
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15096  | https://doi.org/10.1038/s41598-021-94013-x

www.nature.com/scientificreports

µPT  statistical ensemble: systems 
with fluctuating energy, particle 
number, and volume
Ugo Marzolino

Within the theory of statistical ensemble, the so-called µPT  ensemble describes equilibrium systems 
that exchange energy, particles, and volume with the surrounding. General, model-independent 
features of volume and particle number statistics are derived. Non-analytic points of the partition 
function are discussed in connection with divergent fluctuations and ensemble equivalence. Quantum 
and classical ideal gases, and a model of Bose gas with mean-field interactions are discussed as 
examples of the above considerations.

Physical systems at equilibrium are studied in statistical mechanics through statistical ensembles. Each ensem-
ble describes a system that exchanges certain physical quantities, typically extensive, with the surrounding. A 
terminology that is sometimes used in literature1 identifies statistical ensemble with the variables that are held 
fixed from each statistically conjugated couple (µ,N) , (P, V), and (β ,E) , where µ is the chemical potential and 
N is the number of particles, P is the pressure and V is the volume, β = 1

kBT
 is the inverse absolute temperature 

with kB being the Boltzmann constant and E is the energy. Accordingly, the microcanonical ensemble describes 
an isolated system where none of the energy, volume and particles are exchanged, thus called NVE. A system in 
the canonical ensemble exchanges only energy with the surrounding, thus introducing β as a parameter of the 
ensemble which is called NVT. The grandcanonical ensemble allows to exchange also particles, with the new 
parameter µ , and is called µVT . Finally, the isothermal-isobaric ensemble describes systems exchanging energy 
and volume with the surrounding, parametrised by β and P, and is called NPT. The NPT ensemble is used in 
Monte Carlo and molecular dynamics simulations1,2.

The above statistical ensembles are related to each other through Legendre transforms3–5; see also Ref.6 for a 
review on the general framework of Legendre transformations. Moreover, each ensemble is also derived from the 
maximisation of the Shannon entropy with constraints that fix the average of the fluctuating extensive quantities, 
following the Jaynes’ approach7,8. These two constructions are equivalent, resulting in the well-known Boltzmann 
weight of exponential form. This paper concerns the statistical ensemble, missing in the above picture, which 
represents a system exchanging energy, particles, and volume with the surrounding, and is parametrised by the 
intensive variables β , µ , and P, therefore called µPT ensemble9–11. The µPT ensemble is derived using standard 
arguments either from the µVT ensemble through the Legendre transform with respect to the volume. or from 
the NPT ensemble through the Legendre transform with respect to the particle number, or again form the maxi-
misation of the Shannon entropy with fixed average energy, particle number and volume.

The µPT ensemble is the extension of the µVT ensemble when the pressure instead of the volume is fixed, 
or the extension of the NPT ensemble when the chemical potential instead of the particle number is fixed. The 
latter conditions are met in several physical and chemical processes, e.g. naturally arise in systems confined 
within a porous and elastic membranes. Furthermore, the µPT ensemble has been studied in small systems12,13, 
like in nanothermodynamics14–18, or in systems with long-range interactions19–21. In these physical systems, the 
Gibbs-Duhem equation is not supposed to hold, and therefore the three intensive parameters µ , P, and T can be 
independent. In the following, I will investigate general properties of the µPT ensemble, and discuss ensemble 
equivalence in connection with non-analyticities and non-commutativity of Legendre transforms.

Results
General considerations.  Following the Jaynes’ approach, the configuration probabilities of the µPT 
ensemble result from the constrained maximisation of the Shannon entropy:
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where pj is the probability of the j-th configuration with fixed energy, volume and particle number, H is the Ham-
iltonian, and �·� is the average with respect to the probability distribution {pj}j . The configuration probabilities are

with the µPT partition function

where the sum runs over all configurations at different energy, particle numbers, and volume. According to the 
order in which the configurations are summed, the µPT partition function can be written either as the Legendre 
transform of the NPT ensemble, i.e.

or as the Legendre transform of the µVT ensemble, i.e.

where V0 is a constant with the dimension of a volume in order ZµPT to be dimensionless, but does not affect 
physical quantities.

