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Abstract

Accurate prediction of tumor growth is critical in modeling the effects of anti-tumor agents. Popular models of tumor
growth inhibition (TGI) generally offer empirical description of tumor growth. We propose a lifespan-based tumor growth
inhibition (LS TGI) model that describes tumor growth in a xenograft mouse model, on the basis of cellular lifespan T. At the
end of the lifespan, cells divide, and to account for tumor burden on growth, we introduce a cell division efficiency function
that is negatively affected by tumor size. The LS TGI model capability to describe dynamic growth characteristics is similar to
many empirical TGI models. Our model describes anti-cancer drug effect as a dose-dependent shift of proliferating tumor
cells into a non-proliferating population that die after an altered lifespan TA. Sensitivity analysis indicated that all model
parameters are identifiable. The model was validated through case studies of xenograft mouse tumor growth. Data from
paclitaxel mediated tumor inhibition was well described by the LS TGI model, and model parameters were estimated with
high precision. A study involving a protein casein kinase 2 inhibitor, AZ968, contained tumor growth data that only
exhibited linear growth kinetics. The LS TGI model accurately described the linear growth data and estimated the potency
of AZ968 that was very similar to the estimate from an established TGI model. In the case study of AZD1208, a pan-Pim
inhibitor, the doubling time was not estimable from the control data. By fixing the parameter to the reported in vitro value
of the tumor cell doubling time, the model was still able to fit the data well and estimated the remaining parameters with
high precision. We have developed a mechanistic model that describes tumor growth based on cell division and has the
flexibility to describe tumor data with diverse growth kinetics.
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Introduction

The integration of pharmacokinetic and pharmacodynamic

(PK/PD) modeling in drug development has greatly improved the

efficacy and safety of anti-cancer treatments. PK/PD models have

allowed for better dose selection and optimized clinical trial

designs. Recent efforts have demonstrated the benefits of applying

PK/PD modeling in early stages of drug development. Advance-

ment in PK/PD modeling, specifically the progression of PK/PD

modeling from empirical to more mechanistic approaches have

greatly increased the predictive power of models [1].

Empirical models are attractive because of their simplicity and

parsimony, and for early compound screening based on specific

criteria, they are very practical. The major drawback of empirical

models is their reliance on drug-specific, rather than system-

specific, parameters. Translation to higher species is expected to

be challenging without knowledge of the biological system, since

one would not know which parameters would change in a novel

species. At the opposite end of the spectrum are mechanistic

models of tumor growth, which combine drug-specific parameters

with system-specific parameters for numerous molecular species.

Although mechanistic models offer superior prediction accuracy,

they often require rich datasets on numerous biomarkers in order

to identify the parameters.

All tumor-growth inhibition (TGI) models have to be able to

describe two hallmark characteristics of tumor growth and growth

inhibition. Because tumor growth is a dynamic process, which can

have profound effects on treatment success, accurate quantitative

description of tumor growth is critical [2]. The unrestricted growth

of solid tumors have been described using various mathematical

functions (see [3,4] for review). The onset of chemotherapeutic

effect, namely inhibition of growth or reduction of tumor size, is

often delayed [5–7]. This disconnect between the drug pharma-

cokinetics and the efficacy time course has been addressed in

several TGI models [8–11]. Many mechanistic TGI models based

on the integration of biological systems, both in tumor growth and

anti-cancer treatment, have been developed [12–14]. These

complex models offer great predictive potential, but all require

additional biomarkers beside just tumor growth data.
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The model developed by Simeoni and colleagues is described as

a semi-mechanistic approach for modeling TGI [11]. The model is

widely used in preclinical development due to its simplicity and

features relevant to the biology of anti-cancer treatment. The

model is able to capture both the complex growth kinetics and the

temporal delay in tumor growth inhibition. However, the model

still relies on empirical description of tumor growth, and offers no

relevance to biological mechanisms that mediate growth of tumor

cells.

The aim of this study is to develop a mechanistic TGI model

that describes tumor growth through the process of cell division

using the lifespan approach. Lifespan models are ideal for

describing systems that have a finite duration, such as population

of cells [15]. Drug-induced perturbation of biological systems is

also well described using lifespan models [16,17]. In our lifespan

TGI model, the use of delay differential equations, which are

developed to characterize delays in dynamic systems, offer a

natural way of describing the delay in anti-cancer effect of drug

treatment as have been previously reported [9]. Furthermore,

using the lifespan approach to account for cellular division allows

us to describe cell-cycle specific chemotherapeutics in a novel way.

