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Self-supervised generative models
for crystal structures

Fangze Liu,1,2,6,* Zhantao Chen,2,3,6,7,* Tianyi Liu,2,4 Ruyi Song,2 Yu Lin,2 Joshua J. Turner,2,3,*

and Chunjing Jia2,5,*

SUMMARY

Inspired by advancements in natural language processing, we utilize self-supervised learning and an equiv-
ariant graph neural network to develop a unified platform for training generative models capable of
generating inorganic crystal structures, as well as efficiently adapting to downstream tasks in material
property prediction. To mitigate the challenge of evaluating the reliability of generated structures during
training, we employ a generative adversarial network (GAN) with its discriminator being a cost-effective
reliability evaluator, significantly enhancing model performance.We demonstrate the utility of our model
in optimizing crystal structures under predefined conditions.Without external properties acquired exper-
imentally or numerically, our model further displays its capability to help understand inorganic crystal for-
mation by grouping chemically similar elements. This paper extends an invitation to further explore the
scientific understanding of material structures through generative models, offering a fresh perspective
on the scope and efficacy of machine learning in material science.

INTRODUCTION

Structure and property predictions of crystalline materials have been a long-standing and central focus in condensed matter physics and ma-

terial sciences. Recent advancements have demonstrated the efficacy of machine learning techniques in predicting various materials prop-

erties, including electronic topology, thermodynamic properties, mechanical moduli, etc.1–9 Furthermore, there has been a growing focus

toward applying generative models inspired from computer vision, such as generative adversarial networks (GANs),10–12 diffusion

models,13–15 and variational autoencoders (VAEs)14,16 for crystal structure generation. GANs, which involve adversarial training of two neural

networks, have been applied to a limited range of materials, like specific compositional families10 and two-dimensional materials.11,12 VAEs,

which encode material representation into a compressed latent space and generate materials by decoding sampled latent codes in the

space, is a favored architecture that can be effectively combined with other training methods like GAN10 and diffusion processes,14 though

they demand additional efforts for effective latent space interpretation and utilization. Diffusion models, known as a physics-induced models

and celebrated in computer vision,17 have seen successful adaptation for crystal generation,14 a trend underscored by a recent surge of

studies.15,18 Instead of using generative models, the combination of simple element substitutions and density functional theory (DFT)19,20

hints at the benefits of incorporating DFT into the generative learning frameworks for enhancing crystal generation.

One fundamental question is focused on how to understand the connection between atomic structures and the properties of materials.

Machine learning techniques have proven powerful in predicting the latter, given the former, especially as the dataset of stable crystal struc-

tures is currently much larger than the dataset of stable structures with properties obtained either numerically or experimentally. However,

predicting atomic structures presents considerably greater difficulties, including the vast structure design space that exists for materials dis-

covery and the lack of suitable evaluation metrics for generatedmaterials. This situation is similar to the challenges faced in natural language

processing (NLP), as the volume of unlabeled textual data is much larger than that of labeled question-answer data. Another level of similarity

is observed in the distribution of atomic species in crystal structures compared to the distribution of vocabulary in natural languagedata21 (see

Figure 1A). As studies have found that the emergent learning ability of large transformer-based languagemodels22 is attributed to the skewed

and long-tailed distributional properties of the training data,23 this suggests that the established strategies adopted in training large lan-

guage models (LLMs) could potentially be successful in training machine learning models for materials science. Comparing to the costly

in-context learning,24 self-supervised learning is a more approachable training method25–27: a neural network is pre-trained by large volumes
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of unlabeled and augmented data, like randomlymasking tokens or shuffling the order of sentences.28 The pre-trainedmodel can capture the

nuanced patterns and structures in training data, and further be fine-tuned on task-specific labeled data and reduce the reliance on expensive

labeled datasets.

Taking inspiration from NLP, we present a machine learning framework for material generation and properties prediction, empowered by

an efficient pre-training strategy without the need of human knowledge as a prerequisite for labeling. Analogous to a typical training proced-

ure for NLP models, where fill-in-the-blank and sentence-arranging exercises are utilized, we design a self-supervised training procedure for

models based on the state-of-the-art transformer-based equivariant graph neural network, EquiformerV2.29 During pre-training, the model

A

B

C

Figure 1. Self-supervised learning in crystal structure generation

(A) Training samples show a power law elemental abundance distribution, pðX = xÞf1=xa , where X is the rank of an element and a = 0:8163 with excluding the

the eight least frequently occurring elements. This resulting distribution (dashed line) resembles the natural language token distribution, typically with an

exponent close to 1,23 supporting the utilization of self-supervised learning in crystal generation.

(B) The self-supervised pre-training employs an equivariant graph attention transformer architecture, EquiformerV2,29 processing contaminated structures

produced by masking parts of the atoms and perturbing atomic positions in the original stable crystal structures, and being trained on tasks to predict the

masked atoms and restore atomic positions. Primitive lattice vectors are predefined to compute the edge distance embedding, serving as input for Equiformer.

(C) The pre-trained model is well equipped for various supervised down-stream tasks through the fine-tuning procedure. During fine-tuning, the pre-trained

model is concatenated with a randomly initialized feedforward neural network and all model parameters undergo fine-tuning. To showcase the model’s

classification ability, an example of predicting crystal stability, using a labeled training set based solely on cubic system, is illustrated. The accompanying

diagram displays classification results (true positives, true negatives, false negatives, and false positives in a clockwise order), with accuracy indicated by

percentage numbers and reflected by colors. An example of the regression tasks, predicting phonon density of states (DOS), is also depicted. The training

set is sourced from the Materials Project. More details are provided in STAR methods.
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takes contaminated crystal structures as inputs, in which atomic species and positions are randomly masked and perturbed, and learns to

reconstruct the complete and noiseless structures. In tests with crystal structures previously unseen by the model, the pre-trained model

has shown a preliminary ability to identify local optimal solutions from incomplete structures. Hence, when provided with a basic design

for the structure of novel materials, our model can produce a completion plan, generating themost likely stable crystal structures under given

conditions. In addition, we also demonstrate the adaptability of our pre-trained model for downstream regression and classification tasks

through supervised fine-tuning.

The challenge, however, lies in the lack of a critic to evaluate the generated structures efficiently.We consider using the actor-critic learning

framework to guide generative training, similar to the application of reinforcement learning from human feedback (RLHF) in NLP.30 While nu-

merical methods like DFT calculations are potential options for the critic’s role, leveraging GANs offers a significantly more computationally

efficient solution for early-stage training. More importantly, our goal extends beyondmere generative tasks. We aim for models to reveal the

intrinsic information embedded within material structures. For example, our model serves as a conditional probabilistic model for investi-

gating the likelihood of various compositions being stable under given crystallographic conditions, so it offers a probabilistic insight into

the nature of crystals and delivers richer information compared to other unconditional probabilistic models derived through data mining.31,32

Consequently, we incorporate the GAN architecture into our training pipeline to fully exploit existing data without relying on external infor-

mation, such as DFT-calculated stability labels, and thereby circumvent the limitations imposed by human preconceptions.

In this paper, we explore the application of self-supervised learning to crystal structure generation and demonstrate that the incorporation

of a discriminative model can enhance the reliability of the generated crystal structures with minimal additional effort. This enhancement is

evidenced by a comprehensive comparison between the outcomes of self-supervised learning and its combination with GAN. Our method-

ology is unique as it relies solely on unlabeled crystal structure data, offering a data- and computation-efficient training strategy for early-

stage training. Furthermore, this approach paves the way for a first-principles understanding of the intrinsic information hidden in existing

material structures, thereby serving as an invitation for further exploration into the analysis of material structures through generative models.

