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Abstract. The large number of activities contributing to zoonoses surveillance and control capability, on both human
and animal domains, and their likely heterogeneous implementation across administrative units make assessment and
comparisons of capability performance between such units a complex task. Such comparisons are important to identify
gaps in capability development, which could lead to clusters of vulnerable areas, and to rank and subsequently prioritize
resource allocation toward the least capable administrative units. Area-level preparedness is a multidimensional entity
and, to the best of our knowledge, there is no consensus on a single comprehensive indicator, or combination of
indicators, in a summary metric. We use Bayesian spatial factor analysis models to jointly estimate and rank disease
control and surveillance capabilities against visceral leishmaniasis (VL) at themunicipality level in Brazil. The latent level of
joint capability is informedby four variables at eachmunicipality, three reflecting efforts tomonitor andcontrol the disease
in humans, and one variable informing surveillance capability on the reservoir, the domestic dog. Because of the large
volume of missing data, we applied imputation techniques to allow production of comprehensive rankings. Wewere able
to show the application of these models to this sparse dataset and present a ranked list of municipalities based on their
overall VL capability. We discuss improvements to our models, and additional applications.

INTRODUCTION

Risk classification and ranking of administrative units are
frequently used to help the prioritization of resources for dis-
ease control.1 Although risk is a key parameter to inform re-
source allocation, it often fails to explicitly reflect the level of
existing preparedness against the threat of concern.
Zoonoses requiremultidisciplinary approaches toward their

control and surveillance, with multiple activities deployed at
both the human and animal fronts of disease programs. The
large number of activities contributing to the overall disease
control capability and their likely heterogeneous imple-
mentation across the units of interest make comparisons of
capability performance, for example, between administrative
units, a complex task. Such comparisons are important to
identify gaps in capacity development, which could lead to
clusters of vulnerable areas, and to rank and subsequently
prioritize resource allocation toward those areas with greatest
needs. A number of studies have reported problems with the
useof apparently simple approaches toarea classification and
rankings.2,3 The most salient limitations are ignoring the un-
certainty and variability around the area-specific metrics; too
narrow or unbalanced composite area metrics; neighboring
effects, which are of greater significance if the units of interest
are small areas such as municipalities; and failures to recog-
nize and address missing values and dependencies in the
data, among others.
Numerous efforts exist to measure and evaluate the health

capacity of administrative areas, whether countries or sub-
national units. The International Health Regulations (IHR)4

provide an international binding framework toward the eval-
uation of countries’ health capacities, and have developed an
exhaustive checklist of components contributing to a coun-
try’s overall health capacity. Health capacities can be either
disease specific or generic, for example, legislation or

surveillance, as is the case of most of the components con-
tributing to the IHR.Whether disease specific or not, the overall
health capacity of an areaof interest couldbesynthesized intoa
latent indicator that pools the heterogeneous range of observ-
able processes (e.g., surveillance timeliness) and outcome-
related indicators (e.g., number of disease cases).
A number of studies have proposed methodologies to

reduce and/or address the multidimensionality of health
preparedness/vulnerabilities, often combining exposure (e.g.,
vector presence), susceptibility (e.g., population not vacci-
nated against a condition), and health capacity–specific indi-
cators to inform a quantitative measure of vulnerability/
preparedness to a specific threat.5,6 Dimensionality reduction
of themultiple variables informing the componentscontributing
to vulnerability can be achieved by weighted linear models,
with weights derived from expert elicitation, regression
approaches,6 or data reduction methods such as multi-
correspondence analysis5 or principal component analysis.
Recently, maximum entropy networks were suggested to
compute composite health indicators for U.S. cities with full
consideration of dependencies between the observed vari-
ables.7 Here,weextendon thesemethodsby applying a spatial
factor analysis (SFA) in a Bayesian framework.3 Our models
allowaddressing a number of important considerations relating
to the formulation of a synthetic measure of health capacity for
an unit or area of interest, namely, the need to account for
uncertainty (either originating from sampling error or missing
data), and for spatial correlations between neighboring areas.
These adjustments correct for the instability of scores and re-
lated rankings (by means of borrowing strength among neigh-
boring areas), account for the areas’ population sizes (as they
contribute to the overall uncertainty), and allow statistical in-
ference by formal treatment of the uncertainty. The benefits of
these adjustments are best perceived in the ability of reporting
statistically significant differences between the scores or ranks
of the units or areas of interest.
In Brazil, visceral leishmaniasis (VL) is considered a disease