In the following sections, we first review data collection, both in
vivo and from literature. We introduce the lifespan concept, along

with a cell-division efficiency parameter p, which will be central to

our analysis. We describe a model of unperturbed tumor growth

that is dependent on tumor size. We then extend this to perturbed

tumor growth, with different drug mechanism of action, specifi-

cally non-cycle-specific drug effect model, and a cycle-specific

model. After conducting sensitivity analysis on the models, we then

apply them to three case studies of tumor growth inhibition by

paclitaxel, AZ968 and AZD1208. We conclude the paper with a

discussion of the results. We establish that this lifespan-based

model has the versatility to describe TGI for anticancer drugs

having various modes of action, and the robustness to estimate the

required parameters from experimental data typical of a

preclinical development program.

Materials and Methods

Literature Data Acquisition
Data used in Case Study 1 was obtained from mouse xenograft

study reported by Simeoni and colleague [11]. To briefly

summarize the study, mice bearing tumors derived from the

HCT116 human colon carcinoma cell line were given intravenous

(i.v.) injections of paclitaxel at 30 mg/kg every 4 days starting from

day 8 after tumor inoculation. Data from the study was digitized

using Graph Digitizer 2.0 (Nick’s Production). Pharmacokinetics

of paclitaxel was described using a two-compartment model

outlined in the original report [11] and model parameters were

fixed to V = 0.81 L/kg, kel = 0.868/h, k12 = 0.006/h and

k21 = 0.0838/h.

Animal Data
For Case Study 2 and 3, raw data from previous studies [18,19]

were obtained from the investigators. In brief, female NCr and

CD1 mice (5–6 week old) were treated with AZ968, an anti-cancer

agent that was synthesized by AstraZeneca R&D (Waltham, MA).

HCT116 tumor cells (66106) were implanted by s.c. injection into

the left flank of NCr mice. This is a human colon carcinoma line,

commonly used in xenograft studies [20,21]. Animals with

established tumor xenografts, determined by tumor size reaching

,150–200 mm3, were randomized and treated once daily with

either vehicle (0.5% HPMC) or AZ968 by intraperitoneal (i.p.)

injection with 10 to 15 mice per treatment group. Tumor volume

was measured with calipers and calculated as tumor volume =

(length 6width2) 60.5. Female NCr and CD1 mice.

For pharmacodynamic studies, mice with tumors of 150–

200 mm3 were treated with either vehicle or AZ968, with three

mice per dose. AZ968 or vehicle was administered once per week

for three weeks, and AZ968 were administered at 10, 20 or

30 mg/kg. Tumor volume was assessed three times a week for

three weeks with measurements taken on the day of treatment,

48 h and 120 h after treatment. For AZ968 treatment groups, an

additional measurement was taken on 216 h after the last dose

administration.

For pharmacokinetic study of AZ968, CD1 mice were given

single i.p. injection of AZ968 at 10, 20 or 30 mg/kg with 3 mice

per dose group. Blood samples were collected via cardiac

puncture. Total plasma concentrations of AZ968 were determined

by LC/MS/MS method. Same procedure was used for the

pharmacokinetic study of AZD1208, except AZD1208 was

administered orally (p.o.) at 3, 10 or 30 mg/kg doses as outlined

in the original study [18].

Model Development
Unperturbed tumor growth model. The schematic of the

unperturbed tumor growth model is presented in Figure 1A.

Lifespan models are similar to the widely used indirect response

model [22] in that changes in the biological response of interest are

governed by production and elimination [23]. In developing a

lifespan formulation of tumor growth, we made the following

assumptions: 1) Tumor size is controlled by two processes:

production and elimination. 2) Each tumor cell has a lifespan T.