RESULTS

Pre-training for crystal generation

To obtain a generative model, we integrate the concepts of masked training and machine learning denoising into equivariant graph neural

networks. Given a stable crystal structure as a valid training sample, we prepare an imperfect input structure by masking a portion of the

atoms, i.e., setting their atomic numbers to zero, and perturbing the equilibrium atomic positions. In particular, the incomplete input struc-

tures are generated through the following operations: (1) masking all atoms of a randomly selected species or randomly masking 15% of all

atoms in the unit cell, regardless of species, where the choice between these masking strategies is made randomly; and (2) adding random

displacements to the positions of all atoms, including themasked ones. The primitive lattice vectors and periodicity of the input structures are

predefined to compute the edge distance embedding, serving as input for the generative model. As illustrated in Figure 1B, the model is

designed to reconstruct the complete structures from the given inputs by predicting the atomic species and positions in separate task-specific

layers, and the discrepancies between the reconstructed structures and the pristine structures are used to update model weights.

Specifically, the model incorporates the main structure of the EquiformerV2,29 an equivariant graph neural network with the attention

mechanism, and two auxiliary, shallow neural networks that further map the equivariant features to the desired atomic species and position

information. The equivariant backbonemodel efficiently represents crystal structures with all symmetries preserved and provides informative

embedding for the subsequent layers. To train the model, we adopt a hybrid loss function that combines the negative log likelihood for

atomic species predictions and the mean squared error (MSE) for position predictions. Further details about the model and its training pro-

cess are provided in STAR methods.

Fine-tuning for downstream tasks

The pre-trained backbone model can serve as a versatile pre-trained network block adaptable for various downstream property-prediction

tasks by connecting with additional shallow layers. For each specific supervised task, this pre-trained model is integrated with a feedforward

layer, which is randomly initialized and is adapted to convert the output of the pre-trained model to meet requirements of the new task. Dur-

ing fine-tuning, both the pre-trained model and the feedforward layer are trained on a task-specific dataset. This approach allows the inte-

gratedmodel to be rapidly and efficiently tailored for a variety of tasks, offering significant advantages over training a newmodel from scratch.

To illustrate the capability of performing classification as an exemplary downstream task, we showcase themodel performance on predict-

ing the stability of a material structure in the inset table of Figure 1C. Here, we use the stability labels from the Materials Project database

determined by the convex hull. Notably, the fine-tuning network is trained on structures with cubic lattices only and reaches a commendable

accuracy of 77:15%. It further generalizes reasonably well to diverse lattice types, yielding close accuracy for tetragonal lattices and around

70% accuracies for other lattice types that the model has not been trained with. Such fine-tuning ideas can also be extended to regression

tasks, such as predicting the phonon density of states (DOS), as shown in the lower part of Figure 1C. A diverse set of other regression tasks

including predictions of Fermi energy, bulk moduli, and shear moduli are further discussed in STAR methods. It is worth mentioning that, for

all the demonstrated downstream tasks, thematerial structures—specifically, the atomic species and positions—are the only inputs.We inten-

tionally exclude any additional atomic properties, such as covalent radius and electronegativity, to explore the feasibility of predicting phys-

ical properties based solely on first principles. The remarkable prediction performances on most examined tasks indicate the promising po-

tential of our approach.
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GAN for more reliable structure generation

Through self-supervised learning on a dataset consisting of over 20; 000 diverse, stable crystal structures from theMaterials Project,33 the pre-

trainedmodel displays proficiency in accurately predicting atom types and positions in themajority of cases, with a few examples displayed in

Figure 3 and additional examples available in STAR methods. However, the model with the architecture presented in Figure 1B encounters

limitations. For example, themodel faces challenges in accurately reconstructing species that occur infrequently within our dataset. It tends to

replace the masked species with alternatives possessing similar chemical properties, as depicted in Figure 3B, thereby leading to a lack of

compositional validity in some outputs.

To mitigate the aforementioned challenges in generating physically valid structures, it becomes essential to incorporate a mechanism for

evaluating the generated structures. Utilizing human pre-knowledge, such as DFT, to train discriminatormodels is a commonpractice and has

led to successful outcomes in some recent studies.19,20 However, it can become exceedingly demanding in terms of computational resources,

as DFT calculations for each crystal structure can take severalminutes to even hours, depending on the number and species of atoms and their

types in the unit cell. Considering the need to evaluate as many generated crystals as training samples in each training epoch, a DFT-based

evaluation mechanism is thus impractical or at least inefficient. Moreover, to assess the ability of predicting crystal structures and physical

properties based solely on material structures—free from the bias of human preconceptions—we also intentionally exclude any additional

atomic properties observed by experiments or numerical methods. It highlights the pressing need for developingmore computationally effi-

cient and unbiased evaluation methods.

Given these constraints, GANs emerge as a more practical solution. Following the GAN framework illustrated in Figure 2, we combine our

pre-trained generative model (Figure 1B) with a discriminative model that has been initialized using fine-tuned parameters for stability pre-

dictions (Figure 1C), motivated by the similarities between stability classification and the discriminator’s role. Specifically, the generator is

tasked with reconstructing material structures from incomplete and perturbed input structures. The output structures are further passed

into the discriminative model along with the pristine structures. The goal of the generator is to produce seemingly realistic materials that

can pass the test by the discriminator, while the discriminator tries to tell the difference of generated (fake) structures from the real ones.

To provide an intuitive understanding of our models’ performance, we provide representative examples of the original material structures,

contaminated inputs, and the corresponding outputs generated by different models in Figure 3. The generative model, trained under the

GAN framework, demonstrates visibly improved performance. It is particularly evident when atoms of a less common species are masked:

the GAN generator outperforms the pre-trained model in reasonably repositioning atoms and providing more reliable predictions for the

masked species. While evaluating the enhancement offered by GANs over pre-trained model purely from a visual perspective is not persua-

sive, we quantitatively assess their differences based on three metrics: validity, similarity, and novelty.

Validity

We conduct an analysis of the validity of generated crystal structures using two fundamental criteria commonly employed in the field14–16:

structural validity and compositional validity. Structural validity assesses whether the minimum Euclidean distance between atoms is greater

than a threshold of 0.5 Å, ensuring appropriate atomic spacing.Compositional validity is determined by verifying if the chemical composition

maintains a neutral charge, which is calculated by the Semiconducting Materials by Analogy and Chemical Theory.34

As shown in Figure 4A, when the noise level in the testing inputs matches that of the training inputs, the GAN generator, though not out-

performing the pre-trained model in constructing structurally valid crystals, demonstrates enhanced robustness in generating composition-

ally valid structures. Despite all generative models being trained on inputs with only 15% of atoms masked, the GAN approach displays

remarkable extrapolation capability, especially in scenarios where 30% atoms are randomly masked (mask type g).

Interestingly, theGANgenerator trainedwith a higher noise level ðG0:2Þperforms similarly to othermodels on the test set with a lower noise

level ð~snoise = 0:1Þ; however, when test samples include higher noise levels, GAN generators outperform the pre-trained model in creating

compositionally and structurally valid crystals, specially the structural validity score of G0:2 is distinctly higher than that of Gpre. G0:2 uses a

training set with ~snoise = 0:2 during GAN training, but since it utilizes the model parameters of the pre-trained model Gpre, it has been effec-

tively exposed to training set with different noise levels. This observation suggests that diversifying the training set by including variations in

~snoise may enhance the model’s versatility.