The logarithms of the partition function of statistical ensembles give thermodynamic potentials. These ther-
modynamic potentials, summarised in Table 1, are defined by means of thermal averages of extensive quanti-
ties, and can also be expressed as linear homogeneous functions of fixed extensive parameters using the Euler’s 
theorem5. In the µPT ensemble however, all possible Legendre transforms have been performed, such that 
thermal properties only depend on intensive parameters which gauge the extensive thermal averages. Without 
additional statistically conjugated couples, the intensive µPT thermodynamic potential is connected to finite-
size effects9,11.

Legendre transform of the µVT  ensemble.  The µVT partition function is

where Pc is the pressure derived in the µVT ensemble. It is crucial to note that Pc depends only on the free param-
eters of the µVT ensemble, namely the chemical potential µ , the temperature T and the volume V, as all other 
physical quantities are functions of these parameters. Requiring that Pc , µ , and T, are all intensive quantities, 
and that the µVT thermodynamic potential, i.e. −PcV  , is extensive implies that Pc is a non-increasing function 
of V. In particular, the leading contribution to Pc for large volume does not depend on V.

The µPT partition function is thus

where the volume fluctuates in the interval [V1,V2] . The thermodynamic potential is

(1)
∂

∂pj



−
�

j

pj ln pj − �





�

j

pj − 1



− β�H� − βP�V� + µ�N�



 = 0,

(2)pj =
e−β(Ej+PVj−µNj)

ZµPT
,

(3)
ZµPT =

∑

j ∈ configurations

e−β(Ej+PVj−µNj),

(4)ZµPT =

N2
∑

N=N1

eβµNZNPT ,

(5)ZµPT =

∫ V2

V1

dV

V0
e−βPVZµVT ,

(6)ZµVT = eβPcV ,

(7)ZµPT =

∫ V2

V1

dV

V0
e−βPVZµVT =

eβV2(Pc−P) − eβV1(Pc−P)
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,

Table 1.   Thermodynamic potentials.
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with the following asymptotic behaviours

 Notice that P = Pc is a non-analytic point of the thermodynamic potential when V2 → ∞ , which shall be 
characterised in the following.

Volume statistics.  General features of the volume statistics are derived from pressure derivatives of (7). The 
average volume is

with the following asymptotic behaviours

Therefore, the average volume has a discontinuity when V2 → ∞ , as depicted in Fig. 1a.
The variance of the volume is proportional to the isothermal compressibility κT:
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Figure 1.   Semi-log plot of the rescaled average volume βPc〈V〉 , the rescaled volume fluctuations β2
P
2
c�

2
V , 

and the rescaled density fluctuations �2ρ

Pc∂2µPc
 as a function of the rescaled pressure P/Pc . The condition 

βPcV1 = 10 has been set in the plot of βPc〈V〉 and �2ρ

Pc∂2µPc
.
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plotted in Fig. 1b, whose asymptotic behaviours are

Thus, the variance of the volume is superextensive around P = Pc and intensive away from P = Pc , as shown 
in Fig. 1b.

Particle number statistics.  The general relation between the average volume and the average particle number is 
straightforwardly derived:

Recalling the definition (6), the latter is the same equation as in the µVT ensemble with the volume, that is a 
fixed parameter in the grandcanonical ensemble, replaced by the average volume.

The general relation between the particle number and the volume fluctuations is

where the first term in the right-hand-side equals the variance of the particle number in the µVT ensemble with 
the volume replaced by the average volume 〈V〉.

Density statistics.  Since both particle number and volume are fluctuating quantities, also the density ρ = N/V  
fluctuates. The average density is

and equals the density in the µVT ensemble. Equation (18) shows that there is no ambiguity to define the average 
density as the average of NV  or as the ratio of averages 〈N〉

〈V〉
.

