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Abstract: Improving water quality is one of the top priorities in the global agenda endorsed by
the United Nations. To ensure the achievement of this goal, governments have developed plans
to continuously monitor the status of inland waters. Remote sensing provides a low-cost, high-
frequency, and practical complement to monitoring systems that can cover a large area. However, it
is crucial to evaluate the suitability of sensors for retrieving water quality parameters (WQPs), owing
to differences in spatial and spectral sampling from different satellites. Taking Shanmei Reservoir
in Fuzhou City, Fujian Province as a case study, this study collected and sorted the water quality
data measured at the site in 2020 to 2022 and Landsat 8-9 OLI and Sentinel-2 MSI images, simulated
the chlorophyll-a (Chl-a) concentration, algae density, and turbidity using empirical multivariate
regression, and explored the relationship between different WQPs using correlation analysis and
principal component analysis (PCA). The results showed that the fitting effect of Landsat OLI data
was better than that of the Sentinel-2 MSI data. The coefficient of determination (R2) values of Chl-a,
algal density, and turbidity simulated by Landsat OLI data were 0.70, 0.81, and 0.80, respectively.
Furthermore, the parameters of its validation equation were also smaller than those of Sentinel MSI
data. The spatial distribution of three key WQPs retrieved from Landsat OLI data shows their values
were generally low, with the mean values of the Chl-a concentration, algal density, and turbidity
being 4.25 µg/L, 4.11 × 106 cells/L, and 1.86 NTU, respectively. However, from the end of February
2022, the values of the Chl-a concentration and algae density in the reservoir gradually increase,
and the risk of water eutrophication also increases. Therefore, it is still necessary to pay continuous
attention and formulate corresponding water quality management measures. The correlation analysis
shows that the three key WQPs in this study have a high correlation with pH, water temperature
(WT), and dissolved oxygen (DO). The results of PCA showed that pH, DO, Chl-a concentration, WT,
TN, and CODMn were dominant in PC1, explaining 35.57% of the total variation, and conductivity,
algal density, and WT were dominant in PC2, explaining 13.34% of the total variation. Therefore,
the water quality of the Shanmei Reservoir can be better evaluated by measuring pH, conductivity,
and WT at the monitoring station, or by establishing the regression fitting equations between DO,
CODMn, and TN. The regression algorithm used in this study can identify the most important water
quality features in the Shanmei Reservoir, which can be used to monitor the nutritional status of the
reservoir and provide a reference for other similar inland water bodies.

Keywords: water quality parameters; chlorophyll-a; algal density; turbidity; empirical multivariate
regression; Landsat; Sentinel; Shanmei Reservoir
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1. Introduction

Inland waters cover approximately 3% of the terrestrial surface of the Earth and have
many important functions including providing ecosystem services such as hydroelectric
power, flood protection, navigation, water supply, and fisheries [1,2]. It is estimated that
approximately one in eight global citizens still do not have access to safe drinking water,
although access has increased in recent years [3]. With the water demand in some countries
likely to exceed the supply by 50%, nearly half the global population will face water scarcity
by 2030 [4]. Therefore, water resource management is particularly important to ensure
that there is a sufficient water quantity of adequate quality for multiple human uses by
managing water resources.

Reservoirs are a distinct example of inland water bodies and are transitional systems
between rivers and lakes formed by the damming of rivers. Reservoirs are also simple
targets for waste disposal [5]. The biotic and abiotic variables of these functionally complex
ecosystems undergo rapid changes owing to natural environmental changes, changes in
watershed land cover and land use, and changes in water demand [6]. The construction and
use of reservoirs change the hydrodynamics of rivers, with different impacts on terrestrial
and aquatic systems [7]. With an increase in residence time, the effective utilization time
of nutrients is prolonged, and water bodies become increasingly eutrophic [8]. Therefore,
monitoring WQPs is crucial for maintaining the health of these water bodies.

WQPs are usually obtained using in situ sensor probes or by analyzing water samples
collected in the field. These traditional methods are laborious, expensive, and have limited
spatial coverage [9]. Remote sensing, with its advantages of broad spatial coverage and
repetitive temporal coverage, can complement in situ measurements. Using remote sensing,
maps showing the spatial distribution of WQPs can be generated at multiple time intervals
for monitoring purposes. Therefore, remote sensing technology, which can simultaneously
monitor large areas, has been widely used.

Since the 1960s, remote sensing techniques have been used to monitor aquatic environ-
ments by analyzing ocean colors under the assumption that Chl-a (a quantified proxy for
phytoplankton biomass) and surface temperature can be estimated remotely [5,10]. Based
on this, many researchers have used satellite sensors to evaluate WQPs with optically active
parameters, such as total suspended matter, Chl-a concentration, turbidity, phytoplankton
pigments, and color-dissolved organic matter (CDOM) [11–13]. However, estimating TN,
TP, and COD concentrations in inland waters presents a great challenge. As the above
parameters are not optically active at the sensed wavelengths [14], it is difficult to directly
correlate remote sensing spectral characteristics with TN, TP, and COD concentrations [15],
so most of the current studies using conventional remote sensing monitoring methods
focus on WQPs with optical activity. In terms of WQPs retrieval, previous studies were
based mainly on different correlation algorithms of empirical, semi-analytical, and matrix
retrieval models. Semi-analytical models are based on radiative transfer theory and require
bio-optical and empirical data to describe the relationship between the components of a
water body and the equivalent surface reflectance that defines the upwelling radiance above
and on the surface of the water [16,17]. There are three general types of semi-analytical
models, one of which is the retrieval and optimization algorithm [18]. It uses a forward
model to simulate spectra from multiple parameters and selects the set of parameters that
minimize the chosen cost function as the solution [19]. If the forward model is linear and
the cost function is the sum of the squares of the residuals, this is reduced to the linear
matrix retrieval method [20]. However, owing to the lack of specific parameters, matrix
retrieval methods are complicated and difficult to calibrate. Therefore, empirical algorithms
are typically employed to retrieve and estimate WQPs [21,22].