Similarity

We introduce two metrics designed to evaluate the effectiveness of generative models in accurately reconstructing the crystal structures of

ground truth materials, namely compositional similarity and structural similarity. Compositional similarity quantifies the probability of gener-

ative models in reproducing the same compositions as the originals (see Equation 5). Structural similarity reflects their accuracy in replicating

the atomic positions in alignment with their original counterparts, scaled by the noise introduced to the inputs (as defined by Equation 4).

Figure 4B shows that the distribution of compositional and structural similarities approximates a Gaussian distribution, with the mean

values locating at the standard deviation of the noise distribution introduced to the training samples, snoise = ~snoise 3 minðedgesÞ. As the
noise level of the test set increases, the models quickly become incapable of reverting the compositions and structures to their originals.

This inability could be attributed to the generated structures converging to other local optima, distinct from the original structures.

Figures 4D and 4E visualize the impact of the crystal size and the species to be unmasked on models’ performance. It demonstrates that,

despite the non-uniform distribution of the size of crystals (illustrated in STARmethods) and species abundance within the datasets (as shown

in Figure 1A), the structural similarity scores for all models remain largely unaffected by variations in the number of atoms and the types of
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species masked. This observation suggests that the generative models exhibit significant robustness in reconstructing crystal structures,

regardless of the difference in size and composition encountered during training.

DFT-based stability check

Another aspect of the performance of our model is the stability of the generated structures. Due to the relatively high computational cost and

complexity of DFT simulations (especially for complex systems, e.g., large unit cells containing hundreds of atoms35–40 and systems containing

polarized electrons41–43), we randomly select a small subset of systems studied in this work (with various unit cell sizes) to conceptually show

the relative stability of structures generated by different models.

Here we use the DFT total energy to feature the relative stability. A lower total energy value means a higher structural stability for systems

with the same chemical composition. To eliminate the influence of unit cell size, we further divide the total energy values by the number of

atoms in the unit cell. Figure 4C shows that structures produced by GAN generators usually exhibit a non-negligible lower total energy (per

atom) DE, highlighting the effectiveness of GANs in constructing more stable structures in comparison to those generated by the pre-trained

model. Additionally, the generated structure with the lowest total energy for each composition achieves the highest structural similarity score

Figure 2. Generative adversarial network for crystal structure generation

We further adopt a GAN framework as a strategic enhancement to the pre-trained generative model. The discriminator, initialized with the fine-tuned stability-

predicting model, is to distinguish between original stable and generated crystal structures, while the generator, initialized with the pre-trained model, aims to

produce crystal structures indistinguishable from the real ones to the discriminator. All model parameters undergo fine-tuning during the procedure illustrated in

this figure.
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(refer to STAR methods). This observation suggests that structural similarity may act as a proxy for the structural stability suggested by DFT

calculations.

Novelty

To gain deeper insights into the information encodedby generativemodels, as shown in Figure 5, we plot the correlation between the species

being replaced and those replacing them in the generated crystal structures. In this analysis, we only consider structures that differ in compo-

sition from their original counterparts and are compositionally and structurally valid. Our observations suggest that the model may automat-

ically capture fundamental chemical properties from the self-supervised learning process without the needs of explicit labels, such as electron

configurations, ionic radii, oxidation states, and the position of the element in the periodic table. For example, elements within the 4d series

are preferred to be interchangeable with those in the 5d series within the same group, due to their similar electronic structures. Yttrium, for

instance, is observed to be replaceable by terbium and holmium, as they share the same number of outer electrons, comparable atomic radii

and oxidation states. Moreover, a common trend is noted where many elements exhibit a preference for replacement with others in close

proximity on the periodic table (see Figure 5B). Such high level information provided by our pre-trained model can also be further utilized

to help find novel stable compounds by narrowing down most promising candidate elements.

We further compare our method with simple elemental substitution method,31 which computes the likelihood of substituting species A

with species B, denoted as PðA/BÞ, through data mining. This method is particularly useful when the probability of one species being re-

placed by another remains constant, irrespective of different atomic and positional information within various crystals—although such sce-

nario rarely applies. On the other hand, our generative model is essentially a more sophisticated probabilistic model, since it outputs the

probability of specific atomic species at each masked site. Therefore, our model can offer conditional probabilities PðA/BjconditionÞ under
diverse conditions, such as varying structures and compositions. We also find that the averaged probabilities over conditions given by our

generative models bear a resemblance to those produced by simple substitution (see STAR methods).

DISCUSSION

In this study, we propose amachine learning framework that employs equivariant graph neural networks and utilizes the training strategies of

reconstructing corrupted inputs (Figure 1B) and adversarial learning (Figure 2) to study the mechanisms underlying crystal structures

Figure 3. Generative/reconstructive capability illustration

(A) Showcase the capability of the generators in finding the optimal crystal structures from inputs with frequent occurring species being masked.

(B) Showcase the capability of the generators in finding the optimal crystal structures from inputs with infrequent occurring species being masked.

(C) Showcase the capability of the generators in finding the optimal crystal structures from inputs with 30% random atoms being masked. Note that for all results

shown in this figure, all positions are perturbed by noise following a normal distribution with a standard deviation of ~snoise3minðedgesÞ ð~snoise = 0:2Þ. The pre-

trained model is trained with ~snoise = 0:1, and the GAN generator with ~snoise = 0:2. More examples are provided in STAR methods.
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formation. Our approach is designed to pursue three primary applications: (1) generating or reconstructing crystalline material structures, (2)

predictingmaterial properties, and (3) conducting behavioral and structural evaluations for the generativemodels trained exclusively on crys-

tal structures.

Our model demonstrates a high capability in generating or reconstructing crystal structures: in case where, given any partial information

about the original structure, the original remains the most optimal (stable) among all possibilities, our model achieves up to 80% accuracy in

reconstructing the optimal composition and possesses a 60% efficiency in denoising the corrupted input toward the optimal structure (as

A

C

D

E

B

Figure 4. Performance evaluation

(A) The performance of generativemodels evaluated by validity. Model notion: Gpre represents the pre-trained generativemodel, trained with samples perturbed

at ~snoise = 0:1; G0:1 and G0:2 denote GAN generators trained with data at noise levels of ~snoise = 0:1 and ~snoise = 0:2, respectively.

(B) The performance of generative models evaluated by similarity.

(C) The performance of generative models evaluated by DFT calculations. Crystal structures, randomly selected from the test set and perturbed by positional

noise with ~snoise, are analyzed for energy difference ðDEÞ compared to originals. The total energy per atom of originals is shown in brackets.

(D and E) Evaluate the impacts of the number of atoms per unit cell and the atomic species beingmasked on compositional similarity (blue-series histograms, left

axis) and structural similarity (red-series histograms, right axis), usingmodel G0:2 and testing on samples with ~snoise = 0:2. Note that the right axis in (E) is inverted.

More detailed analyses are provided in STAR methods. Positional noise for the test samples follows a Gaussian distribution with a standard deviation snoise =

~snoise 3minðedgesÞ. Masking strategies include the following: ðaÞmasking all atoms of a specific species within each crystal structure, repeated for each species;

ðbÞ randomly selecting and masking 15% of atoms, repeated five times per structure; and ðgÞ a similar approach with 30% of atoms. Evaluation is performed on a

test set augmented from 2; 000 samples to approximately 6; 500 for mask type ðaÞ and 10; 000 for mask type ðbÞ and ðgÞ.
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depicted Figure 4). We also expect that our generative model has the potential to discover novel materials, a hypothesis that requires further

empirical validation. Different from diffusion model-based approaches, our method focuses on end-to-end predictions that are advanta-

geous in a few aspects. Firstly, our model provides straightforward control over targetedmaterial systems, particularly for classes of materials

with common structures but varying compounds, such as perovskites. Additionally, the end-to-end prediction framework also allows for faster

and easier training and inferences compared with diffusion models since no iterative process is needed.

