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1. Introduction

Aims Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal
model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney
disease.

Methods and results Sprague-Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing
diet for 7 weeks followed by a normal diet for 2 weeks (‘diet group’). These rats were compared
with normal controls (n=10) and with uraemic controls fed with phosphate-depleted diet (‘low-
phosphate group’, n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid
hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examin-
ations of the valves included histological characterization, Von Kossa staining, and antigen and gene
expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification
following normalization of their kidney function. At 4 weeks, all diet group rats developed renal
failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperpara-
thyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic
calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet
group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression
analyses revealed overexpression of osteoblast genes and nuclear factor kB activation. Valve calcifica-
tion resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated
with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed
kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores
and histology showed only minimal valve calcification.

Conclusion We developed an animal model for AVC. The process is related to disturbed mineral metab-
olism. It is associated with inflammation and osteoblastic features. Furthermore, the process is revers-
ible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform
for studying AVC and potential remedies.

above the age of 85. Ultimately, about 10% of these patients
will develop severe calcification and significant AS." In the

Aortic valve disease is common in the elderly, accounting for
approximately 70% of all valve diseases. The two hallmarks
of aortic stenosis (AS) are aortic valve calcification (AVC)
and regional valve thickening. AVC exists in 25% of the popu-
lation who are 65 years old and above, and in 50% who are
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past, AVC was considered a degenerative condition, caused
by tissue necrosis and calcium precipitation. However,
recent data suggest that calcification is an active process,
involving osteoblast transformation in valve tissue. This
results in increased formation of bone matrix.?* Further-
more, osteoblast differentiation is mediated by an inflam-
matory process that includes accumulation of activated
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T cells and macrophages in aortic valve lesions, together
with several cytokines (transforming growth factor-j,
tumour necrosis factor-a, and others).*>

Several risk factors are currently known to be associated
with AVC including age, male gender, hypertension, elevated
LDL-cholesterol, and metabolic conditions such as Paget’s
disease and hyperparathyroidism. In addition, anatomic
changes that might interfere with normal flow (e.g. bicuspid
valve) are also significant risk factors for AVC.® Once AVC has
occurred, it is considered an irreversible process and efforts
were made in order to slowdown its progression; recently
rosuvastatin was found to be an effective treatment in
slowing AS progression.”

One of the most significant risk factors for AVC is renal
failure; approximately 40% of the patients who suffer from
end-stage renal disease are likely to develop AVC. Renal
failure induces an elevation of phosphate levels along with
development of secondary hyperparathyroidism. These
metabolic changes (especially hyperparathyroidism) result
in diffuse calcification and formation of hydroxyapatite crys-
tals in several tissues, including the aortic valve.®

Parathyroid hormone (PTH) is the most important regula-
tor of calcium and phosphate metabolism. It is essential for
both bone formation and osteoblast activity, and increases
the conversion of vitamin D to its active metabolite.®
Vitamin D receptor genotype polymorphism is associated
with increased prevalence of calcific AS, although the
exact role of vitamin D in AVC is still unknown.’

As AVC is a multifactorial condition, it is essential to
develop a simple animal model that may shed more light
on this pathophysiological process. Initial models were
based on inflicting mechanical injury to the valve during
surgery. These models were complicated and had high mor-
bidity and mortality rates. Recently, several diets were
shown to cause AVC. These diets were based on high choles-
terol, alone or in combination with high-dose vitamin D,"%or
high fat and carbohydrate diets."" These models were suc-
cessful in causing aortic valve disease, but none of them
was able to explore the reversibility of the process. As
renal failure is a major risk factor of AVC, our aim was to
develop a simple model based on this observation.

A diet containing high levels of adenine and phosphate has
been shown to cause polyuric renal failure in rats. Adenine
accumulates in the renal proximal tubules which within
weeks lead to elevation of serum creatinine, phosphate,
and PTH.'? Phosphate is the major regulator of PTH; phos-
phate enrichment augments the magnitude of hyperparathyr-
oidism while dietary phosphate restriction ameliorates it.">
We thus used high-adenine, high-phosphate diet in order to
induce renal failure and AVC, and to better characterize
the processes involving AVC. We also evaluated the reversibil-
ity of AVC after diet cessation and renal failure resolution.
Modification of the diet regimen into high-adenine but low-
phosphate was performed in order to induce renal failure
accompanied by low PTH level. This modification was made
in order to assess the role of PTH in AVC.