The continuous development of remote sensing and geographic information science
has significantly improved the efficiency of geographical feature analysis [23–25]. The
increased frequency of image acquisition and advances in data processing capabilities
have provided new opportunities for understanding complex inland water systems [26].
Remote sensing-based assessments and water monitoring may use the same methods for
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retrieval and prediction, but various sensors can be used for research. For example, the
Moderate-Resolution Imaging Spectroradiometer (MODIS), Medium-Resolution Imaging
Spectrometer (MERIS), MultiSpectral Instrument (MSI), and Operational Land Imager (OLI)
can be used. These sensors are different in spatial, temporal, spectral, and radiometric
resolutions, and several studies have been carried out to estimate WQPs using these
sensors [27–29]. The applicability of WV-2 imagery with existing effective estimation
methods from MERIS when estimating the Chl-a concentration in inland turbidity waters
was verified for Guanting Reservoir, where the correlation analysis of the measured Chl-a
concentration content and WV-2 imagery bands show that the bands of WV-2 sensitive
to the Chl-a concentration are red edge, NIR 1, and NIR 2 [30]. A study on Araucanian
lakes developed and validated empirical models to estimate turbidity values from Landsat
images and determine the spatial distribution thereof [31]. Yashon et al. proposed an
empirical multivariate regression model (EMRM) algorithmic approach for estimating
the Chl-a concentration, total suspended solids (TSS), and turbidity associated with field
laboratory measurements; the results showed that the algorithms developed are broadly
able to discern the bio-optical quality of water in reservoirs, even if the absolute accuracy of
the retrieval of the WQPs still requires improvements [17]. Using Landsat satellite images,
11 spectral indicators were calculated, and the correlation between the vegetation index
and Chl-a concentration in different monitoring areas was established. The indicators with
the best correlations were the normalized difference vegetation index (NDVI) and the green
normalized difference vegetation index (GNDVI) [32].

Taking the Shanmei Reservoir in Fujian Province, China, as a case study, the aims of
this work were to (1) describe the reflection characteristics of the water body in different
bands of the Sentinel MSI and Landsat OLI data combined with the observed water quality
data for the reservoir; (2) generate and validate empirical models for WQPs from the two
satellite sensors, by comparing the size of validation parameters (MAE, MSE, RMSE), and
select the remote sensing inversion model more suitable for the reservoir; (3) retrieve the
Chl-a, algal density, and turbidity with optical activity according to the regression formula
to understand the current status and changing characteristics of the water quality of the
reservoir, and (4) explore the relationship between WQPs, and select the factors that have a
greater impact on the water quality, so as to provide a reference for the rapid monitoring
of the water quality of the reservoir in the future. Establishing simple models with high
accuracy and known errors will facilitate rapid, accurate, and real-time evaluation of water
quality using measured data and remote sensing techniques. We hope that this study can
provide a reference for the further study of reservoir water quality, which is conducive to
the monitoring and early warning of reservoir nutritional status, ensuring the safety of
downstream people’s life and farmland water, and creating a better reservoir environment.

2. Materials and Methods
2.1. Overview of the Study Area

The Shanmei Reservoir is in Quanzhou City (25◦07′41” N, 118◦26′36” E) in the middle
reaches of the Dongxi River, a tributary of the Jinjiang River, one of the four major rivers
in China (Figure 1). The reservoir provides water for 4 million people living downstream,
supplies 43,300 hectares of farmland with irrigation water, and provides water to ensure
the sustainable development of Quanzhou’s economy and society [33,34].

The Shanmei Reservoir has an area of 26 km2, a length of 12 km, a maximum width
of 7 km, and a maximum depth of 50 m, with a total storage capacity of 655 million m3

and a normal water level of 96.48 m. In recent years, increasing attention has been paid
to the water quality of Shanmei Reservoir. With the economic and social development of
the catchment area, the reservoir has faced new or intensified challenges including (1) the
increased pressure of eutrophication in the reservoir area, (2) the increased risk of seasonal
algal blooms, and (3) TN functioning as a nutrient source. As a result, the optimization of
the aquatic biological community structure and the reduction of the algal bloom risk have
become key issues in the Shanmei Reservoir.
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main indicators included WT (°C), pH, DO (mg/L), conductivity (μS/cm), turbidity (neph-
elometric turbidity unit, NTU), CODMn (mg/L), ammonia nitrogen (NH3-N, mg/L), TN 
(mg/L), TP (mg/L), Chl-a concentration (mg/L), and algal density (cells/L). The monitoring 
frequency is once every four hours, and the monitoring data were dynamically released 
six times a day (0:00, 4:00, 8:00, 12:00, 16:00, and 20:00). The methods of measuring WQPs 
are detailed in technical specifications for automatic monitoring of surface water (HJ 915-
2017) issued by the Ministry of Ecology and Environment of the People’s Republic of 
China (https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201801/t20180108_429283.shtml, 
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Figure 1. (a) Fujian Province in the yellow section is located on the southeastern coast of China,
(b) Quanzhou City in the pink section is located at the eastern end of central Fujian Province, and
(c) the boundary of Shanmei Reservoir. The green point is the location of the monitoring station.

2.2. Data Collection
2.2.1. In Situ Data

The in situ data were obtained from the national surface water quality automatic
monitoring real-time data publishing system (http://106.37.208.243:8068/GJZ/Business/
Publish/Main.html, (accessed on 2 November 2021)), which was issued by the Chinese
Ministry of Environmental Protection on 1 July 2009 and released to the public. The main
indicators included WT (◦C), pH, DO (mg/L), conductivity (µS/cm), turbidity (nephelomet-
ric turbidity unit, NTU), CODMn (mg/L), ammonia nitrogen (NH3-N, mg/L), TN (mg/L),
TP (mg/L), Chl-a concentration (mg/L), and algal density (cells/L). The monitoring fre-
quency is once every four hours, and the monitoring data were dynamically released six
times a day (0:00, 4:00, 8:00, 12:00, 16:00, and 20:00). The methods of measuring WQPs are
detailed in technical specifications for automatic monitoring of surface water (HJ 915-2017)
issued by the Ministry of Ecology and Environment of the People’s Republic of China (https:
//www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201801/t20180108_429283.shtml, (ac-
cessed on 2 November 2021)). This study used Chl-a concentration, turbidity, and algal
density data from 1 November 2020 to 26 February 2022, and the monitoring point was
located at 118◦24′52′′ E, 25◦10′54′′ N. According to the introduction of Landsat 8-9 satellite
and Sentinel-2 satellite, the acquisition time of both satellites is approximately 10:30 local
time. Therefore, the WQPs data at 8:00 and 12:00 are selected for averaging, and the single

http://106.37.208.243:8068/GJZ/Business/Publish/Main.html
http://106.37.208.243:8068/GJZ/Business/Publish/Main.html
https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201801/t20180108_429283.shtml
https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201801/t20180108_429283.shtml
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remote sensing image pixel where the water quality monitoring station is located is selected
to match the water quality data.