Regarding the material property prediction, this model shows its adaptability to a broad range of physical property prediction problems

that only take crystal structure as input (as illustrated in Figure 1C and further elaborated in STAR methods). Our goal is to showcase that

data-driven machine learning models are capable of not only accomplishing tasks defined by their training loss functions but also extend-

ing their applicability to related downstream tasks with minimal cost. This versatility is rooted in the universal and foundational contents

learned by the models, rather than specific, narrowly defined tasks. Analogous to the process of learning language structure before

A

B

Figure 5. Species replacement correlation

(A) The correlation between the species being replaced and those replacing them in the valid, novel crystal structures generated by model G0:2. The color bar

represents average correlations across all test data used for similarity calculations in Figure 4. Species are organized based on their chemical families.

(B) Visualizes the correlation in (A) through a periodic table: selected species (enclosed with dashed lines) and their top three replacements are displayed, with the

replacement ratio indicated by the block color. Different color maps are assigned to various species being replaced. The color of each species symbol reflects

their chemical families, as identified in (A). Additional details are available in STAR methods.
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composing poetry, our approach focuses on training the model to learn crystal structures rather than directly instructing it to generate

band structures.

In model evaluation, we assess the performance of the generative models on various test sets by examining aspects of validity, simi-

larity, and novelty. We provide a detailed analysis of the model’s capability across different input samples, focusing particularly on the

influence of the number of atoms and the types of atomic species involved, with more features (such as symmetry groups) awaiting further

exploration. One noteworthy observation is that the structural similarity, as defined in Equation 5, remains consistent across structures of

varying sizes and compositions (see Figure 4). Additionally, we endeavor to examine whether crystal structures inherently contain all the

information necessary for a comprehensive understanding of their formation, so our approach intentionally minimizes the reliance on pre-

established human knowledge and assumptions. In attempting to analyze the generative model’s underlying logic in selecting replace-

ment elements, we find that the model may be capable of finding chemically similar species and providing novel data-driven insights

related to the periodic table of elements (refer to Figure 5). Beyond behavioral evaluations, conducting structural evaluations, such as

feature attribution, is a promising avenue for future research.

Our work opens the door for significant future advancements. Drawing inspiration from NLP, we implement an efficient self-supervised

training method, offering a comprehensive framework for crystal generation and property prediction. To overcome the lack of an acces-

sible supervisor, we demonstrate that incorporating a GAN framework enables the generator to produce more reliable outcomes. This

approach, free from prior knowledge, further permits the investigation of information intrinsically encoded within crystal structures. There-

fore, our study serves as an invitation for deeper exploration into understanding materials from first principles using generative machine

learning techniques.

Limitations of the study

Although our workmarks a step forward, it encounters limitations. (1) Achieving ‘‘large crystal models’’ capable of accurately predicting crystal

structures requires a more comprehensive dataset and larger model parameters. (2) Currently, our models have not been trained on dataset

that include perturbed lattice vectors, but this limitation can be readily addressed by including a feedforward network for lattice vector pre-

diction into the generator. (3) The dataset used for training exclusively contains 3D crystals, which limits our model’s ability to predict crystals

of lower dimensionality. (4) Our generativemodel is presently confined to cases where the basic design of the desired crystal structure should

be predefined. In other words, unlike other diffusion-based studies that aim for optimal structures with given compositions, our current work

practically focuses on finding the optimal composition based on a basic design of the structure. However, our training framework is adaptable

for structural optimization by introducing higher noise levels. Employing a diffusion process as the generator within the GAN framework im-

proves the outcomes in the absence of specific structural designs. (5) Training models on more challenging tasks may lead to better out-

comes. For example, we could delete atoms and their positions, or add extra ones, enabling the model to decide whether to remove or

generate atoms; we could also randomly swap the positions of some atoms, challenging the model to correct these alterations. Such oper-

ations can potentially improve the performance of generative models. However, due to limited computational resource, our investigations

focus on masked atoms and perturbed atomic positions. (6) Analogous to enhancements of language models through RLHF, for a thorough

examination of the generated structures and a further refinement for practical use, incorporating human insights becomes an inevitable next

step. (7) To achieve the generation of materials with constrained properties, our model needs to be further fine-tuned using property-specific

datasets, though this is primarily a consideration under resource limitations. We expect the ultimate objective as conditioning the generation

process by text representations and facilitating training through zero-shot learning.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Dr. Zhantao Chen (zhantao@stanford.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data. The accession information for these datasets are listed in the key resources table.
� All original code has been deposited at the GitHub repository (https://github.com/fangzel/CrystalGenerativeModels) and is publicly

available.
� All additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD SUMMARY

Model setup

We represent the atomic numbers of species ofN atoms in a unit cell of real crystal structures as Z ˛RN3C , where Z is a set of one-hot vectors

with lengthC = 118 forN atoms in the unit cell. The perturbations applied to the atomic positions inD = 3 dimensional space are denoted as

P ˛RN3D . Consequently, our model’s output regarding atomic species is described as ~Z˛RN3C , the type-0 output of the equivariant graph

neural network with C output channels, and the output for positional perturbations is ~P ˛RN3D , the type-1 output of the equivariant graph

neural network.

For pre-training, we train EquiformerV229 with 12 Transformer blocks, 8 attention heads, 118 output channels, a maximumdegree of 6 and

amaximum order of 2. We use the Adam optimizer with a learning rate of 13 10� 4. Batch sizes increases throughout the training process (see

details in STAR methods).

Loss functions

For the pre-train model, we choose negative log likelihood loss (NLLLoss) applied after LogSoftmax as the loss function for atomic species,

and MSE for atomic positions:

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Materials Project Jain, Anubhav et al. ’’Commentary:

The Materials Project: A materials genome

approach to accelerating materials

innovation.’’ APL materials 1.1 (2013).

https://doi.org/10.1063/1.4812323

Software and algorithms

e3nn: a modular PyTorch framework

for Euclidean neural networks

Geiger, Mario, and Tess Smidt. ‘‘e3nn:

Euclidean neural networks.’’ arXiv

preprint arXiv:2207.09453 (2022).

https://doi.org/10.48550/

arXiv.2207.09453

EquiformerV2 Liao, Yi-Lun, et al. "Equiformerv2:

Improved equivariant transformer

for scaling to higher-degree representations."

International Conference on Learning

Representations (2024).

https://doi.org/10.48550/arXiv.2306.12059;

https://github.com/atomicarchitects/equiformer_v2

Crystal Generative Models This paper; original code for reported results. https://github.com/fangzel/

CrystalGenerativeModels
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Lpretrain = Lspecies +wposition 3Lposition;

Lspecies = �
XN
i = 1

XC
j = 1

ZijLogSoftmaxð~ZiÞj;

Lposition =
1

N

XN
i = 1

XD
j = 1

�
Pij � ~Pij

�2
:

(Equation 1)

For fine-tuning regression tasks, we use MSE as the loss function. For fine-tuning classification tasks, the loss function is NLLLoss applied

after LogSoftmax.

For GAN, having found that the discriminator tends to outperform the generator rapidly while using cross entropy as the generator loss, and

leads to gradient vanishing in our tasks, we use Wasserstein distance LW = 1
M

PM
m = 1

PK
k = 1

���yðmÞ
k � ~y

ðmÞ
k

��� as the training loss. Here,M denotes

the number of samples in each batch and K = 2 for binary classification. The Wasserstein loss for the generator bG : RN3ðC+DÞ/RN3ðC+DÞ is
formulated as

LG
W =

1

M

XM
m = 1

X2

k = 1

���yðmÞ
k � LogSoftmax

� bD� bG�
X ðmÞ

���
k

���; (Equation 2)

with yðmÞ = ð0; 1Þ indicating the label vector for each samplem. The input of the generateX ðmÞ consists ofmasked atomic species ~ZðmÞ ˛ RN3C

and perturbed positions ~PðmÞ ˛RN3D augmented based on the m-th crystal structure.