The variance of the density is

with Ei(x) = −
∫∞

−x dt
e−t

t  being the exponential integral22, and is sketched in Fig.  1c. The asymptotic limits of 
the density fluctuations are

recalling the series23 Ei(x) = γ + ln |x| +
∑∞

k=1
xk

k·k! with γ the Euler–Mascheroni constant, while, using instead 
the asymptotic series24 Ei(x) = ex
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)

,

Therefore, the variance of the density �2ρ = O
(

1/�V�
)

 , for β(V2 − V1)|Pc − P| ≫ 1 , satisfies the so-called 
shot-noise limit, i.e. scales as the inverse of the system size as in the central limit theorem. The variance �2ρ for 
βV1,2|Pc − P| ≪ 1 exhibits shot-noise limit with multiplicative logarithmic corrections.

Energy statistics.  The average energy is
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which again equals the expression of the µVT ensemble with the volume replaced by the average volume.
Heat capacities at constant volume and at constant pressure are related to derivatives of the mean energy, 

particle number, and volume:

Legendre transform of the NPT ensemble.  The NPT partition function is

where µc is the chemical potential derived in the NPT ensemble. In analogy to the discussion after Eq. (6), note 
that µc depends only on the free parameters of the NPT ensemble, namely the pressure P, the temperature T 
and the particle number N. Given that µc , P, and T, are intensive, and that the NPT thermodynamic potential, 
i.e. µcN , is extensive, µc is a non-increasing function of N. In particular, the leading contribution to µc for large 
volume does not depend on N.

The µPT partition function is

where the number of particles fluctuates in the interval [N1,N2] . The thermodynamic potential is

with the following asymptotic limit

Therefore, µ = µc is a non-analytic point of the thermodynamic potential when N2 → ∞.

Particle number statistics.  General features of the particle number statistics are derived from derivatives of (27) 
with respect to the chemical potential. The average number of particles is

with the following asymptotic behaviours
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As for the average volume, the number of particles has a discontinuity when N2 → ∞ , as depicted in Fig. 2a.
The variance of the particle number is

plotted in Fig.  2b, whose asymptotic behaviours are

Thus, the variance of the particle number is superextensive around µ = µc and intensive away from µ = µc , as 
shown in Fig. 2b.

Volume statistics.  The general relation between the average particle number and the average volume is again 
straightforwardly derived:

Recalling the definition (26), the latter is the same equation as in the NPT ensemble with the particle number, 
that is a fixed parameter in the isothermal-isobaric ensemble, replaced by the average particle number.

The general relation between the particle number and the volume fluctuations is

where the first term of Eq. (37) equals the variance of the volume in the NPT ensemble with the particle number 
replaced by the average particle number 〈N〉.

Energy statistics.  The average energy is

which again equals the expression of the NPT ensemble with the particle number replaced by the average particle 
number.

From the derivative of the averages of energy, volume and particle number, heat capacities at constant volume 
and at constant pressure are computed:
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Figure 2.   Semi-log plot of the average number of particles 〈N〉 (setting N1 = 10 ) and of the particle number 
fluctuations �2

N as a function of the rescaled chemical potential β(µ− µc).
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Comparison with other ensembles.  Some fundamental differences of the µPT ensemble with respect 
to other statistical ensembles stem from the fact that all possible Legendre transforms with respect to internal 
quantities have been computed. The µPT partition function thus depends only on intensive parameters unless 
other internal quantities {Xl}l , even though fixed, contribute to energy, particles, and volume exchanges.

One peculiarity of the µPT ensemble is that the above analysis of the volume statistics and of the particle 
number statistics is general, and does not rely upon the specific model. The reason for such generality is the 
dependence of the µVT thermodynamic potential and of the NPT thermodynamic potential on a single extensive 
parameter, i.e. V and N respectively. The same general behaviour does not hold for other statistical ensemble 
where the thermodynamic potential depends on more that one extensive quantity.