2.2.2. Landsat 8-9 OLI Data

Landsat-8 and Landsat-9 satellites were launched on 11 February 2013 and 27 Septem-
ber 2021, respectively. The two satellites have 11 frequency bands, and the global coverage
can be realized every 8 days after the data combination. In December 2020, the USGS
reprocessed archived Landsat data and released a new collection, Collection 2, which
introduced surface reflectance and surface temperature Level-2 products, implemented im-
proved ground control and elevation datasets, brought several geometric and radiometric
calibration enhancements, and improved the atmospheric correction algorithm. We selected
14 Landsat 8-9 Collection 2 Level 2 products (https://earthexplorer.usgs.gov, accessed on
24 November 2021), which had been geometrically corrected, radiometrically calibrated,
and atmospherically corrected, and can be used directly after processing according to the
following formula. Table 1 presents the dates of selected Landsat 8-9 images.

Rrs(λ) = 0.0000275× Pixle Value− 0.2 (1)

Table 1. Dates of selected Landsat 8-9 images.

Number Year Image Date Number Year Image Date

1 2020 11 November 8 2021 25 July
2 2020 27 November 9 2021 26 August
3 2020 29 December 10 2021 11 September
4 2021 30 January 11 2021 27 September
5 2021 15 February 12 2021 16 December
6 2021 6 May 13 2022 1 January
7 2021 9 July 14 2022 26 February

2.2.3. Sentinel-2 MSI Data

Sentinel-2A and 2B satellites are high-resolution multispectral imaging satellites. Both
satellites have a 10-day revisit period, and when combined, they can achieve global cov-
erage every 5 days. For Sentinel-2A and -2B data, the L1C multispectral data released by
the European Space Agency (ESA) is only an orthophoto image after geometric fine correc-
tion, which also requires radiometric calibration and atmospheric correction. The current
mainstream software is Sen2Cor (a processor for Sentinel-2 Level 2A product generation
and formatting, http://step.esa.int/main/snap-supported-plugins/sen2cor, (accessed on
25 November 2021)) and the Sentinel Application Platform (SNAP, a common software
architecture on which a collection of free open-source toolboxes for the scientific exploita-
tion of Earth Observation missions, https://step.esa.int/main/download/snap-download,
(accessed on 25 November 2021)). In this study, 28 Sentinel satellite images (https://scihub.
copernicus.eu/dhus/#/home, (accessed on 24 November 2021)) were selected. Sen2Cor
was used to perform radiometric calibration and atmospheric correction, and SNAP was
used to resample each band of images. Table 2 presents the dates of selected Sentinel
images.

Table 2. Dates of selected Sentinel images.

Number Year Image Date Number Year Image Date

1 2020 9 November 15 2021 16 August
2 2021 29 December 16 2021 26 August
3 2021 13 January 17 2021 5 September
4 2021 18 January 18 2021 25 September

https://earthexplorer.usgs.gov
http://step.esa.int/main/snap-supported-plugins/sen2cor
https://step.esa.int/main/download/snap-download
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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Table 2. Cont.

Number Year Image Date Number Year Image Date

5 2021 23 January 19 2021 5 October
6 2021 2 February 20 2021 14 November
7 2021 17 February 21 2021 24 November
8 2021 9 March 22 2021 04 December
9 2021 24 March 23 2021 09 December
10 2021 12 June 24 2021 14 December
11 2021 17 June 25 2021 19 December
12 2021 7 July 26 2021 29 December
13 2021 22 July 27 2022 3 January
14 2021 27 July 28 2022 8 January

2.3. Methods
2.3.1. Empirical Regression Modelling for Retrieval of WQPs

In this study, three WQPs, including the Chl-a concentration, algal density, and tur-
bidity, were used as retrieval objects, and different waveband ratio algorithms were used
for retrieval. Band ratio algorithms are empirical algorithms based on the statistical re-
lationship between a color index (i.e., band ratio) and a WQP [35]. Currently, there are
relatively mature or more general retrieval algorithms, such as single bands [36], linear
band combinations [30], band ratios [30], mixed-band combinations, such as Kab1 [37],
the Green Difference Vegetation Index (GDVI) [38], 3BDA-like (Kivu) [39], the Vegetation
Atmospheric Resistance Index (VARI) [40], etc. In this study, based on the selection of the
above WQPs retrieval algorithms, a number of related parameters between the regression
data and the measured water quality data were calculated (see Section 2.3.2 for specific
parameters and equations) to screen out the best WQP algorithms in the study area. This
part uses MS Office Excel to input the band combination formula, and the generated result
is used as the independent variable of the retrieval regression equation. The band algorithm
is presented in Table 3, and i, j, and k refer to different remote sensing bands.

Table 3. The algorithms used for calculation of WQPs.

Band Combinations Landsat OLI Data Sentinel MSI Data

Single bands BL8i BS2i
Linear band combination BL8i + BL8j BS2i + BS2j

Band ratios BL8i/BL8j BS2i/BS2j
Mixed band combinations (BL8i + BL8j)/BL8k (BS2i + BS2j)/BS2k

The empirical model used in the regression of in situ sampling and band combinations
consisted of the following model equations [9], where Rrs(λ) is the reflectance corresponding
to the Landsat 8 and Sentinel-2 bands, and a, b, and c are regression model constants.

Linear a× Rrs(λ) + b (2)

Polynomial a× Rrs(λ) + b× Rrs(λ) + c (3)

Logarithmic a× log10Rrs(λ) + b (4)

Power a× Rb
rs(λ) (5)

Exponential a× eb∗Rrs(λ) (6)

In this paper, training datasets and validation datasets were selected according to
the ratio of 7:3. The data of 10 sampling points were used in the regression modeling of
Landsat OLI data, the remaining 4 data points were used for model validation, 19 sampling
points were used in the regression modeling of Sentinel MSI data, and the remaining
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9 data points were used for model validation. The Statistical Product and Service Solutions
(SPSS) software was selected to take the result obtained by the band combination as the
independent variable, and the WQPs values of the regression points were used as the
dependent variable to generate the water quality retrieval formula. Afterwards, the band
combination results corresponding to the validation datasets were brought back into the
retrieval formula to generate the statistical indicators mentioned in Section 2.3.2.