On the other hand, for the Wasserstein loss in the discriminator bD : RN3ðC+DÞ/R2, yðmÞ is set to (1,0) for real structure inputs, i.e., ~yðmÞ =

LogSoftmaxð bDðX ðmÞÞÞ; yðmÞ = ð0; 1Þ for inputs from the generated structures, i.e., ~yðmÞ = LogSoftmaxð bDð bGðX ðmÞÞÞÞ. When training the gener-

ator, we keep the parameters of the discriminator frozen, and vice versa.

To prevent the generator from producing features specifically tailored to the weakness of the discriminator, rather than learning to pro-

duce the realistic crystal structures, we incorporate Lspecies and Lposition, as specified Equation 6, into the generator loss:

LG = wW 3LG
W +Lspecies +wposition 3Lposition: (Equation 3)

Note that we use wposition = 200 as for pre-training and GAN. The training of GAN is done with wW = 0:1, though both wW = 1 and 0.1

have been tested with no significant difference observed.

Modifications to the trainingprocedure are alsomade to avoid this issue, such as reducing the learning rate of thediscriminator (lrG
= 10� 4

and

lrD
= 10� 5

), introducing infinitesimalpositional noise to the real crystal structures (thenoise followsanormaldistributionwith standarddeviationof

s = 0:0013 minðedgesÞ), and adjusting the training schedule to update the generator ten times more frequent than the discriminator.

Related metrics

Compositional similarity is defined as the average percentage match between the generated and original material compositions across the

test set:

Comp: Similarity =
1

jtest setj
Xjtest setj

m = 1

d
�
Z ðmÞ � ~Z ðmÞ

�
; (Equation 4)

Here ~Z
ðmÞ
ij = dðj � argmaxkðLogSoftmaxð~ZðmÞ

i ÞkÞÞ, where ~ZðmÞ ˛RN3C denotes the compositional output from the generative model, as

shown in Equation 6. This metric provides insight into the model’s ability to accurately restore the composition of materials. However, it is

important to note that (1) while high compositional similarity indicatesmodel accuracy, it is contradictory to assessing its capability to innovate

novel structures; (2) for computational simplicity, a generated structure is considered compositionally identical to the original structure only if

Zi = ~Zi for all i. This definition, however, overlooks the scenario where two atoms of different species ðZi sZjÞ may have their locations

exchanged due to the large positional noise. Such an exchange would lead the generative models to swap their species and positions, re-

sulting in ~Zi = Zj, ~Zj = Zi, ~Pi = Pj, and ~Pj = Pi . In this case, the generated structure should still be considered equivalent to the original

counterpart. With low noise levels, the probability of this occurrence is sufficiently low. However, as our analysis in Figure 4B includes high

noise levels, this could lead to inaccuracies in assessing compositional similarity.

Structural similarity, on the other hand, aims to evaluate themodel’s ability in replicating the structural integrity when themodel decides to

generate compositions identical to the originals. It is defined as:

Struc: Similarity = 1 � 1

jtest setj
Xjtest setj

m = 1

d
�
Z ðmÞ � ~Z ðmÞ

�0@ 1

Nm

XNm

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
j = 1

�
PðmÞ
ij � ~PðmÞ

ij

�2

vuut 1A,
SðmÞ: (Equation 5)
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Here, the equation considers the Euclidean distance between the positions in the original structure ðPðmÞ ˛RN3DÞ andgenerated structure

ð~PðmÞ ˛RN3DÞ for the m-th test sample, normalized by the average positional deviation from the equilibrium introduced to the input

ðSðmÞ ˛RÞ. A higher structural similarity score, approaching 1, indicates a closermatch to the originalmaterial’s structural positioning, offering

a direct measure of the model performance in restoring material structure.

For DFT calculations, we employ the all-electron electronic structure package FHI-AIMS44 to conduct single-point DFT calculations. We

specifically exclude systems containing partially-filled d- or f-orbitals in this part, so the combination of semilocal Perdew-Burke-Ernzerhof

(PBE) exchange-correlation (XC) functional45 and the ‘‘atomic ZORA’’ scalar relativity44,46,47 is considered to be suitable for total energy pre-

diction. Moreover, ‘‘intermediate’’ numerical settings of the numeric atom-centered-orbital basis are used,48 and the k-grids for different cal-

culations are adjusted according to different unit cell sizes to ensure adequate density of the sampled points in the reciprocal space.

Motivations and discussions

In this study, we propose a new framework for autonomous material generation. The distinctive feature of our approach is the minimal

reliance on pre-existing human pre-knowledge during the training process: the generative model is trained exclusively with the atomic

numbers of species and their positions for each material structure. This approach not only significantly reduces computational costs

and mitigates biases arising from prior assumptions, but also facilitates the study of mappings from material structures to complex physical

properties.

Motivation

Our work draws inspiration from the field of NLP, which has seen remarkable advancements in recent years. These improvements have been

largely driven by the adoption of self-supervised learning strategies25 and, though more resource-intensive, in-context learning,24 as well as

the self-attention mechanism in LLMs.22,26,27 Besides these aspects, the data distribution has been identified as a crucial factor in driving

emergent behaviors in transformer-based LLMs.23 As shown in Figure S1A, we observe that the distribution of elemental abundance in crystal

structures is close to that of vocabulary abundance in natural languages, following a power law distribution—a common pattern in natural

datasets like languages. This observation suggests that the success of LLMs could be beneficial in material prediction research. Therefore,

we trained a generative model for crystal structures in a similar manner, as detailed in Section.

Obstacles and detours

The challenge, however, lies in the absence of a critic to evaluate the generated structures. We propose utilizing the actor-critic learning

framework to guide generative training, similar to applying RLHF in NLP. Ideally, numerical methods like DFT calculations or even human

evaluations could serve as the critic, while employing GANs offers a computationally efficient solution for early-stage training. More

importantly, our objectives are not limited to merely aiding in material generation; we are also keen on exploring the insights that

can be extracted from crystal structures. To ensure our training process remain unbiased and uninfluenced by pre-existing knowledge,

we deliberately avoided using DFT and similar methods during the training phase. As a result, we choose to integrate the GAN archi-

tecture into our training pipeline to fully exploit existing data without relying on external sources like DFT-calculated stability labels

(refer to Section).

Solution

To autonomously generate physically meaningful crystals, the model is expected to self-learn the principles of crystal formation and poten-

tially gaining inferential capabilities. The training of material prediction can bemainly divided into two stages: (1) Pre-training stage: we guide

the model through fill-in-the-blank and sentence-arranging exercises, using known crystal structures as reference. (2) Generative adversarial

stage: two sufficient trainedmodels play opposing roles. Onemodel endeavors to generate structures indistinguishable from real ones, while

the other one attempts to distinguish between the generated and real ones. Beyond generative learning, our model also demonstrate the

adaptability for down-stream regression and classification tasks through supervised fine-tuning (see Section).

Generation or reconstruction?

Our current model focuses on generating the optimal crystal structure under given crystallographic design—it may not yield the globally

optimal structure if the specified conditions do not fall within the convex of global optima. It worth emphasizing that our models has never

seen and been trained by the test samples. Therefore, if it performs well in ‘‘reconstructing’’ a never-before-seen corrupted inputs, we would

also expect it to perform well with any input—without the need to resemble any existing material structure. We demonstrate the models’

reconstruction ability in Section.