of significant public health concern because of its geographical
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expansion, incidence withmore than 3,000 new cases per year,
and its severity that could lead to a mortality of > 90% in un-
treatedpatients.8 In LatinAmerica, thedomestic dogappears as
themain reservoir of the urban cycle of the disease.9 As a result,
VL control programs deploy surveillance and disease control
activities on both the animal and human domains. In Brazil, VL
control and surveillance activities are coordinated by the Min-
istry of Health (MOH-BRA). Based on a risk classification foun-
ded on a moving average of the number of human cases in the
last 3 years, municipalities are categorized and different sur-
veillance and control activities are indicated. A comprehensive
approach to the rationalization of disease control resources
would entail an assessment of risk, together with the explicit
consideration of the level of coping capacities in each area or
unit of interest. Studies have addressed the former for VL10 but,
to the best of our knowledge, there have been no formal com-
parisons of area-level capacities in Brazil.
Here, we describe a Bayesian SFA toward the evaluation of

health capacities. We do not aim to exhaustively characterize
the entire VL program across Brazil, but to show the applica-
bility of ourmethods to health capacity assessment. Given the
zoonotic nature of VL, our capacity assessment covers both
animal and human observable variables to describe an area-
specific unobservable or latent capacity status, and delivers a
ranking ofmunicipalities based on their joint public and animal
health capabilities against VL.

MATERIALS AND METHODS

Materials.Wechose the states of Ceara, in the northeast of
the country, and Minas Gerais, in the southeast. Both are VL-
endemic states, and combined contributed over 27% of all
VL cases reported in the country in the period of study,
2007–2011. We chose this period as it encompasses the start
of the collection of dog data in 2007 and the end of 2011when
the dog data template changed. We obtained data for the two
aforementioned states on a number of disease control and
surveillance variables as recorded by the MOH-BRA at the
municipality level, our spatial unit of interest. We restricted our
analyses to the two states, Ceara with 184 municipalities and
MinasGerais with 853municipalities, to show the applicability
of our methods.
For the purposes of our analyses, the latent level of joint

health capacity was informed by four variables. Three vari-
ables reflected VL surveillance and control efforts in humans:
1) the average number of days from clinical onset to the date
treatment was initiated (the timeliness of treatment), 2) the
proportion of patients diagnosed by laboratory techniques
(where the other class was clinical diagnosis), and 3) the
proportion of patients who recovered from VL after receiving
treatment. The fourth variable targeted the animal reservoir,
specifically the areas’ dog surveillance capacity as shown by
the proportion of dogs tested for VL (derived from the number
of dogs tested over the canine population in each municipal-
ity). In addition, we included a fifth variable in our analysis, the
municipality-specific VL risk, computed by the MOH-BRA as
themoving average of human VL cases in the previous 3 years
and resulting in four categories from 0 (no cases) to 4 (intense
VL transmission). Risk class was inputted in our models as an
ordinal categorical variable. As many municipalities did not
report cases every year, we counted all municipalities with at
least one case in the 5-year period to increase the number of

observations in our analysis, and then, for all five variables,
averaged across the period.
Human population data for each municipality for 2010 for

the two states of interest were obtained from the online site of
the Instituto Brasileiro de Geography and Estatistica. The
canine population in each municipality was obtained from the
2015 annual rabies national vaccination campaign estimates.
These population estimates are the most up-to-date and
comprehensive record of the canine population in the country
at the municipality level.

METHODS

Our Bayesian SFA model assumes that the values of the
observed variables j = 1,. . .,J for municipality i = 1,. . .,n can
be decomposed in the following linear model:

Yij ¼ μj þ λj × δi þ eij, (1)

where μj is the state’s average for variable j, λj is the factor
loading that quantifies the contribution of variable j to the
different factors, δi is the latent vulnerability for municipality i,
and eij is an error term. At a second level, λj is assigned a
normal prior distribution with mean 0 and variance 1,000, ex-
cept for timeliness of treatment where we used a prior with
negative mean and small variance N(−10,1) to reflect our
perception that increased time fromclinical onset to treatment
shouldbenegatively correlatedwith capacity building, and the
error term N(0,σj

