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Obesity is a metabolic disease of  ever-
increasing prevalence characterized by 
excess accumulation of  white adipose 
tissue resulting from a combination of  
overnutrition, energy imbalance, and genetics. 
In contrast to its original characterization as 
an inert tissue depot of  triglycerides, adipose 
tissue has since been recognized as a dynamic 
organ orchestrating metabolic, endocrine, 
and immune responses.[1] Accumulating 
evidence from recent decades has linked 
obesity to chronic low-grade inflammation, 
which underlies obesity-associated insulin 
resistance, diabetes mellitus, metabolic 
syndrome, and cardiovascular diseases. It 
has become clear that the role of  white 
adipose tissue has exceeded its original 
notion for energy storage. In addition to 
adipokines, adipose tissue also produces a 
variety of  cytokines and chemokines and 
plays an important function as an endocrine 
organ for orchestrating systemic physiology. 
Chronic overnutrition-induced obesity is also 
characterized by two hallmark responses, 
insulin and metainflammation, which are 
the causal factors for obesity-associated 
metabolic syndromes and other health risks.

Adipose tissue macrophages (ATMs) 
represent the largest immune population in the 
adipose tissue stroma and contribute essential 
support for tissue remodeling, metabolic 
homeostasis, as well as inflammatory 
responses under obesity stress. In healthy 
lean adipose tissues, ATMs exert crucial 
functions for maintaining immunological and 
metabolic homeostasis, including immune 
regulation, efferocytosis, lipid buffering, and 
angiogenesis.[2,3] Obesity is associated with a 
10-fold increase in macrophages in adipose 
tissue due to recruitment of  circulating 
monocytes and/or local proliferation of  

tissue macrophages.[4,5] Within expanding 
adipose tissue, macrophage release pro-
inflammatory cytokines such as TNF-α and 
form crown-like structures that surround 
dying adipocytes, the latter of  which is a 
histologic hallmark of  inflammation within 
adipose tissue.[6,7] Such pro-inflammatory 
environments orchestrated by macrophages 
contribute significantly to long-term 
high-fat diet-induced insulin resistance in  
mice.[8] In addition, multiple studies support 
that pro-inflammatory macrophages 
inhibit adipogenitor cell proliferation 
and differentiation.[9–12] Through these 
mechanisms, ATMs profoundly alter adipose 
tissue functions, impact local and systemic 
metabolism, and orchestrate pathological 
changes during obesity stress.

Tissue-residing macrophages including 
ATMs are highly plastic, allowing them 
to adopt diverse functions in response to 
various stimuli, such as cytokines, infections, 
and chemicals.[13] Researchers have broadly 
classified macrophages by their activation 
states as M1 “classically” activated or M2 
“alternatively” activated, and also have 
defined macrophage responses with this 
classification. In the case of  ATMs, obese 
conditions induce a switch from an anti-
inflammatory M2 to a pro-inflammatory 
M1 activation state. M2 ATMs contribute 
to homeostasis maintenance and tissue 
remodeling, whereas M1 ATMs promote 
insulin resistance through the activation of  
pro-inflammatory pathways (such as JNK, 
ERK, p38, and NF-κB) that target insulin 
receptor signaling.[14] Macrophages regulate 
tissue functions mainly through the release 
of  secreted products, including cytokines, 
reactive molecules, and extracellular RNAs. 
Cytokines released by M1 macrophages are 
usually pro-inflammatory, such as TNF-α, 
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IL-1β, IL-12, and IL-23;[15,16] M2 macrophages, on the 
other hand, are known to secrete anti-inflammatory 
cytokines and growth factors, such as IL-10 and  
TGFβ.[17] Interestingly, both M1 and M2 macrophages 
produce cytokine IL-6 that has both proinflammatory and 
anti-inflammatory functions[18] and is known to promote 
insulin secretion[19] or skeletal muscle tissue repair, 
depending on specific conditions.[20] M1 macrophages 
also release reactive molecules such as nitric oxide (NO) 
and reactive oxygen species (ROS),[21,22] which impose 
profound impacts on molecular functions and are 
critically involved in obesity-associated pathology.[23–26] 
In addition, recent studies suggest extracellular RNAs 
secreted by macrophages regulate tissue functions: 
cultured macrophages release microRNAs (miRNAs) 
in response to pro-inflammatory stimuli[27] and transfer 
miR-142 and miR-223 to co-cultured hepato-carcinoma 
cells;[28] and ATMs from obese mice release miR-155 and 
cause insulin resistance in insulin target cells.[29] However, 
the role of  extracellular RNAs in regulating macrophage 
activation and tissue function is still largely unknown and 
requires further investigation.