When this time has elapsed, the cell divides in two, thus T is the

tumor doubling time. 3) For simplicity, we assume all cells are at

the same point of their lifespan. 4) Production of new tumor cells is

exclusively due to division of existing cells. Under assumption (1),

the net change in size is described by the following differential

equation:

dw

dt
~kin(t){kout(t) ðeq:1Þ

where kin(t) and kout(t) are production and elimination rates,

respectively. Under assumptions (2) and (3), the daughter cells

produced from cell division become tumor cells and contribute to

the growth of the tumor. Combined, these assumptions indicate

that the lifespan of the tumor cells can be used to determine the

elimination rate kout(t) from the production rate kin(t) using the

following relationship [15]:

kout(t)~kin(t{T) ðeq:2Þ

We assume that the production of new tumor cells is exclusively

due to division of the cells. This allows us to propose the concept

that changes in tumor growth rate with increasing tumor size is a

result of changes in cell division efficiency, which results from a

decrease in accessible nutrients as previously suggested [24]. In our

model we incorporate division efficiency using the relationship:

kin(t)~p:kout(t) ðeq:3Þ

The dimensionless parameter p is the efficiency of cell division

i.e., the number of cells that actually become new tumor cells. To

Lifespan Based PK-PD Model of Tumor Growth Inhibition
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ensure the tumor continues to grow p should not be less than 1,

and under normal cytokinesis it cannot be greater than 2.

Therefore, the division efficiency parameter is constrained by 1#

p#2. This division efficiency parameter is central to our analysis

and facilitates our theory that the tumor size impacts the efficiency

of the division, and that tumor size limits growth by decreasing the

efficiency of division of the tumor cells. Consequently, p must be a

function that decreases with respect to tumor weight, w:

p~p(w) ðeq:4Þ

Finally, we assume that the model (eq. 1) applies for times t.0,

where time t = 0 can be arbitrarily chosen to mark the beginning of

the experiment, data collection, or treatment initiation. Since the

full description of kout(t) requires knowledge of kin(t) for times –T,

t#0, we assume that the doubling time T is relatively small

compared to the duration of the experiment design, and

consequently the tumor production rate is relatively constant over

the –T,t#0 time interval:

kin(t)~kin0,

for {T vt ƒ 0
ðeq:5Þ

Based on the relationships outlined by eq. 2 and eq. 4, it is

necessary to describe kin(t) using a recursive definition:

kin(t)~p w tð Þð Þ:kin(t{T) ðeq:6Þ

The derivation of the recursive form of kin(t) is discussed in

Appendix S1, and kin(t) can now be presented as:

kin(t)~kin0
: P

INT(t=T)

i~0
p w t{iTð Þð Þ ðeq:7Þ

where INT(x) denotes the biggest integer such that INT(x) #x.

Please note that according to eq. 7, the number of delays is

determined by the ratio INT(tlast/T), where tlast is the last

observation point or end of the time interval where the model

Figure 1. Model Schematics. A) Unperturbed tumor growth, B) Non-cycle-specific perturbed tumor growth, and C) Cycle-specific perturbed tumor
growth. The meanings of the symbols and variables are explained in the model development section.
doi:10.1371/journal.pone.0109747.g001

Figure 2. Simulated Effect of Division Efficiency on Tumor Growth. A) Semi-log plot of tumor growth with constant division efficiency of
p0 = 2. Upper and lower dashed lines indicate upper and lower bound described by eq. 12. B) Simulation of cell division efficiency function, p(w), vs
tumor weight, w, for different values of y. The threshold, wth, was set to 10 g, and initial efficiency, p0 is set to 2.
doi:10.1371/journal.pone.0109747.g002
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applies. By combining the relationship outlined by eq. 7, eq. 2, and

eq. 1 our model for unrestricted tumor growth can now be

presented as:

dw

dt
~

kin0 p w tð Þð Þ{1ð Þ
p w tð Þð Þ

: P
INT(t=T)

i~0
p w t{iTð Þð Þ,

for tw0

ðeq:8Þ

To solve this equation uniquely, an initial condition is required, for

which we choose:

w(0)~w0 ðeq:9Þ

where w0 is the tumor size at time t = 0 i.e., the start of the

experiment.