2). To ensure identifiability, the model as-
sumes that all the error terms are independently distributed,
which means the manifest variables are correlated with one
another only through the latent capability δi.
To account for the possible neighboring dependence of the

latent capability betweenmunicipalities, and the impact of the
municipalities’populations, under the assumption that smaller
unitswill present greater variance in the error and factor terms,
we add the spatial correlation matrix Ψ, and define M = diag
(mi), where mi is the square root of the population of munici-
pality i. The final model is as follows:

Y jδ∼N
�
μþΛδ; M�1ÄΣ

�
,

δ∼N
�
0,M�1=2Ψ ×M�1=2

�
,

where Y is an NJ × 1 vector of Yij, Λ = IN Ä λ, and Σ = diag(σj
2)

with all the off-diagonal elements equal to 0. We assigned a
conditional autoregressive prior11 to δij so that themean of the
distribution of factors in municipality i is conditional to that of
neighboring municipalities, and Ψ = (I − ωW)−1, where ω rep-
resents the degree of spatial dependence and W is an N × N
boundary matrix with elements equal to 1 if twomunicipalities
are adjacent to each other.
To explore the impact of arbitrary weights allocated to the

manifest variables to derive a municipality-specific score, as
an expert-based approach would pursue, we computed the
Z-score for each manifest variable and compared it with the
normalized squared correlation coefficients, ρ2

j = λ2j =ðλ2j +σ2
j Þ,

from our Bayesian SFA models, in effect representing the
proportion of the manifest variables’ variances explained by
the latent factors. At the municipality level, we summed the
Z-scores of the manifest variables, which measure how apart
a municipality vulnerability score is from the state’s average,
to derive a vulnerability score for each municipality. Finally,
we compared the rank of Z-scores with our posterior ranks.
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Because the variables presented many missing values, we
applied two imputation techniques. First is a “naı̈ve” imputa-
tion where the missing value of a variable for a municipality
was replaced by that of anothermunicipality chosen randomly
from the list of municipalities with complete information for
that variable and year. The second imputation method

incorporates the missing values into the sampler in each it-
eration and allows propagation of the uncertainty that stems
from themissingdata into that of the overall vulnerability score
for eachmunicipality (seeHogan and Tchernis2 for full details).
The model’s posterior distributions of the parameters of in-

terest were estimated via Markov Chain Monte Carlo sampling,

FIGURE 1. Average risk classification by municipality as applied by Brazil’s Ministry of Health. Period 2007–2011. (A) Minas Gerais, (B) Ceara.
This figure appears in color at www.ajtmh.org.
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using theGibbs samplerwith oneMetropolitan-Hastings step as
a more efficient algorithm for the high-dimensional matrix of
conditionals in ourmodel.We ran5,000 iterationsof the sampler,
andat each iteration,we rank the posteriormeanof factor scores
which, in effect, results in a sample, from the posterior distribu-
tion, of municipality ranks. We calculated the potential scale re-
duction factor for convergence.12 For each municipality, we
computed the posterior distribution of its latent vulnerability rank
and 95% credible intervals (CIs), and plotted them against the
rank of the Z-scores. To explain the different ranking lists be-
tween the two methods, we also computed the difference be-
tween the means of the municipalities’ rank distributions to
estimate the average number of ranks that two given munici-
palities, for each state, needed to be apart to report, with 90%
confidence (i.e., the average percentage overlap among the
municipalities’ rank posterior distributions), that their ranks were
different. In addition, for all the municipalities, we computed the
probabilityofbeing in thebottomquintile ranks, that is, thosewith
the greatest vulnerability.

RESULTS

In the 5-year period, Ceara reported 2,660 human VL cases.
Of those, 2,037 (76.6%) recovered. The average time from
clinical onset to the initiation of treatment was 42.6 days (s.d.
55.5; median 26 days). Our third manifest human vulnerability
variablewas the number (proportion) of patients diagnosed by
laboratory techniques: 2,340 (87.9%). For Minas Gerais, there
were 2,200 cases. Of these, 1,736 (78.9%) recovered. The
average time from clinical onset to the initiation of treatment
was 42.6 days (s.d. 53.5; median 26 days). The number (pro-
portion) of patients diagnosed by laboratory techniques was
2,070 (94.1%) inMinasGerais. Dog sampling for VL surveillance
was inconsistent. Seven hundred fifty-four (87.3%) municipali-
ties in Minas Gerais did not sample any dogs in the 5-year pe-
riod. This compares with 19 (10.3%) municipalities in Ceara. Of
those municipalities that sampled dogs at least 1 year, the av-
erageproportionof thedogpopulation sampledwas22.1%and
12.7% for Ceara and Minas Gerais, respectively. Finally, the
average risk class across the 5-year period for eachmunicipality
is shown in Figure 1 for the two states.
The potential scale reduction factor was 0.99, suggesting