Within the past decade, researchers have elucidated several 
key regulators that drive heterogeneous macrophage 
activation, including the signal transducer and activator 
of  transcription (STAT) family, PPARγ/LXR, CREB-C/
EBP, and interferon regulatory factors (IRFs). Interferons 
are one of  the first cytokines identified as activators of  the 
pro-inflammatory macrophage phenotype.[30–32] Interferon 
regulatory factors (IRFs) have long been known to control 
the activity of  interferons (IFN), and increasing evidence 
supports their important role in regulating macrophage 
activation.[33] Of  these, IRF1, 2, 5, and 6 drive macrophages 
toward the M1 pro-inflammatory type. Pro-inflammatory 
activation of  murine macrophages elicited by LPS or 
IFNγ are inhibited by knockout of  IRF1 or IRF2.[34] IRF5 
promotes “M1-like” activation of  human peripheral blood 
macrophages and inhibits expression of  M2-associated 
genes.[35] IRF6 was recently found to suppress “M2-like” 
activation of  murine bone marrow-derived macrophage 
(BMDM) by inhibiting PPARγ gene transcription.[36] In 
contrast, some other members of  the IRF family, such 
as IRF3, 4, and 9, mediate anti-inflammatory signaling 
through type I Interferon responses. In human microglia, 
IRF3 mediates anti-inflammatory responses by activating 
the PI3K/Akt pathway and promoting “M2-type” cell 
activation.[37] Induction of  IRF4 by IL4 contributes to “M2-
like” alternative macrophage priming in murine BMDMs. 
In addition, during the “M2-like” activation of  murine 
macrophages triggered by parasites or fungi, researchers 
observed significant Lysine Demethylase 6B (KDM6B, 
or Jmjd3)-mediated histone demethylation at the locus 
of  the Irf4 gene, further implicating its involvement in 

the activation process.[38] Another member of  this family, 
IRF9, is believed to mediate interferon tau-induced anti-
inflammatory responses and M2 activation of  murine 
BMDMs.[39]

The Janus Kinase-STAT pathway can drive M1 activation. 
IFNγ is thought to induce expression of  M1-associated 
genes by triggering dimerization of  STAT1,[40] and mice 
bearing STAT1 deficiency fail to respond to IFNγ and 
IFNα.[41] In addition, LPS-induced IFNβ activation 
enhances the formation of  STAT1-STAT2 heterodimers to 
mediate the induction of  M1-associated genes by forming 
the IFN-stimulated gene factor 3 complex.[42] Another 
member of  the STAT family, STAT6, is associated with 
M2 macrophage activation. IL-4 and IL-13 are considered 
two critical M2 inducers, as suggested by several in vitro 
and in vivo studies,[43–45] and STAT6 can mediate IL-
4a signaling and regulate expression of  M2 signature  
genes.[43,46] STAT6 signaling is further mediated by 
monocyte chemoattractant protein-1-induced protein 
(MCPIP), which induces M2-promoting ROS, endoplasmic 
reticulum stress, and autophagy.[47]