Constant efficiency p. Since this is a novel mathematical

recasting of the problem, we examine some simplistic scenarios, to

confirm that it behaves as one would expect. First let us take the

case in which cell division efficiency is not affected by the tumor

size. Under the assumption of constant division efficiency (p(w)

;p0) eq. 8 simplifies to:

dw

dt
~kin0

:(p0{1)p
INT(t=T)
0 ,

for tw 0

ðeq:10Þ

which can be solved explicitly (see Appendix S2):

w(t)~w0zkin0
:T :

p
INT(t=T)
0 {1z p0{1ð Þ:pINT(t=T)

0
: t=T{INT t=Tð Þð Þ

� �
,

for tw 0

ðeq:11Þ

Since 0#t/T - INT(t/T) ,1 one can obtain the lower and upper

bounds for the solution that control the asymptotic behavior for

large times:

w0zkin0
:T :(p

t=T{1
0 {1)ƒw(t)ƒw0zkin0

:T :p
t=Tz1
0 ðeq:12Þ

It should be noted that because of the discontinuity of the

function INT(x), the exact asymptotic of w(t) for large t values

might be difficult to obtain. However, for small lifespan T values

the relationship (12) essentially says that w(t) grows exponentially

with time as p0
t/T which reinforces the interpretation of T as the

time necessary to increase the tumor size by the factor p0. In the

case of constant maximum division efficiency (p0 = 2), then T
becomes the exact doubling time of the tumor size. Figure 2A

shows an example of the tumor growth curve described by eq. 11

with the upper and lower bounds (eq. 12).

Tumor size dependent efficiency. The data on growth of

tumor xenograft in mouse models suggest an inverse relationship

between the tumor size and the growth rate [25]. Numerous

mathematical models have been developed to account for tumor

size restriction of tumor growth rate using size-dependent

inhibitory functions in model equations [11,26,27]. As outlined

above, our approach is based on the assumption that the major

impact of tumor size on its growth is on decreasing the efficiency of

cell division. Therefore the function p(w) should decrease with

increasing tumor weight, w. According to eq. 8, if for a specific

tumor size p(wss) = 1, then tumor growth is stopped and wss

becomes the steady state solution. Alternatively, one can consider

p(w) decreasing to 1 as w approaches infinity, then the steady sate

is never reached which is a necessary condition of unlimited tumor

growth. By design, most mouse xenograft experiments do not

reach steady tumor volume, so we will focus on the later scenario.

Another feature of xenograft tumor growth time course is a

biphasic profile with an initial exponential growth followed by a

slower linear phase [28]. The model by Simeoni and colleagues

[11] addressed this phenomenon by introducing a threshold tumor

size below which the tumor growth is exponential and above

which it becomes linear. Similarly, we propose the following

relationship between tumor size and efficiency of cell proliferation:

p(w)~1z
p0{1

1z
w

wth

� �y
 !1

y

ðeq:13Þ

where p0 is the cell division efficiency for tumor sizes below the

threshold wth. The power coefficient y serves as a continuous

representation of a switch between exponential and non-

exponential tumor growth phases. As yR‘, then:

p(w)?
p0, wvwth

1z
p0{1

w=wth

, wwwth

8<
: ðeq:14Þ

Simulations of p(w) vs. w for a number of y values shown in

Figure 2B demonstrate that for y = 20 the p(w) function exhibits a

natural switch property (eq. 14).

In Appendix S3 we show that w(t) is an increasing function of

time that approaches infinity as tR‘. Simulations of w(t) vs. t
curves imply that for w(t).wth, change in w(t) becomes linear

(Figure 3). The calculation of the slope of this line is difficult.

Figure 3. Simulation Tumor Growth Profile of TGI Lifespan
Model. Plot of tumor weight vs. time. The threshold, wth, which is set
to 10 g, is indicated by the dashed line. Doubling time of the tumor
cells, T, was set to 1 day, kin0 was set to 0.05 g/day and p0 is set to 2.
doi:10.1371/journal.pone.0109747.g003
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However, if we assume that T is small compared to other model

time scales, then:

dw

dt
?

(p0{1):wth

T
,

as t??
ðeq:15Þ

eq. 15 implies that the slope of the linear growth phase is

proportional to p0-1, wth, and inversely proportional to T, but does

not depend on kin0 or w0.

If the tumor growth data exhibit only linear rate of tumor

growth, we can assume that the measurements of tumor weight are

taken after the tumor size has surpassed the threshold, such that

the w observed are larger than the threshold value. Under such a

scenario the p(w) function can be simplified to:

p(w)~1z
(p0{1):wth

w
ðeq:16Þ

which is derived from eq. 14. For the simplified form of the p(w)
function (eq. 16), the parameters p0 and wth are not individually

identifiable, but the product (p0 -1)?wth can be consider as an

identifiable model parameter, pwth, thus replacing the need to

estimate p0 and wth.