2. Methods
2.1 Animals

Forty-three male Sprague-Dawley rats, 8 weeks old, each weighing
about 250 g were used for the study. The protocol was approved by

the Hebrew University Ethics Committee. The investigation
conforms with the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health (NIH
Publication No. 85-23, revised 1996).

2.2 Study design

2.2.1 Diet and control groups
Thirty-three rats were divided into two groups: diet group (n = 23)
and a control group (n = 10). The diet group rats were fed exclu-
sively with high-adenine (0.75%), high-phosphate diet (1.5%)
(Teklad, Madison, WI, USA) for 7 weeks, after which they were fed
with normal rat chow for an additional 2 weeks. The control group
daily received normal rat chow for 9 weeks. At 4 weeks, rats from
the diet group were anaesthetized with ketamine/xylazine and a
1cm® blood sample was collected from the tail vein. After 9
weeks, all rats were anaesthetized, an echocardiogram and multi-
slice computed tomography (MSCT) scan were performed. After
the procedure, 15 rats from the diet group and all the rats from
the control group were sacrificed by exsanguinations after blood
sample was collected from abdominal aorta. Aortic valve tissue
was excised, snap frozen in liquid nitrogen, and kept at —80°C.
Additional eight diet group rats (the reversibility subgroup) were
kept alive for an additional 10 weeks, and fed with normal rat chow.
MSCT scan was performed after 4 weeks and repeated after the next
6 weeks. These rats were then sacrificed, a blood sample was col-
lected from the abdominal aorta, and aortic valve tissue was
excised. Reversibility of AVC was assessed by histological examin-
ation and by comparing serial calcium scoring of each rat being its
own control.

2.2.2 Low-phosphate group

In order to explore the role of renal failure and hyperparathyroidism
in AVC, 10 rats were fed exclusively with high-adenine (0.75%) but
low-phosphate (0.3%) diet (low-phosphate group) (Teklad) for 7
weeks, after which they were fed with normal rat chow for an
additional 2 weeks. At 4 weeks, 1 cm? blood sample was collected
from the tail vein. After 9 weeks, the rats were anaesthetized and
MSCT scan was performed. MSCT results and histology were com-
pared with the diet group.

2.3 Evaluation of diet on biochemical profile

Plasma was analysed for potassium, phosphate, alkaline phosphate,
creatinine, and total cholesterol using VITRO system 5.1 chemistry
(Ortho-Clinical Diagnostics, Johnson & Johnson, Rochester, NY).
Plasma PTH was measured by an enzyme immunoassay (Immutopics,
San Clemente, CA, USA).

2.4 Echocardiography

Two-dimensional and colour Doppler echocardiography studies were
performed at 9 weeks by a skilled operator blinded to the study
groups using one of the following machines: a VIVID-I machine (GE
Healthcare/Tirat Hacarmel, Israel) equipped with a 13 MHz linear
array transducer or a Vevo 770 system (VisualSonics, Toronto,
Canada) equipped with a 35 MHz linear transducer. Parasternal long-
axis view and high short-axis view were used to evaluate aortic
valve morphology.

2.5 Tissue analysis

Aortic valve was dissected, fixed in formalin, and embedded in par-
affin. Serial cross-sections of the valve were stained using haema-
toxylin & eosin and with Von-Kossa stains in order to assess the
structure and calcium deposits.
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2.6 Immunohistochemistry studies

Formalin-fixed aortic valve tissue at 5 mm cross-sections were used
for immunohistochemistry studies. The sections were incubated
overnight with anti-osteopontin and anti-CD68. After phosphate
buffer saline wash, the sections were incubated with goat anti-
rabbit (1:200) secondary antibody conjugated with Cy5 (Jackson
Immunoresearch Laboratories, Inc., West Grove, PA, USA) for 1 h.

2.7 Computed tomography scan

A 64-slice chest MSCT scan without contrast was performed on
all rats (Brilliance, Philips Medical Systems, Groningen, The
Netherlands). Study parameters were: 120 kVp, 300 mAs, slice
thickness 0.67 mm, increment 0.3 mm. The scan was analysed by
an operator blinded to the study groups, on an off-line CT worksta-
tion. The Agatston score was calculated by multiplying the area of a
calcified lesion restricted only to aortic valve area, with a weighted
CTattenuation score dependent on the maximal CT attenuation (HU)
within a lesion as previously described.'