2.3.2. WQPs Retrieval Performance Analysis Metrics

To determine and compare the performance of the empirical model in retrieving
various WQPs, we compared the retrieval results with the measured water quality using the
following formulas: Correlation coefficient (r), coefficient of determination (R2), standard
deviation (SD), standard error (SE), coefficient of variation (CV), mean absolute error
(MAE), mean square error (MSE), and root mean square error (RMSE). Table 4 lists the
calculation formula for each index. The flowchart in Figure 2 summarizes the overall flow
of the research.
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∑
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Table 4. Cont.

Name Equation

Standard error (SE) SE = SD√
n

Coefficient of variation (CV) CV = SD
X

Mean absolute error (MAE) MAE = 1
n ×

n
∑

i=1

∣∣∣XEstimated
i − XMeasured

i

∣∣∣
Mean square error (MSE) MSE = 1

n ×
n
∑

i=1

(
XEstimated

i − XMeasured
i

)2

Root mean square error (RMSE) RMSE =
√

MSE

Mean absolute percentage error
(MAPE) MAPE = 100

n ×
n
∑

i=1

(
XEstimated

i −XMeasured
i

XEstimated
i

)

3. Results
3.1. Behavior Parameters of In Situ WQPs at Sampling Station

Table 5 shows the average Chl-a concentration, turbidity, algal density, and WT values
obtained from the monitoring activities from November 2020 to February 2022. After
removing some null values or outliers with obvious order-of-magnitude error, the data
showed that the Chl-a concentration change in Shanmei Reservoir fluctuated between
5.24 ± 3.04 µg/L and the maximum value of 23.11 µg/L. The algal density fluctuated the
most, with an average value of 4.46 × 106 cells/L, and a CV value of 141.17%. The turbidity
fluctuated between 3.97± 2.84 (NTU) and its CV value reached 71.50%. The WT fluctuation
was the smallest, with a CV value of only 20.70%, between 16.26 and 34.64 ◦C. In 2020–2022,
the nutrient status and productivity of the reservoirs in the study area were relatively low.

Table 5. Descriptive statistics from Shanmei Reservoir.

Parameters Statistical Indicators Numerical Value

Chl-a concentration

min-max (µg/L) 1.00–23.11
Average ± σ 1 (µg/L) 5.24 ± 3.04

CV(%) 58.12
n 1 2819

Algal Density

min-max (106 cells/L) 0.06–102.11
Average ± σ (106 cells/L) 4.46 ± 6.29

CV (%) 141.17
n 2819

Turbidity

min-max (NTU) 0.62–26.36
Average ± σ (NTU) 3.97 ± 2.84

CV(%) 71.50
n 2819

WT

min-max (◦ C) 16.26–34.64
Average ± σ (◦ C) 24.52 ± 5.08

CV (%) 20.70
n 2819

1 n, data number, σ, standard deviation.

3.2. Landsat 8-9 OLI and Sentinel-2 MSI Reflectance (Rrs(λ)) Comparison

The remote sensing reflectance of Landsat OLI and Sentinel MSI at the same or similar
time points were compared, as shown in Figure 3. The reflectivity of Landsat OLI sensor
band ranged from 0 to 0.05, and that of the Sentinel MSI sensor band ranged from 0 to
0.07. In general, with the increase in wavelength, the trend of the increase/decrease in the
reflectance value of the two sensors at the water quality monitoring point is similar. Among
them, the reflectivity of the visible light band (450–680 nm) and NIR band (785–900 nm) was
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higher than that of the SWIR band (1560–2300 nm), and the green (B3) band (525–600 nm)
has the highest reflectivity in the visible band (the conclusion does not include abnormal
dates, such as 17 February 2021, 7 July 2021, and 26 August 2021—in these three dates, the
reflectivity of the blue (B2) band (450–515 nm) of Sentinel MSI data is higher than that of
the green (B3) band (525–600 nm), while the reflectivity of some visible bands of Landsat
OLI data is lower than that of the SWIR band (1560–2300 nm)).
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3.3. WQPs Regressions from Landsat OLI and Sentinel MSI Data
3.3.1. Regression of Chl-a Concentration

Tables 6 and 7 show the band combinations and their regression models with a good
fitting effect for the two sensors. By comparing the Chl-a concentration estimated by
Sentinel MSI data and Landsat OLI data with the in situ Chl-a concentration, both showed
higher R2 values. This confirmed the plausibility of the developed regression model for
estimating the Chl-a concentration in the case study reservoir. For Landsat OLI data, we
found the three best regression equations fits for Chl-a concentration retrieval using a
combination of coastal aerosol (B1), blue (B2), green (B3), and NIR (B4) bands, and the
highest value of R2 is 0.70. Compared with the Sentinel MSI regression equations using the
red (B4), Vegetation red edge1 (B5), and Vegetation red edge2 (B6) bands to predict Chl-a
concentrations, the accuracy was improved by a minimum of 12.90%.

Table 6. Regression model for the retrieval of Chl-a concentration using Landsat OLI training datasets.

No.
Landsat OLI Data Regression

Model Equation for Chl-a
Concentration Estimation

Band Combination (=x) r R2

1 y = −14.61 × x + 10.98 B2/(B3 + B4) −0.84 0.70
2 y = −11.50 × x + 2.50 (B2 − B3)/(B2 + B3) −0.80 0.65
3 y = −10.40 × x + 7.93 B1/(B3 + B4) −0.79 0.62
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Table 7. Regression model for the retrieval of Chl-a concentration using Sentinel MSI training
datasets.

No.
Sentinel MSI Data Regression

Model Equation for Chl-a
Concentration Estimation

Band Combination (=x) r R2

1 y = 1183.26 × x + 2.62
B5 − (B4 + B6)/2 0.79

0.62
2 y = 2.57 × e284.24×x 0.59

3.3.2. Regression of Algal Density

Tables 8 and 9 summarize the specific situation of the satellite sensors in the retrieval
of algal density in the reservoir. The Landsat OLI data obtained the three best results, and
the Sentinel-2 satellite obtained the two best results. The three results of Landsat OLI data
include coastal aerosol (B1), blue (B2), green (B3), and red(B4) bands, and Sentinel MSI
data include the red (B4), Vegetation red edge1 (B5), and Vegetation red edge2 (B6) bands.
The best result for Landsat OLI algal density estimation was obtained using the univariate
linear regression equation of coastal aerosol (B1), green (B3), and red(B4) bands with R2 of
0.82, and for Sentinel MSI data using the red (B4), Vegetation red edge1 (B5), and Vegetation
red edge2 (B6) bands, where the R2 of the best regression equation is 0.61. It can be seen
that the accuracy of the regression formula of Landsat OLI data on algal density was at least
26.23% higher than that of Sentinel MSI data. The results show that although the measured
algal density values have a wide range, the Landsat OLI retrieval regression equation can
verify the validity of the established model and predict algal density to a certain extent.