For instance, both the µVT ensemble and the NPT ensemble are derived from Legendre transforms of the 
NVT ensemble which, together with its thermodynamic potential F = −pV + µN , depends on two extensive, 
fixed quantities, e.g. N and V. Thus, the intensive quantities P and µ can depend on the ratio N/V, resulting in a 
non-linear dependence on N and yet an extensive Helmholtz free energy. An example is the ideal homogeneous 
classical gas in d dimensions, whose NVT partition function is5

where �T =
√

2πh2β/m is the thermal wavelength, and with the Helmholtz free energy

where the Stirling’s approximation lnN ! = N ln(N/e)+O(lnN) has been used. The pressure and the chemical 
potential are derivatives of the Helmholtz free energy:

The possible non-linear dependence of the NVT thermodynamic parameter on N and on V, although F is 
extensive, results in model-dependent particle number statistics of the µVT ensemble and volume statistics of 
the NPT ensemble, after the respective Legendre transforms. This is not the case for volume statistics and particle 
number statistics in the µPT ensemble, because they are derived from Legendre transforms of the µVT ensem-
ble and of the NPT ensemble respectively, which depend only on a single extensive, fixed parameter, namely V 
and N respectively. Thus, the µVT and the NPT thermodynamic potentials, in order to be extensive, can only 
have a linear dependence on V and N respectively. This implies simple and general volume and particle number 
statistics in the µPT ensemble.

Another difference between the µPT ensemble and others deals with the structure of Legendre transforms. 
When Legendre transforms are applied to derive statistical ensembles from others, e.g. NVT from NVE, µVT 
from NVT, or NPT from NVT, there are intensive quantities of the original ensemble that are not control param-
eters, but can be derived from derivatives of thermodynamic potentials (see the last column of Table 1, Eq. (43)). 
These intensive parameters depend on the control parameters that define the ensemble (as the ensemble names 
denote): among these control parameters there are also extensive quantities statistically conjugated to intensive 
parameters that are not control parameters. After a Legendre transform, an extensive, previously fixed, quantity 
becomes a stochastic variable and the dependence of its expectation value from the control parameters is the 
inverse function of its intensive statistically conjugated variable before the Legendre transform.

The aforementioned construction is not straightforward in the Legendre transform of the µVT ensemble with 
respect to the volume and in the Legendre transform of the NPT ensemble with respect to the particle number, 
both leading to the µPT ensemble. The reason is that pressure in the µVT ensemble and chemical potential in 
the NPT ensemble only depend on other intensive parameters and not on the volume or on the particle number 
respectively. This is the only way the thermodynamic potentials of the µVT and NPT ensembles, i.e. PV and −µN 
respectively, can be extensive. Nevertheless, the pressure and the chemical potential in the µPT ensemble are 
independent parameters. It is therefore natural to expect the emergence of a relation constraining the intensive 
parameters of the µPT ensemble from ensemble equivalence, as argued in “Discussion”.

Discussion
The following discussion summarizes general and model independent features of the µPT ensemble, based on 
derivations from the Legendre transform of the µVT ensemble with respect to the volume and from the Legendre 
transform of the NPT ensemble with respect to the particle number.
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,
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N
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eV
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The average volume computed from the Legendre transform of the µVT ensemble (see Eq. (12), Fig. 1a) 
and the average number of particles computed from the Legendre transform of the NPT ensemble (see Eq. (32), 
Fig.  2a) resemble step functions. When V2 ( N2 ) diverges, the average volume (average number of particles) 
becomes discontinuous at the critical pressure Pc (critical chemical potential µc ), with a divergent plateau at 
small pressures P < Pc (large chemical potentials µ > µc ). Such discontinuous behaviours resemble a first-order 
phase transition: e.g. the function 〈V〉(P) , or its inverse P(〈V〉) , is qualitatively similar to the gas-liquid phase 
transition, and a similar behaviour for 〈N〉(µ) and µ(〈N〉) . The critical point is also characterised by variances of 
the volume and of the particle number diverging, respectively, as (V2 − V1)

2/12 at P = Pc (see Eq. (15), Fig.  1b) 
and as (N2 − N1)

2/12 at µ = µc (see Eq. (35) and Fig.  2b) for infinitely large V2 and N2 , while they are intensive 
away from the critical values P = Pc and µ = µc.