Perturbed tumor growth – non-cycle-specific drug effect

model. The next phase of our model development is to

introduce a model to account for anti-tumor drug induced tumor

growth inhibition. We will first explore non-cycle-specific anti-

cancer drugs that induce cell death (assumed to be apoptosis) in

tumor during any stage of the tumor cell life cycle. The schematic

representation of the non-cycle-specific drug effect model is

presented in Figure 1B. Mathematical models of cytotoxic effect

of anticancer agents relate drug plasma concentration C(t) to the

rate of cell removal as second-order or saturable processes

[10,29,30]. Because these anti-cancer drugs can affect the tumor

cells at any time, the drug effects can be modeled simply as a dose-

dependent removal of a portion of tumor cells from the replicating

population. We assign such tumor cells to a non-proliferating

population that will die of apoptosis. This requires the tumor to be

separated into two populations of cells: a proliferating population

M(t) and an apoptotic population A(t), and sum of which makes

up the tumor size:

w(t)~M(t)zA(t) ðeq:17Þ

The process of removing the proliferating cells can be described

as:

E C tð Þð Þ:M(t)~k2
:C(t):M(t) ðeq:18Þ

which assumes a linear relationship between drug concentration,

C(t), and drug effect E(C(t)). The relationship is characterized by

a second-order drug potency constant k2.

The killing of tumor cells affects proliferation in that only cells

which survive the cytotoxic effects of the anti-cancer drug can

divide at the end of their lifespan T. Consequently, the cell

removal rate, kout(t) in our model is now presented as [16]:

kout(t)~kin(t{T):e
{
Ðt

t{T

E C zð Þð Þdz

{E C tð Þð Þ:M(t) ðeq:19Þ

where the integral multiplying kin(t-T) denotes the fraction of

surviving cells. Given that only the surviving cells can divide with

the efficiency p(w(t)), kin(t) is now presented as:

kin(t)~p w tð Þð Þ:e
{
Ðt

t{T

E C zð Þð Þdz

:kin(t{T) ðeq:20Þ

Using the same recursive derivation presented in the Appendix S2,

we can present kin(t) in the closed form:

kin(t)~kin0
:e

{
Ðt
0

E C zð Þð Þdz

: P
INT(t=T)

i~0
p w t{iTð Þð Þ ðeq:21Þ

By combining eq. 19 and eq. 21 into eq. 1, the perturbed tumor

growth by non-cycle-specific anti-cancer drugs can be expressed

as:

dM

dt
~

kin0 p w tð Þð Þ{1ð Þ
p(w(t))

:e
{
Ðt
0

E(C(z))dz

: P
INT(t=T)

i~0
p(W (t{iT)){E(C(t)):M(t),

for tw 0

ðeq:22Þ

The initial condition for the proliferation population is:

M(0)~w0 ðeq:23Þ

A hallmark feature of anti-cancer treatment is a significant time

delay between plasma drug concentration and reduction of tumor

size or inhibition of tumor growth [5–7,9,10], which have been

addressed by various models using transit compartments [10,11].

Similarly to the approach by Simeoni and colleagues [11], we

assume that the cells affected by the drug are not killed

instantaneously, but rather undergo programmed cell death

(apoptosis) that takes a period of time TA to complete. If A(t)
denotes the size of the apoptotic tumor cells due to a

chemotherapeutic effect at time t, then according to the basic

lifespan model [9,15]:

dA

dt
~E(C(t)):M(T){E(C(t{TA)):M(t{TA),

for tw0

ðeq:24Þ

If no drugs were given prior to start of experiments then there is

an absence of any non-proliferating tumor cells that are generated

by anti-cancer drugs:

A(0)~0 ðeq:25Þ

Lifespan Based PK-PD Model of Tumor Growth Inhibition
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The perturbed tumor growth model described by eq. 22 and eq.

24 accounts for non-cycle-specific drug effects since the tumor cells

are susceptible to drug-induced killing at any stage of their

development at the rate specified by eq. 18. An example of the

MATLAB implementation of the non-cycle-specific drug effect

model is provided in Material S1–S3.

Perturbed tumor growth - cycle specific drug effect

model. For this section we will address cycle-specific anti-

cancer compounds that inhibit tumor growth by inducing

apoptosis at a specific point of the tumor cell life cycle. The

concepts for the cycle-specific drug effect model are generalized in

the model schematic in Figure 1C. Since the turnover of tumor

cells in our model is determined by their lifespan T, according to

eq. 2, we will utilize another mechanism of drug action on tumor

cells where the drug affects the lifespan distribution of the affected

tumor cells [17].