2.8 Western blot analysis

Polyclonal antibodies to osteopontin and B-actin and their
secondary antibodies (Santa Cruz, CA, USA) were used according
to standard procedures.' Briefly, the tissue was hydrolyzed and
homogenized under ultrasound and boiled for 5 min. After quantifi-
cation of the protein concentration using the Bradford method,
12 mg of extracts were separated on 5-15% sodium dodecyl sulfate-
polyacrylamide gradient gels, and transferred to nitrocellulose
membranes using a Hoeffer transfer chamber. The membranes
were blocked with either 0.5% donkey serum or 2% skim milk,
depending on the antibody. Bands were detected after incubation
with western blotting Luminol reagent (Santa Cruz Biotechnology
Inc.). Osteopontin protein expression was normalized to B-actin
expression. The bands on the X-ray film were quantified by scanning
densitometry (ImageJ version 1.34, NIH)'® and expressed as percen-
tage of the control.

2.9 Reverse transcriptase-polymerase chain
reaction

Transcription of osteopontin, osteocalcin, receptor activator of
nuclear factor kB (NFkB), ligand (RANKL), Runx-2, and actin genes
were analysed by semi-quantitative reverse transcriptase-
polymerase chain reaction (RT-PCR) using rat aortic valve tissue.

Table 1 Biochemical profiles of the study groups

2.10 Statistical analysis

Data are presented as mean + SEM. Statistical differences between
the diet group and control group rats, and between the diet group
and the low-phosphate group rats were calculated using the analysis
of variance, followed by the Student Neumann-Keuls test. Serial
calcium scores calculated for reversibility assessment were com-
pared using dependent t-test for matched variables. All P-values
were two-tailed. P-value < 0.05 was considered significant.

3. Results

3.1 Electrolytes, kidney function, and parathyroid
hormone levels

At 4 weeks, all rats in the diet group demonstrated a signifi-
cant elevation in creatinine and phosphate levels, reflecting
renal failure. In addition, severe hyperparathyroidism devel-
oped in the diet group. There were no significant differences
in potassium, alkaline phosphate, or total cholesterol levels.
At 9 weeks (2 weeks after cessation of the adenine diet),
both renal failure and hyperphosphataemia had completely
resolved, although a moderate increase in the PTH level
remained in the diet group.

In the reversibility subgroup, creatinine and PTH levels
returned to normal after 19 weeks.

The low-phosphate group developed significant elevation
in creatinine reflecting the same degree of renal failure as
the diet group. PTH and phosphate levels were similar to
the controls and significantly lower than the diet group
(Table 1).

3.2 Echocardiography

Echocardiography showed that rats in the diet group
(n=10) developed thickening and calcification of the
aortic valve (Figure 1). In nine animals of the diet group,
the calcification was diffuse and involved all parts of the
valve, including the annulus and the leaflets. Calcification
was not found in any of the control and reversibility
group’s rats.

Diet (high phosphate)

Control Low phosphate

Week 4 (n=15)

Week 9 (n = 15)

Week 19 (n = 8)* Week 9 (n = 10) Week 4 (n=10)

Creatinine (mmol/L) 213 + 3.78* 90 + 1.47
Phosphate (mmol/L) 4.20 + 0.06* 2.62 +0.03
PTH (pg/mL) 2800 + 40" 750 + 1237
Total cholesterol (mmol/L) 3.14 + 0.01 2.83 +0.03
Alkaline phosphatase (U/L) 189 + 6.33 173 +2.33
Potassium (mmol/L) 5.92 + 0.02 4.93 +0.07

80 +2.7 70 £ 3.6 207 +2.58
1.6 +0.02 2.5+0.03 2.2 +0.06*
414 + 37 281 + 53 210 + 40*

= 2.1+ 0.04 =
= 189 +1.2 =
= 5.8 +£0.09 =

Biochemical profile obtained from three groups. In the diet group: at 4 weeks (during the adenine diet), at 9 weeks (2 weeks after cessation of diet), and at
19 weeks (the reversibility subgroup). In the low-phosphate group at 4 weeks and the control group at 9 weeks. At 4 weeks there was significant increase in
creatinine, phosphate, and parathyroid hormone (PTH) levels in the diet group blood compared with the control; creatinine was similar to the low-phosphate
group, while the phosphate and PTH were significantly higher. After 9 weeks, creatinine and phosphate level in the diet group decreased, while the PTH levels
were still significantly higher than the controls. After 19 weeks, creatinine, phosphate, and PTH levels were normalized.

*P < 0.05 for the comparison of diet group with the control group.
TP < 0.01 for the comparison of diet group with the control group.