good convergence. Table 1 shows the results of our Bayesian
SFAmodels, from both naı̈ve and posterior missing imputation

approaches, for the two states. In detail, we show the states’
averages (μ), and factor loadings (λ) for all observed variables.
By normalizing the factor loadings for each variable, we obtain
the proportion of the latent vulnerability that may be explained
by each original variable. These can be interpreted as the rel-
ative contribution of the original variables to the municipalities’
ranks, and thus they can be read as prioritization criteria
weights. The spatial correlation, as captured by ω, was signif-
icant for Ceara (CI not including 0), for both naı̈ve (mean: 0.154,
95% CI: 0.150, 0.156) and posterior imputation (mean: 0.155,
95% CI: 0.153, 0.156) approaches, indicating spatial correla-
tion. For Minas Gerais, ω was not significant, for both naı̈ve
(mean: −0.058, 95% CI: −0.25, 0.13) and posterior imputation
(mean: −0.055, 95% CI: −0.25, 0.13) approaches.
For each municipality and imputation method, we computed

the posterior distribution of its vulnerability rank.Most vulnerable
municipalities are those ranking at the end of the posterior rank
distribution. To facilitate the identification of the municipalities
with least capacity, or most vulnerable municipalities, we com-
puted theprobability of eachmunicipality falling in the lastquintile
(Figure 2). Posterior imputation leads toadecrease in the number
of municipalities with a probability > 0.75 of falling in the last
quintile, relative to the results derived from the naı̈ve imputation
for both states. In Ceara, naı̈ve imputation classified 34 (18.4%)
municipalities with a probability > 0.75 of being in the least
quintile, compared with 19 (10.3%) by posterior imputation. For
Minas Gerais, naı̈ve imputation identified 167 municipalities
(19.5%) versus 35 (4.1%) by posterior imputation.
To understand the impact of weighting schemes on the

rankings, Figure 3 shows the posterior means and 99% CIs,
using naı̈ve imputation, of the municipalities’ ranks, for the two
states, and compares them with the municipalities’ Z-scores.
We note that if the ranks derived by the two methods were the
same, they would lie on the 45� line. Likewise, posterior ranks
(and their CIs) entirely to the right of the 45� line indicate mu-
nicipalities ranked worst by our method than by the Z-score
approach. On average, municipalities’ ranks obtained from our
models using naı̈ve imputation were 12 and 47 ranks different
from theZ-scores forCeara andMinasGerais, respectively. The
same plot (Figure 4), this time with full consideration of the un-
certainty derived from the missing values via posterior imputa-
tion, shows the extent of the overall uncertainty on the ranks
with much larger CIs for all municipalities. This is particularly
evident for Minas Gerais. On average, municipalities’ ranks

TABLE 1
Results from naı̈ve and posterior imputation approaches by state

State Variables

Naı̈ve imputation Posterior imputation

Model parameters

μ λ
Normalized squared
correlation coefficient μ λ

Normalized squared
correlation coefficient

Ceara % cured 8.79 (8.30, 9.30) 4.04 (3.46, 4.61) 0.25 (0.24, 0.26) 8.72 (8.27, 9.22) 3.28 (2.73, 3.85) 0.27 (0.26, 0.27)
% diagnosed 9.28 (8.75, 9.81) 4.57 (3.97, 5.23) 0.27 (0.25, 0.3) 9.21 (8.70, 9.78) 3.77 (3.22, 4.38) 0.32 (0.3, 0.33)
% dogs sampled 5.75 (5.26, 6.29) 3.13 (2.51, 3.80) 0.14 (0.13, 0.16) 5.82 (5.34, 6.32) 2.37 (1.82, 2.95) 0.13 (0.11, 0.15)
Timeliness 7.64 (7.07, 8.28) 3.66 (2.94, 4.43) 0.16 (0.14, 0.17) 6.81 (6.07, 7.49) 0.43 (−0.7, 1.40) 0.01 (0.0, 0.03)
Risk class 1.60 (1.51, 1.70) 0.64 (0.53, 0.75) 0.18 (0.17, 0.18) 1.66 (1.59, 1.73) 0.50 (0.43, 0.59) 0.28 (0.27, 0.29)