Table 8. Regression model for the retrieval of algal density concentration using Landsat OLI training
datasets.

No.
Landsat OLI Data Regression Model

Equation for Algal Density
Estimation

Band Combination (=x) r R2

1 y = −19,789,532.32 × x + 8,686,780.32 B1/(B2 + B3 + B4) −0.91 0.82
2 y = −12,502,445.57 × x + 1,628,888.71 (B2 − B3)/(B2 + B3) −0.90 0.81
3 y = 3,292,817.47 × x − 1,084,109.44 (B1 − B3)/(B1 + B3) 0.88 0.77

Table 9. Regression model for the retrieval of algal density concentration using Sentinel MSI training
datasets.

No.
Sentinel MSI Data Regression Model

Equation for Algal Density
Estimation

Band Combination (=x) r R2

1 y = 1,227,118,587.08 × x + 2,142,593.11
B5 − (B4 + B6)/2 0.78

0.61
2 y = 1,981,923.63 × e351.40×x 0.53

3.3.3. Regression of Turbidity

Tables 10 and 11 summarize the best regression models for turbidity retrieval. For
the Landsat OLI sensor, the coastal aerosol (B1), blue (B2), green (B3), and red(B4) bands
were dominant in the retrieval of turbidity in the reservoir. For the Sentinel-2 MSI sensor,
the coastal aerosol (B1), blue (B2), and green (B3) bands were dominant in the retrieval of
turbidity in the reservoir. The univariate linear regression model of the Landsat OLI data
performed the best in retrieving reservoir turbidity with significantly higher accuracy than
the Sentinel MSI data. On the other hand, Sentinel MSI data have poor regression accuracy
and are almost unusable. Specifically, the best estimate of turbidity using Landsat OLI data
was R2 = 0.71, while the best estimate of turbidity by Sentinel MSI data was only 0.14. This
demonstrates the decisive advantage of the Landsat OLI data in the retrieval of reservoir
turbidity in the study area.
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Table 10. Regression model for the retrieval of turbidity concentration using Landsat OLI training
datasets.

No.
Landsat OLI Data Regression
Model Equation for Turbidity

Estimation
Band Combination (=x) r R2

1 y = −2.78 × x + 2.30 (B2 − B4)/B3 −0.84 0.80
2 y = −7.08 × x + 4.93 B2/(B1 + B3) −0.78 0.71
3 y = −3.10 × x + 2.24 (B2 − B4)/(B2 + B4) −0.73 0.61

Table 11. Regression model for the retrieval of turbidity concentration using Sentinel MSI training
datasets.

No.
Sentinel MSI Data Regression
Model Equation for Turbidity

Estimation
Band Combination (=x) r R2

1 y = −10.42 × x + 2.76 B1 −0.37 0.14
2 y = 3.44 × x + 0.46 B3/(B1 + B2) 0.35 0.12

3.4. Validation of Water Quality Prediction with In Situ Sampling

The regression model developed in Section 3.3 is verified with the remaining measured
data, and the verification results are listed in Table 12, including the in situ statistics, which
were used in the model calibration. It can be seen from the table that Landsat OLI data tend
to overestimate the values of chlorophyll-a and algal density, the Sentinel MSI data-based
model tends to underestimate the values of chlorophyll-a and algal density, while the
values of turbidity are both underestimated. From the three indicators of SD, SE, and CV,
the accuracy of WQPs simulated by Landsat OLI data is more accurate than Sentinel MSI
data.

To assess the merits and compare different WQP regression equations, all the measured
data were entered into the regression formula, and the optimal results of the two satellite
regression parameters are shown in Table 13. The regression model developed by Landsat
OLI data has obvious advantages, and the three types of regression parameters including
MAE, MSE, and RMSE were all smaller than the regression model based on Sentinel-2,
which indicated that Landsat OLI data and its regression model were applicable to this
study area.

Table 12. Descriptive statistics of the in situ and predicted WQPs values.

Water Quality
Parameter

Data
Source No. Min Max Average SD CV(%) SE

Chl-a
concentration

(µg/L)

Landsat
OLI

1 2.26 3.15 2.76 0.40 14.35 0.20
2 2.48 3.45 2.91 0.40 13.74 0.20
3 1.97 3.18 2.56 0.52 20.17 0.26

In situ data
for L-O

validation
/ 1.99 8.17 3.72 2.58 69.53 1.29

Sentinel
MSI

1 2.86 7.23 4.15 1.30 31.38 0.65
2 2.72 7.79 3.92 1.51 38.59 0.76

In situ data
for S-M

validation
/ 1.93 3.91 2.64 0.60 22.75 0.30
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Table 12. Cont.

Water Quality
Parameter

Data
Source No. Min Max Average SD CV(%) SE

Algae density

Landsat
OLI

1 1.57 × 106 2.80 × 106 2.15 × 106 5.21 × 105 24.24 2.60 × 105

2 2.10 × 106 3.15 × 106 2.56 × 106 4.35 × 105 16.95 2.17 × 105

3 1.94 × 106 3.03 × 106 2.41 × 106 4.50 × 105 18.68 2.25 × 105

In situ data
for L-O

validation
/ 1.80 × 106 6.54 × 106 4.08 × 106 2.17 × 105 53.29 1.09 × 105

Sentinel
MSI

1 2.39 × 106 6.93 × 106 3.72 × 106 1.35 × 105 36.23 6.75 × 105

2 2.13 × 106 7.80 × 106 3.41 × 106 1.70 × 106 49.89 8.49 × 105

In situ data
for S-M

validation
/ 1.59 × 106 3.50 × 106 2.54 × 106 5.74 × 105 22.56 2.87 × 105

Turbidity
(NTU)

Landsat
OLI

1 1.28 1.52 1.39 0.09 6.12 0.04
2 1.47 1.61 1.53 0.06 3.76 0.03
3 1.44 1.60 1.51 0.06 3.99 0.03

In situ data
for L-O

validation
/ 2.34 6.44 4.69 1.52 32.37 0.76

Sentinel
MSI

1 2.32 2.60 2.51 0.08 3.19 0.04
2 1.96 2.53 2.25 0.18 8.05 0.09

In situ data
for S-M

validation
/ 4.48 8.02 5.84 1.19 20.37 0.59

Table 13. Comparison of evaluation indexes of WQPs regression formula (brought into training and
testing dataset together).