Fluctuations of the volume are related to fluctuations of the pressure, while fluctuations of the particle num-
ber are related to fluctuations of the chemical potential, through uncertainty relations that hold for statistically 
conjugated variables25–28. Even though pressure and chemical potential are fixed parameters, they can be seen 
as external fields subject to noise, e.g. experimental preparations or thermalisation processes affected by small 
imprecisions may lead to thermal states whose parameters have finite accuracy. Within estimation theory, the 
variance of pressure and chemical potential estimations, δ2P and δ2µ , are related to volume and particle number 
fluctuations by means of the Cramér–Rao bound29–31

where M is the number of measurements. Similar relations can also be derived within the mathematical theory 
of Legendre transforms6. The Cramér–Rao bound is formulated using the Fisher information, which is a metric 
of states (or probability distributions) when they differ by an infinitesimally small parameter change. The Fisher 
information of the µPT ensemble equals β2�2V  when pressure is changed and β2�2N when chemical potential 
is changed. Indeed, the estimation of intensive parameters of equilibrium ensembles are related to variances of 
statistically conjugated extensive variables: β2�2Xδ2ξ ≥ 1/M , e.g. with (ξ ,X) = (P,V) or (ξ ,X) = (µ,N) , and 
�2Hδ2β ≥ 1/M . The connection between the Cramér–Rao bound, thermodynamic state geometry, and suscep-
tibilities is discussed in Refs.32–54. For thermodynamic states away from critical points, variances of extensive vari-
ables X are extensive, implying fluctuations �X/〈X〉 vanishing as the inverse of the square root of the system size; 
the same scaling, known as shot-noise limit in metrology, holds for the sensitivity δξ of the intensive parameters ξ.

Close to the critical pressure P = Pc and for large V2 , the pressure is very close to the pressure in the µVT 
ensemble with a superextensive volume variance �2V = O

(

�V�2
)

 . This implies low, i.e. sub-shot-noise, uncer-
tainty for the pressure, δP = O

(

1/�V�
)

 . On the other hand, away from the critical pressure and for large V2 , the 
variance of the volume is intensive, implying a large variance for the pressure δP = O(1) , and sub-shot-noise 
scaling for the relative error of the volume �V/�V� = O

(

1/�V�
)

 . Moreover, when the domain of the volume 
integration is [V1,V2] → [0,∞) , the leftmost plateau in Fig.  1a goes to infinity, and the rightmost one assumes 
an intensive value. Therefore, the inverse function P

(

〈V〉
)

 is almost constant, i.e. equals Pc up to small devia-
tions as discussed above, except for intensive average volume which is not very relevant for thermodynamic 
states. In this sense, the pressure in the µPT ensemble agrees with that in the µVT ensemble, namely Pc which 
is determined by β , µ , and V.

A completely similar interpretation holds for the variance of the particle number and to that of the chemical 
potential. The chemical potential is very close to its value in the NPT ensemble with a superextensive particle 
number variance �2N = O

(

�N�2
)

 , close to the critical chemical potential µ = µc and for large N2 . Therefore, 
the uncertainty for the chemical potential, δµ = O

(

1/�N�
)

 , obeys sub-shot-noise scaling. On the other hand, 
the intensivity of the particle number variance, away from the critical chemical potential and for large N2 , 
implies a large variance for the chemical potential, δµ = O(1) , but sub-shot-noise limited relative error for the 
number of particles, �N/�N� = O

(

1/�N�
)

 . Furthermore, when the domain of the particle number summation 
is [N1,N2] → [0,∞] , the rightmost plateau in Fig. 2a goes to infinity, and the leftmost one assumes an intensive 
value. Therefore, the inverse function µ

(

〈N〉
)

 almost coincides with µc , with small deviations δµ , except for 
intensive average number of particles which is not very relevant for thermodynamic states. In this sense, the 
chemical potential in the µPT ensemble agrees with that in the NPT ensemble, namely µc which is determined 
by β , P, and V.