Minas % cured 1.88 (1.83, 1.94) 1.17 (1.08, 1.29) 0.29 (0.27, 0.30) 1.99 (1.93, 2.05) 0.92 (0.82, 1.03) 0.31 (0.30, 0.32)
Gerais % diagnosed 2.13 (2.08, 2.20) 1.09 (1.00, 1.20) 0.29 (0.28, 0.31) 2.22 (2.17, 2.29) 0.88 (0.79, 0.98) 0.30 (0.29, 0.31)

% dogs sampled 0.49 (0.45, 0.53) 0.58 (0.52, 0.64) 0.19 (0.18, 0.19) 0.77 (0.73, 0.82) 0.36 (0.28, 0.45) 0.09 (0.07, 0.12)
Timeliness 1.65 (1.58, 1.73) 0.78 (0.65, 0.94) 0.07 (0.05, 0.09) 2.75 (2.56, 2.99) −0.15 (−0.46, 0.13) 0 (0, 0.01)
Risk class 0.68 (0.64, 0.73) 0.70 (0.63, 0.78) 0.17 (0.16, 0.18) 1.08 (1.05, 1.13) 0.59 (0.53, 0.66) 0.29 (0.28, 0.30)

In brackets 95% posterior interval values.

96 DEL RIO VILAS AND OTHERS



obtained from our models using posterior imputation were 28
and 205 ranks different from the Z-scores for Ceara and Minas
Gerais, respectively. The full amount of uncertainty had a clear
impact on the average number of ranks required to state, with
90%confidence, that the ranksof twogivenmunicipalitieswere
different. In thecaseofCeara, thedistancebetween themeanof
two given municipalities’ vulnerability distributions was over 20
municipalities apart. In the case of Minas Gerais, this distance
was over 60 municipalities apart.

DISCUSSION

Our results show the application of Bayesian SFAmodels to
facilitate comparisons of built-in capabilities. Our particular
example shows capabilities against VL for two states of Brazil
at the municipality level, where interventions are deployed.
Theultimate goal of disease surveillance, and its outputs in the
form of risk or capacities maps, is the provision of evidence to
support targeted action and resource allocation. In our case,
we were able to identify the most vulnerable municipalities
where VL resources should be targeted.

The relevance of ranking reliability, or the level of instability of
a ranking order due to random noise,13 is not commonly con-
sidered in rankings of health capacities.14 Failing to properly
model the different sources of uncertainty, stemming from the
population sizes of the municipalities, spatial covariance, and
missing data (via the posterior imputation approach), leads to
unstable rankings in a stochastic setting and to false certainty in
a deterministic approach. As expected, posterior imputation of
missing data resulted inmuch larger standard errors around our
estimated latent vulnerabilities than those derived from naive
imputation. This is due to the dynamic propagation of un-
certainty by the former that samples from the full conditional
posterior distribution of missing values at each iteration.
Posterior imputation of missing values, particularly for Minas

Gerais where missingness was large, shows the relevance of
considering the uncertainty stemming from missing data
(Figure 4) and the difficulty in obtaining discriminating rankings.
Given our interest in the identification of the most vulnerable
municipalities, for example, those lying in the last quintile of the
posteriordistributionof their ranks,only32 (3.7%)municipalities
in Minas Gerais, from the model with posterior imputation, are

FIGURE 2. Probability of being in the least capablequintile of theposterior rankdistribution for the twostates. (A) Results from thenaı̈ve imputation
method, (B) results from the posterior imputation method. This figure appears in color at www.ajtmh.org.
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found with their CIs entirely within this quintile. Ignoring this
uncertainty, as shown by our naı̈ve imputation results, would
have mistakenly led to the conclusion that 163 (19.1%) mu-
nicipalities, those with their entire CIs to the right of the 80th
quintile, belonged to that “most vulnerable” class. Six times
more municipalities could have been classified as vulnerable.