WQPs Data Type Band
Combination (=x)

Regression Model
Equation MAE MSE RMSE

Chl-a
concentration

Landsat OLI B2/(B3 + B4) y = −14.61 × x + 10.98 1.19 2.75 1.66
Sentinel MSI B5 − (B4 + B6)/2 y = 2.57 × e 284.24×x 1.12 2.92 1.71

Algal
density

Landsat OLI (B2 − B3)/(B2 + B3) y = −12,502,445.57 × x
+ 1,628,888.71 9.19 × 105 2.04 × 1012 1.43 × 106

Sentinel MSI B5 − (B4 + B6)/2 y = 1,227,118,587.08 ×
x + 2,142,593.11 1.13 × 106 2.77 × 1012 1.66 × 106

Turbidity
Landsat OLI (B2 − B4)/B3 y = −2.78 × x + 2.30 1.08 3.80 1.95
Sentinel MSI B1 y = −10.42 × x + 2.76 1.44 4.36 2.09

According to Section 3.2, the Landsat OLI data and Sentinel MSI images have nine
images with the same or similar time nodes. Therefore, the simulated water quality results
of the regression formula for the nine time periods were compared with the measured
data, as shown in Figure 4. Compared with the simulation results of the Sentinel MSI
data regression model, the simulation results of Landsat OLI data agreed more with the
measured water quality data, which can also explain the applicability of Landsat OLI data
in the study area.
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3.5. Spatial Distribution of WQPs Retrieved by Landsat OLI Data
3.5.1. Distribution of Chl-a Concentration

Using the Chl-a concentration regression equation generated in Section 3.3 to retrieve
the Landsat 8-9 image, the spatial distribution of Chl-a in the Shanmei Reservoir at each
time node is shown in Figure 8. The presence of clouds over the study area resulted in
abnormal Chl-a concentrations (such as the upper-right area of the 27 November 2020
image and the lower-left area of the 26 August 2021 image, which have been removed
from the image). Although the classified color changes of the Chl-a concentration from
2020 to 2022 in the figure were evident, the concentration range was 0.20–28.36 µg/L, the
overall Chl-a concentration was low, and the average concentration was 4.25 µg/L. Even
though the retrieval results are affected by the limitations of the regression equation and
the influence of cloudiness, the distribution and changes in the Chl-a concentration can still
be clearly observed in the figure.
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3.5.2. Distribution of Algal Density

Figure 9 shows the results of the retrieval using the algal density regression equation.
The density range of algal density in Shanmei Reservoir was between 5.77 × 104 and
3.02 × 107 cells/L, and the spatial distribution was relatively consistent with the Chl-a
concentration. Although the color change in the algal density classification was stronger
overall than that of the Chl-a concentration, the algal density had more low values and
fewer high values, so the actual numerical change was not high. The average value from
2020 to 2022 was 4.11 × 106 cells/L.
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3.5.3. Distribution of Turbidity

Figure 10 shows the results of the retrieval using the turbidity regression equation. The
turbidity variation ranged from 0.25–9.23 NTU. The figure shows that, compared with the
Chl-a concentration and algal density distribution maps, the turbidity variation of Shanmei
Reservoir was small. Except for the influence of the cloud layer on 27 November 2020 and
26 August 2021, only on 6 May 2021 and 9 July 2021,was there more significant variation,
and the average turbidity reached 2.50 and 2.26 NTU. The average turbidity during the
study period was only 1.86 NTU.
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3.6. Relationship between Reservoir WPQs

In Figures 8 and 9, the inversion results of the algae density and Chl-a concentration
are very similar, indicating that there is a certain degree of relationship between the algal
density and Chl-a concentration. However, when the Chl-a concentration and algae density
have local high values, there is no obvious numerical and spatial change in turbidity. In
order to better judge its relationship with water quality, correlation analysis was performed
on all obtained WQPs using SPSS, as shown in Figure 11.
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Figure 11. Correlation coefficient diagram between WQPs. Con, conductivity, Tur, turbidity, AD,
algal density. The diagonal line gives the distribution, histogram, and density curve of WQPs. The
lower triangle (the lower-left corner of the diagonal) gives the scatter diagram and the upper triangle
(the upper-right corner of the diagonal) between the two WQPs. The value represents the correlation
coefficient of the two variables. The larger the value, the greater the correlation degree; the asterisk
indicates the degree of significance, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

We can see that for the three WQPs of the Chl-a concentration, algal density, and
turbidity involved in this study (located in the 3 × 3 square in the lower right corner of
Figure 11), Chl-a concentration is correlated with algal density at the significance level of
0.001, and the correlation coefficient is 0.43, while the correlation coefficient of turbidity
with Chl-a and algal density is almost 0, which is more consistent with the results shown in
the retrieval image of the study area.

In other aspects of water quality (the following correlation coefficients are related at
the significance level of 0.001), the average correlation coefficient between WT and pH
reaches 0.65. The correlation coefficients between Chl-a and WT, DO, and pH are 0.66, 0.71,
and 0.54, respectively, the correlation coefficient between TN and conductivity is 0.51, and
the correlation between pH and DO is the highest, reaching 0.88. It can be seen that WT, pH,
DO, TN, conductivity, and Chl-a concentration are important factors affecting the water
quality of the reservoir.

The analysis of nine types of water quality factors using principal component analysis
(PCA) in SPSS is shown in Figure 12. It can be seen that four principal components
explaining 69.88% of the total variation were sufficient for the study. PC1 accounted for
35.57%, PC2 explained 13.34%, PC3 accounted for 11.87%, and PC4 explained 9.10% of the
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total variation, as calculated by loadings for a cumulative percentage of variance using
SPSS.
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4. Discussion
4.1. Analysis of Current Water Quality Status and Relationship between WQPs

It can be seen that there is no obvious seasonal or monthly variation law of the Chl-a
concentration, algal density, and turbidity in Shanmei Reservoir. The average annual
concentration of Chl-a in the reservoir is 4.25 µg/L. The numerical variation trend of algal
density is similar to that of Chl-a concentration, and it is also maintained at a low level.
For turbidity, its value and spatial distribution have been kept in a stable state, and the
multi-year average is only 1.86 NTU. The retrieval results of the three WQPs also show that
the eutrophication level in the study area is low.