Another important group of  macrophage activation 
regulators are in the CCAAT-enhancer-binding proteins 
(C/EBP) family, in particular, C/EBPα, β, and σ. C/EBPβ 
mediates signaling of  toll-like receptor (TLR) and cAMP-
responsive element-binding protein (CREB) that induce 
expression of  arginase 1 (ARG1), an M2 marker protein 
in mice. C/EBPβ also promotes the expression of  another 
M2 signature gene, mannose receptor c-type 1 (Mrc1), upon 
induction by CREB. Deletion of  CREB binding sites in 
the promoter region of  C/EBPβ consistently abolishes 
muscle tissue repair (an M2 macrophage-mediated function 
in mice) and inhibits the expression of  numerous M2 
signature genes, including macrophage scavenger receptor 
1 (Msr1), IL-10, IL-13 receptor subunit, receptor α1 
(Il13ra1), and Arg1 within macrophages; deletion of  these 
binding sites does not alter the levels of  pro-inflammatory 
M1 signature genes.[48] Further, CREB exerts the negative 
feedback regulation of  pro-inflammatory TLR signaling 
mediated by MSK1/2 kinases through the induction of  
IL-10 production and dual specificity protein phosphatase 
1 to limit inflammation.[49,50] In contrast to C/EBPα, C/
EBPσ induces M1 pro-inflammatory responses in murine 
BMDMs.[51] Another member of  the C/EBP family, C/
EBPα, is believed to be necessary for both M1 and “M2 
activation of  murine macrophages.[52] All these studies 
have suggested a critical role for CREB-C/EBP signaling 
in regulating heterogeneous activation of  macrophages.

The lipid metabolism regulator Peroxisome Proliferator-
Activated Receptor gamma (PPARγ) can negatively 
regulate numerous pro-inflammatory genes.[53,54] Knockout 
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of  PPARγ in murine myeloid cells can abolish their 
“M2-like” activation and enhance susceptibility to 
inflammation-associated health issues including obesity, 
insulin resistance, and glucose-intolerance.[55] In addition, 
in murine thioglycollate-elicited macrophages and human 
peripheral blood monocytes, PPARγ is thought to mediate 
the signaling of  IL-4 and IL-13, which are well-known 
inducers of  “M2-like” phenotypes.[56] In cultured murine 
macrophages, PPARγ interacts with STAT6 as a cofactor 
to facilitate the induction of  genes under the regulation 
of  PPARγ. [57] Similarly, liver X receptors (LXRs; nuclear 
transcription factors that heterodimerize with the retinoid 
X receptor RXRα) contribute to reduced pro-inflammatory 
signaling.[58–60] Indeed, LXRs have long been recognized for 
their role in the amelioration of  autoimmune diseases and 
regression of  atherosclerotic plaques, which are extensively 
orchestrated by M2 macrophages.[61, 62]

In recent years, increasing evidence supports the critical 
roles of  miRNAs in regulating macrophage activation by 
targeting key regulators. PPARγ directly binds upstream 
of  miR-223 and mediates anti-inflammatory signaling by 
inhibiting the expression of  Nuclear Factor of  Activated 
T-Cells 5 (NFATt5) and RAS p21 Protein Activator 1 
(RASA1), thereby promoting “M2-like” activation. Deletion 
of  miR-223 can abolish PPARγ-regulated M2 activation of  
murine macrophages in vivo and ex vivo.[63] In addition, miR-
223 inhibits the expression of  PBX/Knotted 1 Homeobox 
1 (Pknox1), thus suppressing NFκB/JNK signaling and 
“M1-like” pro-inflammation activation.[64] miR-223 also 
inhibits the pro-inflammatory differentiation of  murine 
intestinal macrophages by targeting C/EBPβ,[65] and blunts 
the transition of  THP-1 cells and peripheral human blood 
monocytes toward inflammatory macrophages.[66]

In contrast to miR-223, miR-155 regulates pro-inflammatory 
“M1-like” activation. TLR agonists (LPS, hypomethylated 
DNA, or Pam3CSK4) and pro-inflammatory cytokines 
(TNF-α, IFNβ, or IFNγ) increase miR-155 expression 
in cultured murine macrophages.[67,68] In alcoholic liver 
disease, miR-155 mediates an NF-κB-regulated pro-
inflammatory response by stabilizing TNF-α mRNA, thus 
promoting its synthesis.[69] In addition to directly boosting 
pro-inflammatory factors, miR-155 also contributes 
to inflammation by suppressing signaling on the anti-
inflammatory side, targets of  which include suppressor of  
cytokine signaling 1 (SOCS1), phosphatidylinositol-3,4,5-
trisphosphate 5-phosphatase 1 (SHIP1), [68,70] and IL13RA1/
STAT6.[71] Interestingly, despite extensive support for a pro-
inflammatory role of  miR-155, it also reduces the production 
of  pro-inflammatory cytokine in murine BMDMs by 
targeting TGF-β Activated Kinase 1/MAP3K7 Binding 
Protein 2 (TAB2),[72] suggesting dual roles, each of  which 
are likely dependent on specific conditions.