Comparison

The prevailing popular models for crystal structure generation utilize diffusion process and VAEs. Diffusion models are typically

applied to generate crystals from given composition, unit cell information, and null position embeddings. Our training method asymp-

totically approaches to a diffusion process as the noise introduced to the inputs goes to a large limit (requiring an additional modifi-

cation to the loss function). Currently, our generative model is presently confined to scenarios where the basic design of the desired
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crystal structure is predefined. In other words, while the diffusion-based studies target the global optimal structures for certain compo-

sitions, our work focuses on identifying local optima within a defined framework. Nonetheless, our training strategy can be adapted for

global optimization by introducing higher noise levels. VEAs follow a distinct approach: projecting crystal structures into a latent space

through an encoder and then decoding it back to crystal structures, enabling material generation through sampling over the latent

space.

Probabilistic model

Our generative model functions as a conditional probabilistic model, as it outputs the probability of specific atomic species at each masked

site. Therefore, this model offers a probabilistic understanding into the nature of crystals in an interpretable manner, delivering richer infor-

mation compared to other unconditional probabilistic models.31,32 Details are provided in Section.

Self-supervised pre-training stage

Model setup

Our study utilizes themost recent equivariant graph neural network with Transformer architecture, EquiformerV2,29 for our pre-trainedmodel.

Equivariance is a property of an operatorF : X/Y mapping between vector spaces X and Y by which it commutes with the group action of a

group ðG; +Þ, i.e., F+rX ðgÞ = rY ðgÞ+F, where rX ðgÞ is the group representation r of g˛G action on X . For our purposes, the equivariant

graph neural network acts as the operator F, being equivariant to E(3) group actions—3D translations, rotations and inversions—in process-

ing 3D atomistic structures X and Y . This allows the model to inherently capture symmetries in the data, eliminating the need for data

augmentation. During the pre-training, we trained EquiformerV2 with 12 Transformer blocks, 8 attention heads, 118 output channels, a

maximum degree of 6 and a maximum order of 2. We used the Adam optimizer with a learning rate of 13 10� 4. Batch sizes were adjusted

through the training process: 1 for early epochs (below 25), 3 for mid-stage epochs (25–45), and 5 for later epochs (beyond 45).

Dataset

We collect a dataset comprising 21; 250 diverse, stable crystal structures from theMaterials Project,33 allocating 80% for training and 10%each

for validation and testing. Our selection criteria prioritize samples with available electronic band structures and DOS to enhance the quality

and reliability of the training data. The pre-train model receives input crystal structures undergoing augmentation through two operations: (1)

with a 50% probability, randomly selecting a species andmasking all its atoms, and with a 50% probability, masking 15% of the atoms within a

unit cell; (2) introducing random perturbations to the positions of all atoms. The perturbations follow a Gaussian distribution with a standard

deviation of ~snoise 3 minðedgesÞ, where ~snoise = 0:1 is set for the pre-training phase. Our model is designed to reconstruct these corrupted

crystal structure by revealing the masked atoms and accurately adjusting the positions of all atoms.

In our representation, the atomic species ofN atoms within a unit cell of a real crystal structure are represented as Z ˛RN3C . Here, Z con-

stitutes a set of one-hot vectors, each of length C = 118, corresponding to the N atoms in a unit cell. The perturbations applied to the real

atomic positions inD = 3 dimensional space are denoted as P ˛RN3D . Consequently, the output of our model for predicting atomic species

is denoted as ~Z˛RN3C , which is the type-0 output of the equivariant neural network with C output channels, and the output for positional

perturbations is ~P ˛RN3D , which is the type-1 output of the equivariant graph neural network.

Pre-training losses

To optimize the model weights for this task, the training loss for each sample is defined as

Lpretrain = Lspecies +wpos 3Lpos;

Lspecies = �
XN
i = 1

XC
j = 1

ZijLogSoftmaxð~ZiÞj = �
XN
i = 1

XC
j = 1

Zij log
exp ~ZijPC

k = 1

exp ~Zik

;

Lpos =
1

N

XN
i = 1

XD
j = 1

�
Pij � ~Pij

�2
:

(Equation 6)

In Figure S2, we investigated the impact of the weight wpos during pre-training. Lspecies remains unaffected by changes in wpos, whereas Lpos

decreases with an increase in wpos and reaches a plateau when wposz200. Based on this observations, we selected wpos = 200 for our pre-

training. The pre-training losses, normalized by the number of atoms in each batch, is shown in Figure S3.

Supervised fine-tuning stage

Strategy

Through pre-training on a broad and diverse dataset, themodel develops a fundamental understanding of the principles of materials compo-

sition and encodes this information in the model parameters. The pre-trained model can be more quickly and efficiently tailored for a variety

of downstream tasks than a model trained from scratch. For a specific supervised task, the pre-trained model is merged with a feedforward
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layer, which is randomly initialized and is designed to adapt the output of the pre-trained model to the requirement of the new task. During

fine-tuning, both the pre-trained models and the feedforward layer are trained on a task-specific dataset.

Fine-tuning on regression tasks

For regression tasks, we evaluate our model on predicting (1) the Fermi energy, (2) bulk moduli and shear moduli, and (3) phonon density-of-

states (DOS) based solely on the crystal structure, using MSE as the loss function. (1) For the prediction of Fermi energy, we utilize the same

training set as used in the pre-training phase to prevent any information from the validation set being inadvertently exposed to themodel.We

further explore the influence of the training set size, depicted in Figure S4, reveals that the validation loss is significantly affected by the size of

train data. (2) To investigate the behavior of fine-tuning on smaller datasets, we fine-tune the model for elasticity properties like bulk moduli

and shear moduli with units of logGPa. This fine-tuning is performed using a dataset comprising 1915 training samples and 638 validation

samples from Materials Project. (3) The pre-trained model is originally trained by predicting atomic displacement in crystal structures, which

may capture how local structural perturbations influence the vibration properties of materials, and establishing a direct correlation between

structural changes andmacroscopic phononic behavior. Therefore, we leverage our pre-trainedmodel to predict the phonon DOS, as shown

in Figure S4, with 1; 524 training samples and 304 validation samples from.49

Fine-tuning on classification tasks

For classification tasks, the loss function is Negative Log Likelihood Loss (NLLLoss) applied after LogSoftmax, as Lspecies in Equation 6. To

assess our pre-trained model’s capability in classifying crystal structures, we naturally focus on identifying the stability of crystal structures.

We fine-tune the model by using 4; 017 stable and 4; 065 unstable cubic crystal structures fromMaterials Project. It is worth noting this model

was initially pre-trained exclusively on stable crystal structures. For evaluation, we utilize 2; 000 samples from each crystal types, except for

triclinic crystal structures, which have only 1; 483 samples. These samples are nearly evenly split between stable and unstable structures.

The accuracy of stability prediction is shown in Figure S5. Remarkably, although themodel’s fine-tuning was confined to cubic crystals, it dem-

onstrates extrapolative capabilities to other types of crystal structures.

Generative adversarial network stage

Motivation

The objective of our generative model extends beyond merely reconstruct the original crystal structure from its contaminated counterpart,

while also exploring novel crystal structures that have not been discovered before. The challenge, however, lies in the limitation of the loss

function, which can only optimize the reconstruction goals, and the absence of a tool for discriminating generated structures.