The thermodynamic equivalence between the µPT and the µVT ensembles require, in particular, that the 
two ensembles predict the same pressure, namely P = Pc . Similarly, thermodynamic equivalence between the 
µPT and the NPT ensembles require µ = µc . Relations P = Pc and µ = µc are manifestations of the Gibbs-
Duhem equation. The need for relations among intensive quantities β , µ and P can be derived also from requiring 
equivalence of other thermal quantities when computed from the Legendre transform of the µVT and that of 
the NPT ensembles.

Consider the density

Since Pc is derived from the µVT ensemble, it depends only on β and µ and not on P, and therefore the same holds 
for ∂PC

∂µ
 . Analogously, µ and ∂µc

∂P  , being derived using the NPT ensemble, are functions of β and P but not of µ . In 
other words, the left-hand-side of the last equality in (45) is a function only of β and µ , while the right-hand-side 
is a function only of β and P. Thus, the only possibility to fulfil Eq. (45) for any value of intensive quantities is 

(44)β2�2Vδ2P ≥
1

M
, β2�2Nδ2µ ≥

1

M
,

(45)�N�

�V�

from
(16)
=

∂Pc

∂µ

from
(36)
=

(

∂µc

∂P

)−1

.
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that ∂PC
∂µ

 does not depend on µ and that ∂µc
∂P  does not depend on P. These conditions are so restrictive that are not 

met in several statistical models, like those studied below. It follows that intensive quantities β , µ and P cannot 
be completely independent, but are constrained by the relation (45).

Compare now fluctuations (14) and (17), derived from the Legendre transform of the µVT ensemble, with 
fluctuations (34) and (37), derived from the Legendre transform of the NPT ensemble. The fluctuation term �2V  
of the particle number variance (17) is superextensive close to the critical point P = Pc and intensive otherwise, 
whereas the contribution 〈V〉 is extensive for P � Pc . Therefore, the particle number variance (17), �2N  , is 
extensive for P � Pc . This is in contradiction with the particle number variance (34), derived from the Legendre 
transform of the NPT ensemble, which is superextensive close to µ = µc and intensive otherwise.

Similarly, the term �2N of the volume variance (37) is intensive away from the critical point µ = µc , whereas 
the contribution 〈N〉 is extensive for µ ≥ µc . Therefore, the variance (37), �2V  , is extensive for µ ≥ µc . On the 
other hand, the volume variance (14), derived from the Legendre transform of the µVT ensemble, is superex-
tensive close to P = Pc and intensive otherwise. In conclusion, fluctuations derived from the Legendre transform 
of the µVT ensemble agree with those derived from the Legendre transform of the NPT ensemble only if P = Pc 
and µ = µc.

The reason for these apparent contradictions is that the Legendre transforms with respect to the volume and 
to the particle number, both needed to derive the µPT ensemble from the NVT ensemble, do not commute. 
Furthermore, the relations between thermodynamic potentials, −PcV  and µcN  , with partition functions in 
Eqs. (6) and (26), respectively, are the leading orders for large system size3. Therefore, the order of the Legendre 
transforms could be dictated by the relative scaling between the volume range and the particle number range, 
which depends on the specific physical model or on experimental conditions. The ensemble equivalence can 
also be checked in specific models, as shall be discussed in the next Section.

Examples
Quantum ideal homogeneous gases.  The above general results can be exemplified by specific mod-

els, e.g. the quantum ideal homogeneous gas in d dimensions. The Hamiltonian is H =
∑N

j=1

p2j
2m , with pj the 

momentum of the j-th particle. The pressure in the µVT ensemble is

where �T =
√

2πh2β/m is the thermal wavelength, Lis(·) is the polylogarithm55 of order s, and the upper (lower) 
sign holds for Bosons (Fermions). Using this expression for Pc specifies thermal quantities of the µPT ensemble 
derived as the Legendre transform of the µVT ensemble (see “Legendre transform of the µVT ensemble ”). Recall 
that the derivative of the polylogarithm satisfies x ∂

∂x Lis(x) = Lis−1(x).