Inhibiting the expression of  key transcription factors is an 
important mechanism by which microRNAs manipulate 
macrophage functions, and is exemplified by the action of  
miR-125 and Let7c. miR-125 mediates pro-inflammatory 
signaling of  IFNγ by suppressing the expression of  the M2-
promoting transcription factor IRF4, and thus contributes 
to an “M1-like” phenotype;[73] it can, however, also 
suppress pro-inflammatory signaling in other macrophage  
types.[74] In contrast to miR-125, Let-7c reduces the levels 
of  inflammation-associated factors such as C/EBPσ, IL-12, 
and major histocompatibility complex (MHC) class II, and 
is required for “M2-like” phenotypes of  macrophages.[51]  
In addition, other miRNAs have also been reported to 
manipulate macrophage activation, including the M1-
promoting miR-9, miR-127, miR-124,[75–77] and the M2-
promoting miR-132, and miR-146a.[78,79] Interestingly, 
miR-21 contributes to both M1 and M2 activation, although 
each under different conditions in separate studies.[80,81]

The profound impact of  miRNAs on activation of  
macrophages that critically orchestrate obesity-associated 
adipose tissue pathogenesis suggests their potential as 
promising therapeutic targets. However, despite intensive 
research on miRNA involvement in diseases, most studies 
focused on cancer-related conditions, and therefore, less 
is known about their role in adipose tissue of  healthy and 
obese subjects. Another challenge of  addressing miRNA-
regulated macrophage activation in obesity originates from 
the complex nature of  macrophage heterogeneity: despite 
the widely adopted M1/M2 polarization system, increasing 
studies suggest that this model largely built using in vitro 
cell cultures is too simple to depict the multi-faceted and 
dynamic activation states of  tissue-residing macrophages. 
This is not surprising considering the highly complex and 
diverse microenvironments in healthy or diseased tissues. 
In recent years, the accumulating evidence [82–84] suggests 
macrophage activation states display spectrum-like patterns 
across a variety of  tissues and species (Figure 1); however, 
a systemic model that comprehensively annotates complex 
macrophage features under different conditions is still 
lacking.

Advances in high-throughput sequencing and single-cell 
technologies allow in-depth analyses of  cell populations to 
identify distinct subsets and dissect regulatory mechanisms 
underlying cell function. However, currently available 
algorithms are not tailored to depict macrophage activation 
and often result in ambiguous characterization of  dynamic 
activation state changes in vivo. To address this major 
knowledge gap, we generated single-cell transcriptome data 
of  ATMs from healthy and obese mice and primary bone 
marrow-derived monocytes and macrophages to develop 
new high-resolution algorithms. The outcome was the 
creation of  a two-index platform, MacSpectrum (https://
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macspectrum.uconn.edu) that enables comprehensive high-
resolution mapping of  monocyte/macrophage activation 
states from diverse mixed cell populations. The capability 
of  MacSpectrum to dissect macrophage heterogeneity 
was well-supported by its performance on the samples 
from human and murine species, under in vitro and in vivo 
conditions, and in bulk and single-cell sequencing formats. 
Importantly, MacSpectrum revealed an unprecedented 
sequential activation pattern of  monocytes/macrophages 
in obesity and unique cell programs under the regulation 
of  miRNAs. The performance of  MacSpectrum suggests 
that novel bioinformatic algorithms tailored to macrophage 
study could provide promising strategies to address the 
challenges of  investigating miRNA-regulated activation in 
obesity and facilitate more focused therapeutic development 
through sub-population separation, functional annotation, 
and signature gene identification.
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