‘(t,t)~E(C(t)):d(t)z(1{E(C(t))):d(t{T) ðeq:26Þ

Here ‘(t,t) is the probability density function for the distribution

of the cell lifespan t at time t. The terms d(t) and d(t-T) are the

point distributions (Dirac delta functions) centered at 0 and T,

respectively, and the drug effect is described by the Emax model:

E(C)~
Emax

:C

EC50zC
ðeq:27Þ

with 0#Emax#1 being the maximum effect, and EC50 represent-

ing the drug concentration eliciting 50% of the maximum effect.

According to eq. 26, the chemotherapeutic effect shifts cells of

lifespan T to a subpopulation of cells with lifespan of 0, and the

partition between these populations is determined by the Emax

model. Since a cell of lifespan T = 0 at a given time t must be

immediately removed from the population, the drug effect results

in instantaneous removal of portion of tumor cells from the

population determined by the drug function E(C(t)). Based on

concept [17], the cell elimination rate becomes:

kout(t)~kin(t):E(C(t))zkin(t{T):(1{E(C(t{T)) ðeq:28Þ

The cells which are not affected by the chemotherapy become new

tumor cells with efficiency p(w(t)), since the tumor weight now

consists of both the proliferating cells w(t) and apoptotic cells A(t).
Thus, kin(t) must now be presented as:

kin(t)~p(w(t)):(1{E(C(t{T))):kin(t{T) ðeq:29Þ

The relationship described in eq. 29 provides a recursive

definition of kin(t) which leads to the following:

kin(t)~
kin0

1{E(C(t))
: P

INT(t=T)

i~0
(1{E(C(t{iT))):p(w(t{iT)),

for tw 0

ðeq:30Þ

Consequently, as derived in Appendix S2, the perturbed tumor

model becomes:

dM

dt
~

kin0
:((1{E(C(t))):p(w(t)){1)

(1{E(C(t))):p(w(t))

: P
INT(t=T)

i~0
(1{E(C(t{iT))):p(w(t{iT)),

for tw0

ðeq:31Þ

with the initial condition described by eq. 9.

Similar to the non-cycle-specific drug effect model, the

apoptotic cell population is described by the lifespan model [15]:

dA

dt
~kin(t):(E(C(t)){kin(t{TA):E(C(t{TA)) ðeq:32Þ

with the initial condition given by eq. 25:

The model outlined by eq. 31 and eq. 32 describes drug action that

is cycle-specific because the drug can only affect cells that have

reached the end of their lifespan T when they divide, and tumor cells

at any other stage of their development are not affected by the drug,

which is the fundamental definition of cycle-specific anti-cancer drug

effect [31]. An example of the MATLAB implementation of the

cycle-specific drug effect model is provided in Material S4–S6.

Data Analysis
All models in this report were implemented in MATLAB

(R2012b, The MathWorks Inc.). Model parameter values were

estimated using the function nlinfit, a nonlinear regression

algorithm in MATLAB. The delay differential equations were

solved using dde23 [32]. Unlike the other parameters, the lifespan

TGI model is not a continuous function of T and TA due to the use

of the integer function in eq. 8, which causes jumps in the model

output over continuous value of T. Therefore, a grid search

method was performed to estimate T and TA. Once the value of T
and TA are determined, they were fixed and the remaining model

parameters were estimated using nlinfit. Due to higher number of

model parameters in perturbed lifespan TGI models, a grid search

with all the parameters was not feasible in terms of run time.

Instead, values of T, p0, kin0 and wth were fixed to estimates

obtained by fitting to the control group, T and TA were

determined using grid search, and finally, remaining parameters

were refitted with nlinfit, having fixed the values of T and TA.