For Ceara, where missingness was not so large, posterior im-
putation allowed the identification of 16 (8.7%) municipalities
with their entire CIs in the last quintile of the rankings’ posterior
distribution. The differences in the rankings between the two
imputationmethods clearly illustrate the unstability of the ranks
depending on the scoring approach.

FIGURE 3. Posterior means and 99% credible intervals using naı̈ve imputation (x axis), of the municipalities’ ranks, for the two states, and
comparison with the municipalities’ Z-scores (y axis). This figure appears in color at www.ajtmh.org.
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Our selection of manifest variables was informed by the
opinion of VL experts, out of the reduced number of variables
recorded and sufficiently populated at the municipality level.
The limited number of variables at our disposal meant that
we mixed outcome-related variables (% of VL cases cured)
with process-related variables (e.g., timeliness of treatment)

relating to some disease control capacities. Ideally, we would
like to concentrate on processes and capacities upon which
wecan invest resources if found lacking, rather thanonoutcomes.
The normalized squared correlation coefficients for each

manifest variable can be interpreted as their relative contri-
bution to the latent capability.3 Table 1 presents the results at

FIGURE 4. Posterior means and 99% credible intervals using posterior imputation (x axis), of the municipalities’ ranks, for the two states, and
comparison with the municipalities’ Z-scores (y axis). This figure appears in color at www.ajtmh.org.
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the state level. Timeliness from clinical inception to treatment
onset contributed the least in both states, with no contribution
in the case of Minas Gerais and negligible contribution for
Ceara (Table 1, posterior imputation). The% of dogs sampled
by the VL surveillance efforts contributed 9% and 13% of the
overall capacity across Minas Gerais and Ceara, respectively.
Visceral leishmaniasis is a complex disease, and its control,

amultipronged effort. We do not claim that our set of variables
constitutes an exhaustive representation of these efforts, or
that we have considered the most relevant variables that
contribute to the municipalities’ vulnerability. This was never
the intention. Other variables addressing human capacities
might have been considered. The original dataset provided by
theMOH-BRAcontained a number of other variables, but they
all described patient characteristics, for example, age and
gender, and hence they would not translate immediately into
program capacities. Other program activities, for example,
those targeting vector control, could have been included.
However, the data available were not informative and we did
not consider it any further.On theanimal reservoir, a numberof
interventions informing program capacities, specifically re-
pellent collars and euthanasia, could have been added to our
surveillance variable. However, again, the data were not
available in a suitable format. Finally, we note that our results
apply at the municipality level and, hence, do not capture the
likely intra-municipality heterogeneity in the distribution of
capacities. This level of granularity would be required for the
targeted distribution of resources within municipalities. In
other words, state planners are the target of our results.
Perspectives. Our approach is flexible to illustrate the rel-

evance of differentweighting schemes on rank orders, and the
limitations of simplistic approaches to ranking. Our methods
complement other current work to build evaluation frame-
works for rabies capabilities,15 and for surveillance evaluation
in general.16 Such models, built on simple multi-criteria de-
cision methodologies to facilitate their development and de-
ployment, combine multiple surveillance attributes (e.g.,
sensitivity) and rabies capabilities (e.g., canine vaccination) to
derive area-specific scores. The accumulation of areas’ scores
from the application of these evaluation frameworks would al-
low comparisonswith Bayesian SFAmodels on the same data.
Many extensions to our work are possible. Visceral leish-

maniasis data as provided by the MOH-BRA were patient
specific and, hence, individual-related variables, for example,
age, race, and type of residence (urban or rural), were avail-
able. With the specific denominator data at the municipality
level, stratified analyses would have been possible. However,
further fragmentation of our dataset would have resulted in
larger uncertainty. In addition, temporal models with the in-
clusion of time-specific terms in the linear predictor compo-
nent of our models, to allow the analysis of panel data, would
be of interest to assess trends of capacities.
Future work should focus on extending the framework to

the whole country and improving the manifest variable se-
lection with consideration of other variables of potential in-
terest, those informing capability deployment (e.g., installed
laboratory capacity and number of health staff qualified to
diagnose VL). We note that our models are able to incorporate
more variables, provided they are as complete as possible and
do not addmoremissing values to our already sparse dataset.
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