On the other hand, as can be seen from the reflectivity of each band in Figure 3, the
reflectivity of the green (B3) band is higher than those of the longer wavelength bands, partly
because of atmospheric processes and partly because of the presence of phytoplankton [35],
which explains the peak of the green (B3) band in Figure 3. In the red-edge (705–782 nm)
bands, the lack of phytoplankton makes the peak near the 705 nm wavelength in eutrophic
lakes visible, and the peak of reflectance is more obvious. In oligotrophic lakes, the
reflectance is close to 0 [41], which is in line with the characteristics of the oligotrophic state
of the Shanmei Reservoir.

However, the spatial distribution of the Chl-a concentration and algal density
(Figures 8 and 9) showed that there are high local values of Chl-a concentration and
algal density at the remaining time points, except 29 December 2020, 15 February 2021,
and 27 September 2021. On 11 November 2020, 25 July 2021, 11 September 2021, and
26 February 2022, the values of cha-a and algal density in the whole reservoir are high,
indicating that there is still a risk of eutrophication in the reservoir.

It is worth noting that the study area in February is in winter, and the algae density
and chlorophyll concentration should normally be at low values, but there are obvious
differences between the retrieval images in February 2022 and February 2021. On 15 Febru-
ary 2021, the Chl-a concentration and algae density values were relatively low, and on 26
February 2022, the Chl-a concentration and algae density in the reservoir showed large-area
high values. In situ data (Figure 13) show that the average Chl-a concentration in February
2021 is 2.15, the value in March 2021 is 3.96, and the value in February 2022 is 3.07, but the
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value in March 2022 increased to 8.11. This shows that starting from the end of February
2022, the eutrophic level of the reservoir begins to increase, and control measures and
continuous observation are urgently needed. This also confirms the feasibility and accuracy
of remote sensing inversion in reservoir water quality monitoring.
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It can also be seen that the Chl-a concentration on 9 July 2021 has only a small number
of high values in the middle and south of the reservoir, and the high values have been
distributed to the whole region on 25 July, approximately half a month later. The Chl-a
concentration and algal density showed the characteristics of a fast diffusion speed and
long duration.

Table 14 shows that pH, DO, Chl-a concentration, WT, TN, and CODMn dominated
PC1, which explained 35.57% of the total variance, and conductivity, algal density, and
WT dominated PC2, which accounted for 14.91%, indicating the importance of pH, DO,
Chl-a concentration, WT, TN, CODMn, and conductivity in estimating water quality in the
study area.

Table 14. The component matrix by SPSS.

PC1 PC 2 PC 3 PC 4

pH 0.958 −0.023 −0.139 −0.016
DO 0.844 0.173 −0.293 0.034

Chl-a
concentration 0.800 −0.283 0.267 0.044

WT 0.660 −0.471 0.216 −0.041
TN 0.573 0.427 0.183 −0.074

CODMn 0.514 0.428 0.008 0.138
Conductivity 0.478 0.572 0.375 −0.039
Algal density 0.370 −0.483 0.358 0.131

TP −0.365 0.452 0.322 0.187
Turbidity −0.341 −0.057 0.818 0.004
NH3-N −0.011 −0.040 −0.082 0.958

Variability (%) 35.569 13.341 11.870 9.103
Cumulative (%) 35.569 48.910 60.780 69.883
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At present, the retrieval of the CODMn mainly uses conventional satellite remote
sensing (such as GF series satellites, Landsat series satellites) [42,43], while the retrieval of
DO and TN using hyperspectral remote sensing has higher accuracy [44–46]. Combined
with the results of the above-related studies, it can be considered that the water quality of
Shanmei Reservoir can be better evaluated by measuring pH, conductivity, and WT at the
monitoring station, or by establishing the regression fitting equations between Chl-a, algae
density, and turbidity and DO, CODMn, and TN.

4.2. Selection and Applicability Analysis of Retrieval Band and Algorithm

Taimi et al. used the Olushandja dam in Namibia as a case study and developed
a retrieval algorithm based on regression analysis using Landsat-8 reflection value and
water quality data such as turbidity, TSS, ammonia, TN, TP, and total algae measured
on-site. They found that a regression analysis using blue (B2), green (B3), red (B4), and NIR
(B5) bands yields good results [47]. Willibroad et al. compared four established satellite
reflectance algorithms to estimate the Chl-a concentration of Lake Chad, and the results
showed that the 3BDA algorithm composed of blue (B2), green (B3), and NIR (B4) bands
of Landsat-8 has higher accuracy [48]. Yashon et al. used Sentinel-2 and Landsat-8 data
products to evaluate and retrieve Chl-a concentration, suspended particulate matter, and
turbidity, and the results showed that Landsat-8 data performed better in retrieving WQPs,
and they found that, in blue waters, owing to the high reflectivity of green algae, green
and blue bands are suitable for the detection of algal blooms [17]. In this study, in the
regression formula generated using Landsat OLI reflectance and water quality data, the
regression formula for Chl-a concentration is associated with blue (B2), green (B3), and red
(B4) bands, the algal density regression formula is highly correlated with blue (B2) and
green (B3) bands, and the turbidity regression formula is correlated with blue (B2), green
(B3), and red (B4) bands, which is consistent with the above conclusion. However, Figure 4
shows that Landsat OLI data and Sentinel MSI data use the same band combinations, but
MAPE values show obvious differences, indicating that the band combinations will show
different simulation effects on various remote sensing data, which may also be the reason
for the large difference in the accuracy between the two remote sensing data simulation
WQPs regression.

The optical properties of inland waters are very different between water bodies, and
there are also significant differences within water bodies. These problems hinder the
development of inland water algorithms and typically limit their applicability to different
water bodies [5]. Lai et al. retrieved the concentration and distribution of Chl-a in the
Guanting Reservoir based on the measured data in different years and Landsat-8 images
and 22 algorithm formulas, including SABI, KIVU, Apple, and other vegetation indicators,
and found that there was a strong correlation between the pixel values of adjacent reservoirs
in the same image, so the Chl-a estimation model can be applied to each other [49]. Richard
et al. evaluated the performance of 29 algorithms that used satellite spectral data to
retrieve Chl-a concentration in two temperate inland lakes, to use it as an indicator of the
general state of algal density and potential algal density. Although the two lakes differ in
background water quality, size, and shape, the results support multiple sensors utilizing a
specific set of algorithms to detect potential algal blooms by using Chl-a concentration as a
proxy [50]. Therefore, whether the WQPs regression formula generated in this study can be
applied to other reservoirs (near the study area or with some of the same characteristics as
the study area) is a future research direction.