For the comparison of the lifespan TGI model to the TGI

model developed by Simeoni and colleagues [11], the tumor

growth data from the AZ968 in vivo study outlined above were

used. The data from that study only exhibit linear tumor growth,

and are assumed to have surpassed the threshold size. Linear data

can be accommodated in our lifespan TGI model using eq. 16 to

describe division efficiency. For the reference TGI model, we have

to make modification to the equation to only describe linear tumor

growth data. The model equations are now presented as:

dx1

dt
~

l1
:x1(t)

w(t)
{k2

:C(t):x1(t)

dx2

dt
~k2

:C(t):x1(t){k1
:x2(t)

dx3

dt
~k1

:x2(t){k1
:x3(t)

dx4

dt
~k1

:x3(t){k1
:x4(t)

w(t)~x1(t)zx2(t)zx3(t)zx4(t)

ðeq:33Þ
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Figure 4. Sensitivity Analysis of Unperturbed Tumor Growth. Simulated model profiles of varying values of A) Tumor cell lifespan (T), B) Initial
division efficiency (p0), C) Tumor size threshold (wth) for decrease in division efficiency, and D) Past tumor growth rate (kin0). Simulation were carried
with parameters values of T = 1 day, p0 = 2, kin0 = 0.05 g/day and wth = 10 g, unless otherwise specified for each figure. Dashed lines in panels A–C
indicate the wth value.
doi:10.1371/journal.pone.0109747.g004

Figure 5. Sensitivity Analysis of Non-Cycle-Specific Drug Effect Model. Simulated model profiles with changes in A) Apoptosis duration, TA,
and B) Linear drug potency constant, k2. C) Signature profile of cycle-specific drug mechanism model with dose escalation. Simulation were carried
with parameters values of T = 1 day, TA = 4 days, p0 = 2, kin0 = 0.05, wth = 10 g, and k2 = 1.5 mL/ng, unless otherwise indicated. Arrows indicate dose
administration on days 10, 20 and 30.
doi:10.1371/journal.pone.0109747.g005
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where l1 is the linear growth rate, k2 is the second order drug

potency constant, k1 is the transit rate constant, and C(t) is the

plasma drug concentration.

Results

Model Exploration – Unperturbed Tumor Growth
The lifespan model of tumor growth inhibition outlined in the

model development section accounts for tumor growth through

the process of cellular division of tumor cells, and is capable of

describing non-cycle-specific anti-cancer drug effects and cycle-

specific drug effects. Exploration of the characteristics of our

model will begin with the unperturbed tumor growth model. The

incorporation of a tumor size-dependent cell division efficiency

factor, p(w(t)) as outlined by eq.13, allows the model to produce a

bi-phasic growth kinetic with initial exponential growth rate and

linear growth rate after a specific tumor size is reached (wth), as

indicated by the model profile in Figure 3.

Sensitivity Analysis – Unperturbed Tumor Growth
The model parameters that determine the aspects of the model

profile, such as slope of linear growth phase, have been explored

mathematically in the model development section. Here we will

further examine the effects of the parameters. The sensitivity

analysis demonstrates that each of the model parameters has

different effects on model behavior (Figure 4). Increasing values of

T resulted in slower growth kinetics. Both exponential growth rate

and linear growth rate (slope of linear growth phase) are affected

(Figure 4A). Decreasing values of p0 had a similar effect as

increasing value of T, except p0 tends to affect exponential growth

much more than the linear growth (Figure 4B). Increasing values

of wth does not have any effect on exponential growth, but does

dictate the end of the exponential growth phase and more

importantly the slope of the linear growth phase (Figure 4C). The

effect of T, p0, and wth on linear growth as seen in the sensitivity

analysis is in accordance to the relationship of these parameters in

determining the slope of linear growth into later time points as

outlined by eq.15. Unlike the other parameters, changes in kin0 do

Figure 6. Sensitivity Analysis of Cycle-Specific Drug Effect Model. Simulated model profiles with changes in: A) Apoptosis duration, TA, B)
Maximum drug efficacy, Emax, and C) Drug potency, EC50. D) Signature profile of cycle-specific drug mechanism model with dose escalation.
Simulation were carried with parameters values of T = 1 day, TA = 4 days, p0 = 2, kin0 = 0.05 g/day, wth = 10 g, Emax = 1 and EC50 = 0.01 concentration,
unless otherwise indicated. Arrows indicate dose administration at days 10, 20 and 30.
doi:10.1371/journal.pone.0109747.g006
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not seem to affect the kinetics of tumor growth in either phases,

but rather determine when measureable level of growth begins

(Figure 4 D). The results of the sensitivity analysis indicate that

parameters in the unperturbed models are all identifiable.

Confirmation of identifiability will be presented in the case studies

with TGI data.