**P < 0.05 for the comparison of diet group with the low-phosphate group.

*The reversibility subgroup.
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Figure 1 Echocardiogram of a diet group rat. Echocardiogram of one of the
diet group rats in high short-axis view. Aortic valve calcification involves the
annulus (grey arrows) and the commisures (purple arrow).

3.3 Multislice computed tomography scan

AVC was found in all diet group rats (Figure 2A). In contrast,
none of the animals in the control group had calcium depos-
its (Figure 2B). Calcium scores were calculated using the
Agatston score; all diet group animals developed calcifica-
tion with a mean Agatston score significantly higher when
compared with control group (145 + 118 vs. 0, P < 0.01).
The mean Agatston score of the low-phosphate group
valves was an order of magnitude lower when compared
with the diet group (14 + 2 vs. 145 + 118, P < 0.01).

3.4 Aortic valve calcification reversibility using
multislice computed tomography scan

To assess the reversibility of AVC, eight diet group rats were
followed using serial MSCT scans. Although three of the rats

showed an increase in calcium score at 13 weeks, the
overall valve calcification was reduced at 13 weeks when
compared with 9 weeks (42 4+ 11 vs. 70 4+ 23; P=0.19).
At 19 weeks, all the rats showed a significant and impress-
ive decrease in calcium score when compared with the
scoring of the ninth week (7 + 2.8 vs. 70 + 23; P < 0.05)
(Figure 3).

3.5 Histopathology, Von Kossa, osteopontin,
and CD68 staining

Tissues obtained from the aortic valves of the diet group
rats revealed cartilaginous metaplasia of aortic valve
annulus and focal subendothelial macrophage aggregates
accompanied by myxoid degeneration of leaflets. Von
Kossa stain demonstrated calcium precipitate involving
the valve annulus (Figure 4). Calcium precipitation reflect-
ing AVC was diffuse, and resolved after diet cessation
(Figure 5A). Osteopontin and CDé68 stains were positive
only in valves obtained from the diet group, reflecting
reversible osteoblast features and macrophages accumu-
lation in aortic valve tissue (Figure 5B and C,
respectively).

Tissues obtained from low-phosphate group’s valves
showed no significant calcification and both osteopontin
and CD68 stains were negative (data not shown).

3.6 Reverse transcriptase-polymerase chain
reaction for osteoblast markers and for RANKL

There was a significant increase of osteopontin, osteocalcin,
the transcription factor Runx-2, and RANKL RNA levels in the
diet group. These changes reflect expression of osteoblast
markers and activation of NFkB family members in the
valve tissue. Valves obtained from the reversibility subgroup
showed downregulation of osteoblast markers expression
and NFkB pathway (Figure 6).

Posterior

Anterior (B)

Figure 2 Chest multislice computed tomography (MSCT) of the diet and control group rats. Chest MSCT a diet group rat (A) and a control group rat (B) showing
the heart (purple arrow) and bony structures (white arrows). Calcified tissue: ribs and vertebrae are stained in pink. Calcium aggregates are demonstrated in

aortic valve annulus (yellow arrow). No calcification is observed in the control.
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3.7 Western blot for osteopontin

There was a significant increase in osteopontin protein level
in the diet group valves compared with control valves
(Figure 7). Image software used to quantify the difference
revealed a 50% increase of osteopontin expression in diet
group valves.

4. Discussion

AVC is a central component in the pathology of AS. However,
the pathogenesis of the process is not clearly understood.
Recent data suggest that it is mediated by cellular changes
coupled with active inflammatory processes. As understand-
ing the pathogenesis of AVC is crucial for finding efficient
treatment for AS, many efforts have been directed to
develop animal models for this disease.

We developed a unique diet-induced animal model for
AVC, based on renal failure and secondary hyper-
parathyroidism. The diet contains high level of adenine
that precipitates in the renal tubules, and forms
2,8-dihydroxyadenine aggregates. The tubular insult

results in polyuric renal failure and secondary hyperpara-
thyroidism that develops within weeks. Two weeks after
diet cessation, the rats had normal kidney function, but
elevated PTH and significant AVC. Both echocardiography
calcium

and histological evaluation demonstrated

100
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Figure 3 Average calciumscore at9, 13, and 19 weeks. Serial average calcium
scores (mean + SEM) for reversibility evaluation after 9, 13, and 19 weeks. All
rats’ calcium score were significantly lowered at the end of the period. After
13 weeks, calcium score was reduced when compared with 9 weeks. A significant
impressive reduction in calcium score occurred at 19 weeks.