Thermal averages and fluctuations.  The relation between the average number of particles and the average vol-
ume is

which is, as the general case (16), the same equation as in the µVT ensemble with the fixed volume replaced 
by the average volume. In particular, Eq. (47) for the Bose gas implies that the critical temperature for the 
Bose–Einstein condensation in the µPT ensemble is the same as in the µVT one. In fact, the critical temperature 
is defined by the particle number reaching its upper bound in the continuum spectrum limit. Thus, when the 
actual particle number exceeds that bound, low-lying energy levels have macroscopic, and indeed singular in 
the continuum spectrum limit, occupations.

The average energy is

The relation between volume and particle number fluctuations is

Heat capacities.  Heat capacities at constant volume and pressure are

(46)Pc =
±Li d

2+1(±eβµ)

β �
d
T

,

(47)�N� = ±
�V�

�
d
T

Li d
2
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2β�dT
Li d
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d

2
Pc�V�.
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d
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�V�2
�2V .

(50)CV =

(

d

2
+ 1

)

kBβ�H� − d kBβ µ �N� + kB β
2µ2

(

�2N −
�N�2

�V�2
�2V

)

,

(51)CP = CV + kBβ
2

(

P +
�H�

�V�
− µ

�N�

�V�

)2

�2V .
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Equations (50) and (51) are different from the standard textbook heat capacities where the particle number is 
fixed, because they also include contibutions due to fluctuations of particle number and volume.

When both volume and particle number are constant, �N�
�V�

= ∂Pc
∂µ

 is constant as well, resulting in an implicit 
relation between β and µ . The heat capacity under these conditions is

where z = eβµ is the fugacity. From the derivative of Eq. (47) with respect to β , one obtains the derivative of 
the fugacity:

Therefore, the heat capacity at constant volume and particle number is

When pressure and particle number are both constant, the heat capacity is

The derivative of the average volume is obtained from the following condition

and the derivative of the fugacity follows from

Using the above relations, we obtain

Equation (58) is not an explicit formula, because the constrained derivative 
(

dPc
dβ

)

P,〈N〉
 has to be determined yet 

but it vanishes when P = Pc.

Classical ideal homogeneous gas.  The Legendre transform of the µVT for the classical ideal homogene-
ous gas is the classical limit of the quantum homogeneous gas, namely the limit of small fugacity eβµ ≪ 1 , which 
implies55 Lis

(

± eβµ
)

≃ ±eβµ . Therefore, thermal quantities computed in the previous section become

(52)CV ,N =

(
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Using the relation P = Pc , which implies 
(

dPc
dβ

)

P,�N�
→ 0 , we derive the standard heat capacities of the classical 

ideal gas, i.e. CP,N = CV ,N + kB�N� =

(

d
2 + 1

)

kB�N�.
We now focus on the Legendre transform of the NPT ensemble for the classical ideal homogeneous gas. The 

NPT partition function is5

with

leading to the µPT partition function

Note that the critical chemical potential µc introduced in Eq. (67) is different from that in (26), but their dif-
ference is negligible, e.g., if N ≫ 1 , so that ZNPT = e−βµcN−ln(V0βP) ≃ e−βµcN . In particular the two critical 
chemical potentials agree in the thermodynamic limit, but also for moderately large particle number, like N ∼ 103 
as in small thermodynamical systems9,12,14. Consequently, also thermal quantities computed from the partition 
functions (69) and from (27), using the critical chemical potential (68), agree within negligible corrections.

Furthermore, the two equations P = Pc and µ = µc are equivalent. Therefore, as described in section “Discus-
sion”, the variances of the volume and of the particle number are both superextensive, in agreement with the linear 
relations in Eqs. (49) and (62). The equivalence of the two critical conditions P = Pc and µ = µc agrees with our 
general arguments reported in Discussion, supporting that these conditions are necessary for the equivalence of 
the µPT ensemble with both the µVT and the NPT ones.

Thermal averages and fluctuations.  Averages of particle number and of the volume are related by the following 
equation

Equation (70) agrees with the prediction of the Legendre transform of the µVT ensemble, e.g. Eq. (60), in the 
thermodynamic limit only if µ = µc.