4.3. WQPs Regression Formula and Retrieval Error Analysis

The preprocessing process of Landsat OLI data and Sentinel MSI data is very important,
and different processing methods will affect the conversion from top of atmosphere (TOA)
reflectance to surface reflectance, thus affecting the regression results of WQPs. In this
study, the method of downloading and processing data selected the most mainstream
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method in the current research, so it can ensure the accuracy of the research results to the
greatest extent, even if there are still some inevitable errors.

Another instance of error originates from the adjacency effect of the adjacent land
pixels, which is known as the border effect. Inland water bodies are surrounded mostly
by land, and border effects are especially significant in areas with raised, undulating
topography around the water body [51]. This means that light from objects around the
body of the water can change the radiance reaching the sensor, and large parts of the sky
may also be blocked by the ground surface (e.g., vegetation) [5], making it impossible to
obtain the true WQPs at the water boundary accurately.

In addition, the date of collection of water quality data can also be a source of error
when comparing it with remote sensing data products from different sensors. Because the
revisit period of Landsat 8-9 satellite combination is 8 days, and the combination of Sentinel-
2A/2B satellites is 5 days, it is difficult to ensure that the data time of the two satellites
is completely consistent, which affects the comparative analysis of the WQPs regression
equation. Therefore, in addition to achieving good performance in the preprocessing and
data regression fitting stages, it is important to ensure that the data collection dates are
closer to each other. In this study, WQPs data were obtained daily, but the time difference
of remote sensing images caused uncertainty in the fitting of WQPs. Therefore, future
research could create a new and more reliable method to quantify changes in WQPs with
a higher temporal resolution by combining products from different remote sensing data
sources, together with appropriate water quality estimation algorithms. Simultaneously,
the different performances of the understanding algorithm and remote sensing image pairs
should also be considered. For example, Yashon et al. adjusted the two remote sensing
datasets by band adjustment, performed preprocessing such as atmospheric correction and
normalized reflectance and then used the standardized data to retrieve reservoir WQPs [17].

The validity and accuracy of elemental determinations of water quality depend on the
satellite sensors used, the methods employed, and the nature of the waters studied. In this
study, regression results for Chl-a concentration, algal density, and turbidity demonstrated
the potential of optical satellite remote sensing reflectance data for cost-effective, large-scale,
and high-frequency use in monitoring optically active water elements. The purpose of
remote sensing retrieval of water quality is to provide real-time assessment of current and
future water quality monitoring to prevent water quality deterioration. Despite the good
water quality of the reservoirs presented in this study, we recommend their continuous
monitoring and management through regression simulation and the retrieval of other
important WQPs, such as DO, CODMn, and TN, so as to ensure the good water quality of
the reservoir.

4.4. Research Limitations and Prospects

Based on the WQPs regression algorithm obtained from a single monitoring point, this
study determines the key water quality characteristics of the reservoir and provides a more
feasible idea for inland waters with few monitoring points. However, due to the limitation
of the number of water quality monitoring stations, the problem of a small amount of
matching data is inevitable. The predicted value of water quality obtained by simulation
cannot be aptly compared with the actual value of water quality. The actual spatial and
numerical changes in water quality are difficult to quantify, and the regression model will
also be affected by the amount of data. With the extension of monitoring time, the regression
coefficient may change, but when the data reaches a certain amount, a more accurate and
stable regression equation can often be obtained. At the same time, the alternation of
day and night, temperature, the intensity of human activities, and the action of aquatic
organisms will indeed directly or indirectly affect water quality [52–54]. However, the transit
time of the remote sensing satellites used in this study is in the morning, so the change in
water quality at night is not considered. In addition, Sun et al. believe that non-optically
active parameters may be highly correlated with optically active substances, such as Chl-a,
TSM, and CDOM [55], so TN, TP, and COD can be estimated remotely [15]. At present,
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some scholars have developed several statistical techniques with empirical and machine
learning algorithms to determine the relationship between reflectance and non-optically
active parameters in inland waters with the help of hyperspectral images [46,56]. As
mentioned in Section 4.1, the three WQPs in this study have a certain correlation with some
non-optically active water quality parameters (such as DO, CODMn, and TN). Therefore,
the WQPs of regional non-optically active water quality can be estimated through machine
learning algorithms. In the ideal future, the acquisition frequency and accuracy of satellite
images will be the same as that of water sample data, so as to reduce the time difference
between different satellite images. At the same time, more matching data can be obtained by
adding monitoring points or stations at different locations, as was performed by Curtarelli
et al. who arranged them in the reservoir near the dam, in the middle of the reservoir, at
the tail of the reservoir, and near the tributary [57]. In addition, the impact on the water
quality of inland reservoirs can also be studied in terms of hydrological changes such as
water volume and reservoir depth [58], so as to more comprehensively judge the current
status and future trends of reservoir water quality. At the same time, for remote sensing
data, preprocessing and adjacency affect the selection or development of corresponding
algorithms for correction and the retrieval of more accurate water quality data, which can
be used for water resources management and environmental protection planning.

5. Conclusions

This study compared the accuracy of Landsat 8-9 OLI and Sentinel 2 MSI sensors for
the retrieval of Chl-a, algal density, and turbidity in the reservoir. Both types of satellite
data showed high reflectivity in the green (B3) band. The results of the empirical multiple-
regression model show that the R2 and validation parameters (MAE, MSE, and RMSE)
of the Landsat OLI fitting equation are better than Sentinel MSI data. Therefore, Landsat
OLI data have better application potential in this study area. The 2020–2022 reservoir
water quality images retrieved from Landsat OLI data show that the multi-month average
values of reservoir WQPs are low. However, from the end of February 2022, the Chl-a
concentration and algal density in the reservoir gradually increased, and local high values
appeared. Therefore, continuous attention and corresponding water quality management
measures are still needed. The results of correlation analysis and principal component
analysis show that the water quality of Shanmei Reservoir can be evaluated more accurately
and quickly by measuring the pH, conductivity, and WT of the monitoring station, or by
establishing the regression fitting equation between Chl-a, algae density, and turbidity
and DO, CODMn, and TN. In the future, to improve the accuracy of the estimation of the
overall water quality status of the reservoir, new methods can be developed to monitor,
fit, and retrieve more factors that can represent the water quality status, or understand the
impact of the algorithm on the different performances of remote sensing images to conduct
frequent water quality assessments. Simultaneously, we can also apply the regression
equation from the study area to verify the accuracy of the regression formula in adjacent
waters or similar waters.
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