also known that butyrate stimulates
adipocyte differentiation and adiponectin expression, favoring
insulin sensitivity (108), whereas propionate enhances leptin
expression and reduces resistin expression, which are closely
involved in beta cell function (109). On the other hand, gut
microbiota metabolites modulate insulin sensitivity/resistance in
the host, which in turn affects adipocyte function. Thus, elevated
circulating levels of LPS in individuals with T2D activate TLR-2
expression and trigger immune response and inflammation in
adipose tissue (110). Metabolic endotoxemia induced by LPS
triggers insulin resistance and the subsequent expression of
inflammatory markers in adipose tissue to a similar extent as a
high-fat diet (111).

In light of the above, gut dysbiosis and impaired metabolite
secretion appear to drive an altered adipokine balance and
induce adipose tissue inflammation, a fact that ultimately
results in insulin resistance and beta cell dysfunction, which
can also aggravate adipocyte inflammation via the gut
microbiota, perpetuating the vicious cycle. However, further
mechanisms, such as the direct bacterial presence in adipose
tissue, constituting a specific-tissue microbiota, have been
postulated in this intricate relationship.
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3.3 The Role of Adipose Tissue-Derived
Bacteria in Adipocyte/Beta
Cell Dysfunction
It is noteworthy that bacterial translocation from the intestine to
adipose tissue due to increased gut permeability, as proposed by the
“tissuemicrobiotahypothesis” (112), couldhave an impact onadipose
tissue-beta cell crosstalk (113–117) (Table 1). Accordingly, in animal
models, the presence of bacteria in adipose tissue was previously
reported (118). In mice, a high-fat diet induced the translocation of
Gram-negative bacteria through intestinal mucosa to circulation and
mesenteric adipose tissue via pathogen-associatedmolecular patterns
(PAMPs) recognition, Myd88 signaling, and leptin regulation,
resulting in low-grade inflammation, linked to the early stages of
T2D (113). Increased metabolic inflammation and insulin resistance
have been associated with bacterial translocation from the intestine
into adipose tissue in NOD2-/- mice (114). Conversely, the
identification of bacterial DNA in human adipose tissue has been a
challenging task (119). Recently, the presence of specific microbial
signatures in three different adipose tissues (omental, mesenteric, and
subcutaneous adipose tissue) has been identified in subjects with
morbid obesity, varying between individuals with and without T2D,
withmore evident signatures inmesenteric adipose tissue, including a
decrease of health-promoting bacteria, such as Faecalibacterium and
increased abundance of pathogens (e.g., Enterobacteriaceae) in
subjects with T2D (115). In addition, Massier et al. also detected
bacterial DNA in omental, mesenteric, and subcutaneous adipose
tissue from 75 participants with obesity with or without T2D (116).
Once more, mesenteric adipose tissue presented the highest bacterial
quantity, whichwas associatedwith adipose tissue inflammation, and
adipose tissuemicrobiota composition was different between subjects
with andwithout diabetes (116).However, devoted clinical studies are
needed to confirm these results.
Frontiers in Endocrinology | www.frontiersin.org 6
3.4 Impact of Gut Microbiome Modulation
on Adipose Tissue-Beta Cell Crosstalk
The gut microbiome may be targeted to modulate the metabolic
dialogue between adipose tissue and pancreatic beta cells. Hence,
prebiotic approaches [i.e., non-digestible food components that
benefit the host by the selective stimulation of the growth/activity of
specific bacterial strains (120)] have emerged as promising
interventions. Oligofructose supplementation in high-fat diet-fed
mice increased gut Bifidobacterium spp. and prevented the
elevation of adipose tissue inflammatory markers, which was
linked to the improvement of glucose tolerance and the
restoration of glucose-induced insulin secretion (121). Moreover,
an oligofructose-enriched diet decreased Firmicutes and increased
Bacteroidetes abundance, reducing adipose lipid peroxidation and
ameliorating leptin sensitivity and glucose tolerance (122). The
combination of the dietaryflavonoid isoquercetinwith solublefiber
(inulin) attenuatedweight gain, improved glucose tolerance/insulin
sensitivity, reduced adipocyte hypertrophy/ectopic fat
accumulation, and restored adipokine balance in high fat diet-fed
mice (123). On the other hand, the direct administration of health-
promoting live microorganisms (probiotics) could confer several
benefits. Lactic acidbacteria strainswere demonstrated tomodulate
the adipokine profile in in vitro models (124). Besides, probiotic
interventions targeting key gut microbes in the protection against
adipocyte/beta cell dysfunction, such as A.muciniphila and
F.prausnitzii, may constitute an attractive approach (103, 104,
125). Postbiotics, defined as bioactive substances produced by
microorganisms with positive effects on the host (126), can also
modulateadipocyte andbeta cell function.Thepreviouslydiscussed
SCFAs are relevant postbiotics in this regard (85, 108, 109). The
combination of inulin and SCFAs reduced adipocyte size and
prevented diet-induced obesity and insulin resistance in animal
FIGURE 2 | The potential role of gut microbiota-derived metabolites in beta cell and adipocyte function. The gut microbiome secretes several signaling molecules
with direct effects on beta cell and adipocyte function. Short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, exert different effects on beta
cells via binding short-chain fatty acid receptor-2 (FFA2) and FFA3. Thus, SCFAs inhibit apoptosis, improve beta cell function, and enhance insulin secretion.
However, it has been reported that some SCFAs (i.e., acetate and propionate) could also inhibit insulin secretion. Bile acids may stimulate insulin secretion and
improve glucose homeostasis through Takeda G-protein coupled receptor 5 (TGR5). SCFAs also have a role in adipocyte function via FFA2 and FFA3. Therefore,
acetate, butyrate, and propionate regulate adipocyte metabolism and adipokine balance. These effects may result in reciprocal influences between beta cells and the
adipocyte. FFA2/FFA3, short-chain fatty acid receptor 2/3; TGR5, Takeda G-protein coupled receptor 5; FFA, free fatty acids; AT, adipose tissue.
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models (127). Interestingly, the administration of the natural
metabolite 4-cresol reduced adiposity and enhanced insulin
secretion and beta cell proliferation in mouse islets (128). Fecal
microbiota transplantation from lean donors to patients with
obesity and metabolic syndrome transiently improved insulin
sensitivity (129), and animal models have revealed that this
therapy may reverse beta cell dysfunction (130). However, further
research is needed to confirm these results.
4 CONCLUDING REMARKS