We consider the framework of actor-critic learning to guide the generative training. Based on this framework, we have two options: self-

supervised GANs or incorporating human pre-knowledge of crystal structures as a critic. Compared to GANs, the later one, such as utilizing

DFT, are computationally expensive, with duration ranging from a few minutes to several hours for each crystal graph. Furthermore, the critic

neural network model supervised by substantial DFT data has been sufficiently trained in previous studies.19 Such well-trained critic model

could serve as a valuable tool for the future enhancement of our generative model.

Another concern involves utilizing generative training to explore howmuch information is embedded in the crystal structures. This topic is

analogous to examining whether a child, without any formal teaching on recognizing sentiments, can discern the sentimental tones in a sen-

tence after extensive reading. To ensure rigorous control over variables, we tend to isolate the teaching from humans.

Model setup

For the above reasons, we finally select self-supervised GANs. In this setup, the discriminative neural network is trained to distinguish the

crystal structures produced by the generativemodel from the real crystal structures. Concurrently, the generative neural network is optimized

to deceive the discriminator. We initiated the generator with pre-trained model parameters and used the fine-tuning model parameters for

stability classification in downstream tasks as the discriminator’s starting point, which is chosen because this task shares some commonalities

with the discriminator’s role, despite their tasks not being entirely aligned.

Generative adversarial network training losses

Having found that the discriminator tends to outperform generator rapidly while using cross entropy as the generator loss, and leads to

gradient vanishing in our tasks, we use Wasserstein distance as an alternative:

LWasserstein =
1

M

XM
m = 1

XK
k = 1

���yðmÞ
k � ~yðmÞ

k

���;
where M is the number of samples in each batch and K = 2 for binary classification. The Wasserstein loss for the generator bG : RN3ðC+DÞ/
RN3ðC+DÞ is formulated as
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LG
Wasserstein =

1

M

XM
m = 1

X2

k = 1

���yðmÞ
k � LogSoftmax

� bD� bG�
X ðmÞ

���
k

���;
with yðmÞ = ð0; 1Þ indicating the label vector for each sample m. The input of the generator, X ðmÞ, consists of masked atomic species ~ZðmÞ ˛
RN3C and perturbed positions ~PðmÞ ˛RN3D augmented based on the m-th crystal structure.

On the other hand, for the Wasserstein loss in the discriminator bD : RN3ðC+DÞ/R2, yðmÞ is set to ð1; 0Þ for real structure inputs, i.e., ~yðmÞ =

LogSoftmaxð bDðX ðmÞÞÞ; yðmÞ = ð0; 1Þ for inputs from the generated structures, i.e., ~yðmÞ = LogSoftmaxð bDð bGðX ðmÞÞÞÞ. When training the gener-

ator, we keep the parameters of the discriminator frozen, and vice versa.

To prevent the generator from producing features specifically tailored to the weakness of the discriminator, rather than learning to pro-

duce the realistic crystal structures, we incorporate Lspecies and Lpos, as specified Equation 6, into the generator loss:

LG = wW 3LG
Wasserstein +Lspecies +wpos 3Lpos:

Note that we use wpos = 200 as for pre-training and GAN. The training of GAN is done with wW = 0:1, though both wW = 1 and 0:1 have

been tested with no significant difference observed.

Modifications to the training procedure are also made to alleviate the issue of the discriminator outperforming the generator, such as

reducing the learning rate of the discriminator (lrG = 10–4 and lrD = 10–5), positional noise adding to the real crystal structures (the noise follows

a normal distribution with a standard deviation of 0:0013 minðedgesÞ), and adjusting the training schedule to update the generator more

frequently than the discriminator.

Results

In the generative adversarial stage, both the training and validation datasets employed are identical to those used in the pre-training, and the

same level of positional noise is introduced to the input structures, i.e., snoise = 0:13minðedgesÞ, as shown in Figure S6. Despite observing

minimal reduction in the loss Lspecies and Lpos across increasing training epochs, the GAN achieves a better performance in generating phys-

ically reasonable crystal structures, at least visually, compared to the pre-train model.

To make our model compatible with larger displacements, we experimented positional noise with snoise = 0:23minðedgesÞ during GAN

training in Figure S7. This adjustment led to notable decreases inLspecies andLpos. We also evaluated the performance of the pre-train model

(trained with noise level snoise = 0:13minðedgesÞ) and the generator (trained with noise level snoise = 0:23minðedgesÞ) on reconstructing

structures perturbed with noise at snoise = 0:23minðedgesÞ. As illustrated in Figure S7C, the pre-train model shows a decline in predicting

atomic species, while the GAN generator exhibited an improved performance in handling the structures with a higher noise level.

In addition to themain text, we provide additional visual illustrations to demonstrate the generative capabilities of our models, as shown in

Figure S8.

Comparative analysis of generative capability

Validity

To quantitatively evaluate the crystal structures generated by our generative models, we present analysis of structural validity, which depends

on distance between atoms, and composition validity, based on the overall charge.14 The results are shown in the main text. Here, we further

analyze the generated structures that do not pass the validity tests by analyzing the number of atoms per unit cell and the elements in the

invalid structures in Figures S9 and S10. These figures infer the following arguments.

(1) When the noise level in the testing inputs matches that of the training inputs, the GAN generator, though not outperforming the pre-

trained model in constructing structurally valid crystals, demonstrates enhanced robustness in generating compositionally valid struc-

tures. Despite all generative models being trained on inputs with only 15% of atoms masked, the GAN approach improves extrapo-

lation capability, especially in scenarios where 30% atoms are randomly masked (mask type g).

(2) When the models are tested with a higher noise level, as depicted in Figures S9B and S10B, the GAN generators surpasses the pre-

trained in creating compositionally and structurally valid crystals, especially obtaining a better performance when the number of atoms

is large.

(3) Interestingly, the GAN generator trained with a higher noise level (G0:2) fails to achieve the highest validity on the the test set with a

lower noise level (~snoise = 0:1). This observation suggests that diversifying the test set by including variations in ~snoise may enhance

the model’s versatility.

(4) Figure S10B depicts the relationship between the crystal structures that models fail to successfully generate and the number of atoms

(per unit cell) within these structures. The similarity in the distribution of the number of atoms in compositionally invalid structures to

that in original structures (Figure S1B) suggests a weak correlation between composition validity and the number of atoms. In contrast,

the distribution for structure invalidity deviates from that observed in realistic structures. Although it is not perfectly reliable to draw

statistically significant conclusions for rigorous analysis from the structure invalidity distribution, due to the relatively small number

(approximately 10 per set) of invalid structures generated by our models in each augmented dataset, the trends observed still demon-

strate the GAN generator’s enhanced capability in structure validity with increased e~snois.
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(5) The pattern of invalidity distribution provides insights for future model improvements, for example, by training with crystal structures

that are similar to those fall within the lower validity ranges.

Similarity

We introduce two metrics designed to evaluate the effectiveness of generative models in accurately reproducing the properties of ground

truth materials. These metrics, namely compositional similarity and structural similarity, quantify the accuracy with which the models replicate

material structures in alignment with their original counterparts.

Compositional similarity is defined as the average percentage match between the generated and original material compositions across

the test set:

Compositional Similarity =
1

jtest setj
Xjtest setj

m = 1

d
�
Z ðmÞ � ~Z ðmÞ

�
;

Here ~Z
ðmÞ
ij = dðj � argmaxkðLogSoftmaxð~ZðmÞ

i ÞkÞÞ, where ~ZðmÞ ˛RN3C denotes the compositional output from the generative model, as

shown in Equation 6. This metric provides insight into the model’s ability to accurately restore the composition of materials. However, it is

important to note that while high compositional similarity indicates model accuracy, it is contradictory to assessing its capability to innovate

novel structures.