The average energy is

which agrees with the formula derived from the Legendre transform of the µVT ensemble, i.e. Eq. (61).
The variances of the particle number and of the volume fulfil the following relation:
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which agrees with Eq. (62) for �N� ≫ 1.

Heat capacities.  Heat capacities at constant volume and pressure can be computed, respectively, from Eqs. (39) 
(40) using the critical chemical potential (68):

Heat capacities at constant particle number are easily computed:

which are the standard heat capacities for �N� ≫ 1.

Mean‑field Bose gas.  This section is devoted to the Bose gas with mean-field interactions, namely with 
the interaction hamiltonian � N

2V  . The partition function of the µVT ensemble was computed for a class of free 
Hamiltonians56. Consider here the free Hamiltonian of the ideal homogeneous gas in d dimensions for concrete-
ness. The pressure derived in the µVT ensemble is

where P(0)c (α) is the critical pressure of the non-interacting gas in Eq. (46) with the upper sign and with µ replaced 
by α , α is zero is µ ≥ �ρBEC and is the unique solution of α + �∂αP

(0)
c (β ,α) = µ if µ < �ρBEC , and ρBEC is the 

critical density of the Bose–Einstein condensation which coincides with that of the non-interacting gas. We shall 
focus on the regime µ < �ρBEC , that is above the Bose-Einstein condensation temperature. Using the definition 
of α , the derivatives of the critical pressure (77) can be expressed as

From the definition of α , its derivatives satisfy

Using the expression
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ddd Plugging these derivatives in the general formulas in section Results, we obtain the thermal quantities of 
the mean-field Bose gas.

Thermal averages and fluctuations.  The average particle number and the average energy are, respectively,

The relation between the variance of the particle number and the variance of the volume is

Heat capacities.  Heat capacities at constant volume and pressure are

When both volume and particle number are constant, the derivative of Eq. (86) reads, where t = eβα,

The second equality in (91) simplifies the heat capacity with both volume and particle number constant:

Using the following derivative

and substituting 
(

dt
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)
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 from Eq. (91), one obtains the heat capacity

The heat capacity when pressure and particle number are both constant is
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and the derivative dtdβ from

Finally, the heat capacity at constant pressure and particle number is

All the expressions for the mean field Bose gas recover those for the ideal homogeneous gas, when � → 0 , recall-
ing that α → µ and t → z in this limit.

Conclusions
In conclusion, the µPT statistical ensemble, analysed here, describes equilibrium systems which exchange energy, 
particles, and volume with the surrounding. This ensemble finds applications in the thermodynamics of small 
systems, like nanothermodynamics, systems with long-range interactions, and systems confined within porous 
and elastic membranes. The statistics of the volume and of the particle number do not depend on the specific 
model, i.e. on the Hamiltonian, as a consequence of the Legendre transforms performed on all the extensive 
quantities. Another peculiarity of the µPT ensemble is that values of pressure and chemical potential agree with 
µVT and NPT ensembles only around non-analytic points P = Pc and µ = µc at which, however, fluctuations of 
volume and particle number are superextensive. The constraint on intensive parameters, in agreement with the 
thermodynamical Gibbs-Duhem equation, also emerges from the requirement that the order of the Legendre 
transforms with respect to the volume and to the particle number do not alter thermodynamic relations in the 
µPT ensemble. Therefore, the breakdown of the Gibbs-Duhem equation is related to the non-commutativity 
of Legendre transforms for large system size. The order of the Legendre transforms could be indicated by the 
specific model or by experimental conditions. Quantum and classical ideal gases, and a quantum mean-field Bose 
gas exemplify the general features of the µPT ensemble. In particular, ensemble properties of the classical ideal 
gas can be derived both from the Legendre transform of the µVT ensemble and from the Legendre transform 
of the NPT ensemble. Therefore, this model shows a specific instance of the non-commutativity of the Legendre 
transforms and of the need of the self-consistency conditions P = Pc and µ = µc , described in full generality 
in section “Discussion”.
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