Figure 4 Aortic valve calcification in diet group rat. (A) En-face view of open aortic valve showing diffuse calcification of valve’s annulus and commisures (black
arrows). (B) Cross-section through the aortic sinus showing coarse calcification of aortic valve annulus (arrows) with normal appearing leaflets (haematoxylin &
eosin, original magnification x25). (C) Higher magnification of calcified annulus (Von Kossa, original magnification x50). (D) Focal cartilaginous metaplasia of
aortic valve annulus (haematoxylin & eosin, original magnification x200). (E) Focal subendothelial macrophage aggregate (large arrow) and myxoid degeneration

of leaflet (small arrow) (haematoxylin & eosin, original magnification x400).
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Control

Diet Reversibility

Figure 5 Von Kossa stain, immunohistochemistry staining for osteopontin and anti-CD68 stains in diet, control, and reversibility group valves. Von Kossa stain
(A) for calcium aggregates (brown) demonstrates calcification only in diet group (white arrow). Staining for osteopontin (B) in orange (white arrow) is expressed
only in diet group. Staining using anti-CD68 antibody (C) for macrophages (in green) and marked with white arrow is demonstrated only in diet group.

aggregates in all parts of the valve. In addition, we were
able to quantify the calcium content using MSCT, which is
an emerging tool for assessing valve calcification.'”” We
were able to show that AVC is an active inflammatory
process, which involves the activation of the NFkB system,
macrophages accumulation, and osteoblast phenotype in
valve tissue. In addition, the process is reversible after
PTH levels return to normal range. The reversibility was
demonstrated using imaging modalities and confirmed by
histology. Inflammation and osteoblast’s features were
resolved along with the decalcification process. We showed
that calcification was minimal in the low-phosphate group;
therefore the process is related to elevated PTH rather
than uraemia.

Previous diet-induced AVC animal models were all based
on various components of the metabolic syndrome: hyperli-
pidaemia, hypertension, and hypercholesterolaemia, thus
emphasizing the role of atherogenesis in AVC.'%"""18 Using
one of those models, Rajamannan et al. were the first to
demonstrate upregulation of osteoblast markers and bone
matrix production.? Furthermore, they showed that aortic
valve osteoblast-like phenotype is inhibited by statins.
Several animal models based on renal failure have previously
been reported, and some of them were used for the study of
vascular calcification.?° Initial models consisted of surgical

2
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Figure 6 Reverse transcriptase-polymerase chain reaction (RT-PCR) for bone
markers in diet, control, and reversibility group valves. RT-PCR for osteopon-
tin, Runx-2, osteocalcin, and RANKL obtained from valves in all groups,
demonstrating a significant up-regulation in expression of all four mRNA in
the diet group valve tissue compared with control. There is downregulation
of all four mRNA at the valves obtained from the reversibility subgroup.
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Control Diet

Figure 7 Western blot of osteopontin in diet and control group valves.
Western blot of osteopontin obtained from both diet and control group
valve tissues demonstrate a significant increase in osteopontin protein level
in the diet group valves.

nephrectomy, and others were based on renal ischaemia,
toxins, and sepsis induction. Using those models, recent
studies showed that vascular calcification is a regulated
process, and that several metabolic changes like serum
phosphate induce osteoblast differentiation of vascular
smooth muscle cells.?' Nevertheless, in none of these
models was renal failure reversible, and none was used to
specifically study aortic valve disease.

Primary and secondary hyperparathyroidism (the latter
prevalent in kidney diseases) have been shown to induce
both AVC and AS.?223 In patients undergoing dialysis, AVC
and AS are frequently found; furthermore, those conditions
progress more rapidly in these patients.?* The exact mech-
anism of this phenomenon is not clearly understood, but
may be related to the metabolic changes induced by hyper-
parathyroidism. In addition, lack of calcification inhibitors
may also be important, as dialysis patients who develop vas-
cular calcification were found to have low levels of serum
fetuin A. It was suggested that fetuin A is a circulating
inhibitor of mineralization, which was able to inhibit miner-
alization of vascular smooth muscle cells in vitro.?