It is important to clarify that, for computational simplicity, a generated structure is considered compositionally identical to the original

structure only if Zi = ~Zi for all i. This definition, however, overlooks the scenario where two atoms of different species (ZisZj) may have their

locations exchanged due to the large positional noise. Such an exchange would lead the generative models to swap their species and po-

sitions, resulting in ~Zi = Zj, ~Zj = Zi, ~Pi = Pj, and ~Pj = Pi . In this case, the generated structure should still be considered equivalent to the

original counterpart. When noise level is sufficiently low, the likelihood of this scenario occurring is minimal, but as our analysis in Figure S11

includes large noise levels, it is conceivable that these conditions may induce inaccuracies in assessing compositional similarity.

Structural similarity, on the other hand, aims to evaluate themodel’s ability in replicating the structural integrity when themodel decides to

generate compositions identical to the originals. It is defined as:

Structural Similarity = 1 � 1

jtest setj
Xjtest setj

m = 1

d
�
Z ðmÞ � ~Z ðmÞ

�0@ 1

Nm

XNm

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
j = 1

�
PðmÞ
ij � ~PðmÞ

ij

�2

vuut 1A,
SðmÞ:

Here, the equation considers the Euclidean distance between the positions in the original structure (PðmÞ ˛RN3D ) and generated structure

(~PðmÞ ˛RN3D ) for them-th test sample, normalized by the average positional deviation introduced to the input (SðmÞ ˛R). A higher structural

similarity score, approaching 1, indicates a closermatch to the originalmaterial’s structural positioning, offering a directmeasure of themodel

performance in restoring material structure.

To facilitate an evaluation of model performance on various corrupted test samples, we illustrate the distribution of the compositional and

structural similarity across noise levels in Figure S11A. We further conduct a comparative analysis of the performances of three generative

models within the same test dataset in Figure S11B. From these analyses, we can infer the following key insights.

(1) The distribution of compositional and structural similarities approximates a Gaussian distribution, with the mean values locating at the

standard deviation of the noise distribution introduced to the training samples, snoise = ~snoise 3 minðedgeÞ.
(2) GAN generators perform better across all test sets when compared to the pre-trained model eGpr.

(3) When handling the test samples with mask type b (randomly selecting and masking 15% of atoms), generative models are more in-

clined to replicate the original crystals. When the model has decided to restore the originals, their performances on restoring the

atoms back to the original positions are almost unaffected by the specific mask types used in the test samples.

(4) As the noise level of the test set increases to ~snoise = 0:4, themodels quickly fail to revert the compositions and structures back to their

originals. Our model serves as a mechanism to find the local minima in incomplete crystal structure, rather than finding a global min-

imum. At sufficiently high noise levels, the input structure is pushed into the other local minima, thus making the model unlikely to

reconstruct a structure that matches the ground truth exactly.

(5) G0:2 uses a training set with ~snoise = 0:2 during GAN training, but since it utilizes the model parameters of the pre-trained model Gpre,

hence it has been effectively exposed to training set with different noise levels. This exposure helps the model perform better on

training sets with higher noise levels without losing performance on the training set at the lower noise levels. It suggests that sampling

the standard deviation of noise distribution of the training set can enable the model to handle test samples with different noise levels,

potentially improving its accuracy in finding both local and global minima in the crystal structures.

Figures S12 and S13 visualize the effects of the size of crystals and the species that the models should unmask on models’ performance.

The insights drawn from these figures are summarized as follows.

(1) The generative models demonstrate increased difficulty in replicating the compositions of the crystals that have a large number of

atoms and contain species that are less frequent in the test set.
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(2) Despite the non-uniformdistribution of the size of crystals and species abundancewithin the datasets (as shown in Figure S1), the struc-

tural similarity scores for all models aremarginally affectedby the number of atoms and the types of speciesmasked at low noise levels.

(3) At high noise levels, the improvements of G0:2 are evident in its enhanced capability in reconstructing crystal structures compared to

other generativemodels, assuming our original crystal structures represent the global optima. This improvement is particularly notice-

able when tested with a crystal having a larger number of atoms and less common species being masked.

In Figure S14, we present a summary of the validity and similarity scores, highlighting the highest score achieved in each test set, in which

samples have been masked and perturbed in different ways.

Density functional theory calculations

In Figure S15, we present a comparison of the structural similarity and relative total energy of generated crystal structures. These structures are

generated by various generative models with inputting contaminated structures randomly sampled from the test set. We draw the following

conclusions.

(1) The generated structure exhibiting the lowest relative total energy DE shows the highest similarity for each crystal. This observation

suggests that structural similarity can serve as an indicator of part of the information provided by DFT calculations.

(2) Structures produced by GAN generators generally demonstrate a lower DE and a higher structural similarity, indicating the effective-

ness of GANs in reconstructing structures with lower total energy compared to those generated by the pre-trained model.

(3) Although the generated structures are nearly visually indistinguishable from their original counterparts, their structural similarities are

around 50%. This is attributed to the normalization of this metric by the average noise.

Novelty

In this study so far, we have primarily demonstrated the model’s capability for reconstruction, but have not yet characterized its potential for

generation. Therefore, we define a new quantity termed novelty. A generated structure is considered novel if it is both compositionally and

structurally valid, and it exhibits a distinct composition from the original. In Figure S17, we present the rate of atomic species being replacedor

replacing other species under three different masking types. Here, we denote n
ðG;dÞ
replacedðXÞ the number of novel crystals generated by our

generativemodel G, undermask type ðdÞ, where species s is replaced, and n
ðG;dÞ
replaceðXÞ as the counterpart for the species X substituting original

species, andN
ðG;dÞ
novel as the total number of novel crystals generated undermask type ðdÞ. The rate of speciesX replacingother species (or being

replaced) can be defined as

RateðG;dÞ
replaceðdÞðXÞ = nðG;dÞ

replaceðdÞðXÞ
.
NðG;dÞ

novel: (Equation 7)

We notice that simple substitution methods31 compute the likelihood of substituting species Awith B, denoted as PðA/BÞ, through data

mining. This method is particularly useful when the probability of one species being replaced by another remains constant, irrespective of

different atomic and positional information within various crystals—although such scenarios that rarely applies. On the other hand, our gener-

ative model is essentially a more sophisticated probabilistic model, capable of offering conditional probabilities PðA/BjconditionÞ under
diverse conditions, such as varying structures and compositions.When conditions are overlooked, as shown in Figure S16, the averaged prob-

abilities 1
jconditionj

P
condition

PðA/BjconditionÞ given by our generative models bears a resemblance to those produced by simple substitution.

In Figure S17A, we expand our analysis by exploring the correlation between the species being replaced and those replacing them in the

valid, novel crystal structure, generated by the pre-trained model Gpre and the GAN generator G0:1 (refer to the main text for G0:2), computed

over augmented test data for all mask types and positional noise levels. This results, as depicted in the figure, indicate that within each group

block, the correlations are predominant. This suggests that our generative models are capable of categorizing elements into groups in a

manner analogous to the classification system used in the periodic table.

Figures S17B and S17C presents the detailed distribution of Rate
ðG;dÞ
replaceðdÞðXÞ across different mask types, noise levels, and models. In this

figure, the elements are ordered based on their occurrence probability in our dataset. The relatively uniform distributions implies that the

model is not affected by the uneven distribution of species occurrences in the training set, thereby reducing potential bias. When the posi-

tional noise in the test input crystals exceeds that of the training inputs, we observe a tendency of themodels to generate novel crystals. How-

ever, it is worth noting that while these crystals have passed the composition and structural validity tests, rigorous testing is required to prove

the stability of their chemical structures.
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