Obesity and T2D are increasing in prevalence, resulting in major
health and socioeconomic consequences. The relationships
between these two disorders are well established; however, some
of the underlying mechanisms involved in their pathophysiology
and bidirectional links are not fully understood. Pancreatic beta
cells and adipose tissue are closely interconnected through the
presence of a number of bioactive hormones and intricate signaling
pathways. Also, the gut microbiome may play a key role in the
mediation of the complex dialogue between the adipocyte and beta
cell, with derived potential therapeutic strategies in this field.
However, important issues are yet to be elucidated. Cells do not
live in isolation, and multiple interactions are expected to occur
beyond the dialogueamong the gutmicrobiome, adipose tissue, and
pancreatic beta cells. Therefore, additional players, such as the
skeletal muscle and the liver, may be included in this metabolic
crosstalk. Future perspectives in this area should also focus on the
development of therapeutic approaches (e.g., nutritional therapy)
targeting the gut microbiota and the distinct dysfunctional
metabolic pathways. Finally, dedicated clinical studies are
Frontiers in Endocrinology | www.frontiersin.org 7
warranted to fully unravel the role of the gut microbiome and
related metabolites in the crosstalk between pancreatic beta cells
and adipose tissue.
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TABLE 1 | Animal models and clinical studies assessing the potential association between adipose tissue-derived bacteria and adipose tissue function/glucose homeostasis.

Study Animals/Participants Adipose tissue bacteria Adipose tissue-related findings Glucose homeostasis-related findings

Amar et al. (113) NC/HFD-fed mice Gram-negative bacteria
(experimental translocation
model).

Increased TNF-a and IFN-g in MAT,
correlating with bacterial DNA
concentration.

Increasing MAT bacterial DNA concentration
in the progression of prediabetes to
diabetes. Probiotic treatment reduced
mucosal dysbiosis, bacterial translocation,
and improved glucose metabolism.

Denou et al. (114) NOD2-/- mice Commensal bacteria
(experimental translocation
model).

Increased inflammation (IL-6, TNF-
a) in visceral adipose tissue.

Increased insulin resistance.

Ahnê et al. (115) Subjects with morbid obesity
with T2D (n-20) and without
T2D (n-20)

Different compartmentalization
according to specific tissue
(MAT, OAT, SAT).

Not assessed. More evident T2D signatures in MAT:
reduced bacterial diversity and Gram-positive
bacteria (i.e., Faecalibacterium) and
increased Gram-negative
Enterobacteriaceae.

Massier et al. (116) Subjects with obesity with
T2D (n-33) and without T2D
(n-42)

Proteobacteria and Firmicutes
were the predominant phyla in
adipose tissue (MAT, OAT,
SAT). Higher bacterial quantity
and diversity in MAT.

Bacterial DNA correlated with
macrophage infiltration in OAT
(especially in T2D), TNF-a in SAT,
and IL-1B in MAT; bacterial DNA
induced adipokine secretion.

Eighteen genera were shown to present
different abundance between subjects with
T2D and subjects without T2D.

Bakker et al. (117) Subjects with obesity and
metabolic syndrome
receiving lean donor FMT (n-
8); BMI- matched controls
not receiving FMT (n-16)

Very low quantity of bacterial
DNA in visceral adipose tissue.

FMT did not alter bacterial
translocation to adipose tissue. No
differences in visceral bacterial DNA
content/macrophage infiltration
between groups.

Not assessed.
NC, normal chow; HFD, high-fat diet; MAT, mesenteric adipose tissue; OAT, omental adipose tissue; SAT, subcutaneous adipose tissue; TNF- a, tumor necrosis factor a; IFN- g, interferon
g ; NOD2, oligomerization domain-2; IL-6, interleukin 6; IL-1B, interleukin-1B; TD2, type 2 diabetes mellitus; FMT, fecal microbiota transplantation; BMI, body mass index.
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