Our results suggest that when PTH levels drop after diet
cessation and the resolution of renal failure, the calcifica-
tion process is reversed. We evaluated the effect of renal
failure of AVC itself by inducing renal failure with low PTH
level using high-adenine, low-phosphate diet. Interestingly,
we showed that although severe renal failure was achieved,
AVC was minimal. We suggest that the metabolic and elec-
trolytes changes induced by PTH rather than renal failure
itself are the major mediators of AVC pathophysiology.
These findings, together with the fact that patients who
suffer from primary hyperparathyroidism have increased
risk for AVC and AS, suggest that PTH plays a major role
in AVC.%¢

Activation of PTH receptor induces several osteoblast
transcription factors (e.g. Runx-2) and proteins (e.g.
osteopontin) that stimulate osteoblast maturation and
calcification.?” Runx-2 is crucial in the differentiation of
mesenchymal cells to an osteoblastic phenotype,”® a
process that may contribute to AVC. Osteopontin and
osteocalcin are the most abundant glycoproteins produced
by osteoblasts, which compose the organic part of the
bone and are essential for calcification.?’ In our model,
we demonstrated elevated osteopontin, osteocalcin, and
Runx-2 levels in the diet group, reflecting the aortic
valve’s osteoblast features. The lack of osteoblast features
in the reversibility subgroup’s valves suggests that the
process is not permanent and requires continuous activation
by PTH.

In addition to osteoblast and osteoclast activation, PTH
has immune modulatory and pro-inflammatory roles that
were demonstrated in various tissues. These effects

include induction of cytokine secretion and inflammatory
cell recruitment.3®3" Studies in dialysis patients showed
significant correlation between PTH level, valve calcifica-
tion, and inflammatory markers.32 Our results suggest that
PTH has two major effects. The first is a direct effect on
osteoblast and osteoclast, leading to osteoblast maturation
and bone formation. The second is activation of the
inflammatory process that plays an important role in AVC
pathogenesis.

Another role of PTH is the activation of vitamin D
(1,25-OH,D3), which plays an important role in calcium
and phosphate metabolism, and also has important
immune-regulatory effects. It was suggested that vitamin
D may suppress several autoimmune diseases, such as sys-
temic lupus erythematosus, rheumatoid arthritis, and
inflammatory bowel diseases.>®> The precise effect of
vitamin D on AVC is still unknown, although it has been
shown that polymorphism of vitamin D receptor is associated
with higher prevalence of AVC.°

The molecular basis of PTH-induced calcification was
studied in various tissues, and several cellular pathways,
especially the tumour necrosis factor family pathway.?*
PTH is a major activator of the RANK/RANK-ligand
complex that is part of the NFkB pathway;>> the exact role
of the complex in the calcification process is not clear. It
was shown to trigger osteoblast and osteoclast differen-
tiation, and a recent study showed high expression of
RANKL in human calcified aortic valves.*® In our model,
the calcification is involved in increased levels of RANKL,
which may express the activation of the NFkB pathway.

Thus, PTH induces calcification through several mechan-
isms, including direct osteoblast activation, induction of
vitamin D metabolism, and indirectly through its
pro-inflammatory activity. Nevertheless, the exact mechan-
ism of PTH effect requires further studies.

Interestingly, adenine derivate [adenine triphosphate
(ATP)] and other nucleotides have the ability to regulate
in vitro the osteoblast and osteoclast functions. ATP effect
is mediated through purinergic receptors (P2 receptor)
that activate intracellular pathways of osteoclast and
osteoblast cells.>” A recent study conducted in aortic valve
myofibroblasts showed that ATP (through P2 receptors) acti-
vates the NFkB system, induces the formation of the RANK/
RANK-ligand complex and consequently enhancing AVC.3®
Accordingly, it was suggested that nucleotides, released at
sites of inflammation or in response to mechanical injury
may regulate osteoclast formation and activity and induce
calcification. This may explain why both the inflammatory
process and turbulent flow occurring in deformed valves
may accelerate AVC. Thus, we suggest that in addition to
the role of adenine in causing renal failure, it may also
have a direct effect of enhancing osteoclast and osteoblast
activity and inducing calcification. The direct effect of
adenine may explain the mild AVC observed in the low-
phosphate group.

In conclusion, we demonstrated that adenine- and
phosphate-enriched diet serves as a unique model for AVC
as it simulates typical pathological changes: osteoblast
transformation, expression of bone-specific proteins, and
accumulation of macrophages as part of an inflammatory
process. The model is simple: it does not require genetically
modified animals, and AVC is achieved in short duration,
facilitating long-term follow-up. We are the first to show
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that AVC is a dynamic and a reversible process, our model
enables continuous assessment of the molecular and
inflammatory processes involving AVC. Furthermore, better
understanding of the molecular cascade of AVC and its
reversibility might enable the development of new treat-
ment options, by modulating key points along the calcifica-
tion cascade. This model may allow precise evaluation of
these future treatment modalities using calcification quanti-
fication by imaging.
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