Sensitivity Analysis – Non-Cycle-Specific Drug Effect
Simulations for sensitivity analysis and model signature profiles

were conducted with a two- compartment PK model with kel = 20

day21, k12 = 0.2 day21, k21 = 2 day21 and V = 1 mL. For

sensitivity analysis, a dose of 10 units was administered at 10, 20

and 30 days (we take dose to be dimensionless). Simulations of

changes in parameters for the non-cycle-specific drug effect model

were performed and the resulting sensitivity analysis is shown in

Figure 5. Simulation shows that changes in the duration-of-

apoptosis parameter, TA, have a direct effect on the length of delay

of drug-induced tumor reduction after drug administration

(Figure 5A). Changes in the linear drug potency constant, k2,

affect the degree of TGI and tumor size reduction, if any

(Figure 5B). Signature profile of the non-cycle-specific drug effect

model with increasing doses of anti-cancer drug is shown in

Figure 5C, and as expected is very similar to the simulation of

changing values of k2.

Sensitivity analysis – cycle-specific drug effect. Although

both the cycle-specific and non-cell cycle-specific drug effect

models use the same tumor growth component as the non-cycle-

specific drug effect model, there are significant differences between

them, as outlined in the Model Development section. Further-

more, unlike the non-cycle-specific model, which uses a linear

drug effect function, the cycle-specific model incorporates the

Emax model for drug effect and different parameters are required.

Similar to sensitivity analysis of the non-cycle-specific model,

changes in TA parameter exclusively affect the delay in anti-cancer

drug effect (Figure 6A). The Emax drug effect requires both

maximum efficacy, Emax, and drug potency, EC50. Simulations

show that changes in Emax and EC50 both affect the degree of anti-

cancer drug induced tumor reduction (Figure 6B,C). Although

similar, there are subtle differences in the effects of the two

parameters that can be distinguished given the appropriate dose

ranges in data. Notice the low EC50 values used for simulation in

Figure 6B (Figure legend), when compared to the peak concen-

tration of the drug in the system which is 10 units/mL. This is due

to the nature of the equation for the cycle-specific drug effect

model which only allows the drug to act on tumors cell the

moment they reach the doubling time, T. This small window

means the drug can only affect a fraction of the cells. The model

has to adjust the potency of the drug to account for efficacy. For

this reason a much lower EC50 value is required to account for the

Figure 7. Modeling Tumor Growth Inhibition by Paclitaxel. A) Observed (black squares) and model fitted (black line) tumor weight during
untreated tumor growth. Data was digitized from (Simeoni et al, 2004). Initial tumor volume was fixed at 0.033 g as estimated from original
publication. B) Simultaneous fitting of unperturbed tumor growth data (black square) with model preduction (black line) and tumor growth
inhibition data (grey triangle) and model prediction using the cycle-specific drug effect model (grey line) by 30 mg/kg of paclitaxel administered
every 4 days for 3 rounds starting from day 8.
doi:10.1371/journal.pone.0109747.g007

Table 1. Parameter Estimates for Unperturbed Tumor Growth.

Parameter Estimates Units CV%

T 1.46a days -

p0 1.44 - 7.44

kin0 3.8661022 g/day 77.8

wth 2.54 g 24.3

aParameter was fixed.
doi:10.1371/journal.pone.0109747.t001
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Table 2. Parameter Estimates for Simultaneous Fitting of Unperturbed and Paclitaxel Inhibited Tumor Growth with Cycle-Specific
Drug Effect.

Parameter Estimates Units CV%

T 1.46a days -

TA 0.536a days -

p0 1.44 - 2.1861022

kin0 4.0461022 g/day 0.149

wth 2.48 g 2.24

Emax 1a - -

EC50 9.45 ng/mL 2.23

aParameter was fixed.
doi:10.1371/journal.pone.0109747.t002

Figure 8. Model Comparison: Modeling Tumor Growth Inhibition by AZ968. A) Modeling of pharmacokinetic data after single i.p. dose of
AZ968 at 10, 20 and 30 mg/kg. Data (symbols) was described with a 2 compartment model with dose-dependent elimination rate constant and
central volume of distribution (model prediction in lines). B) Observed (symbols) and model predicted (lines) tumor volume using the lifespan model
of tumor growth inhibition. Line style and color indicate unrestricted condition and oral treatment with AZ968 at 10, 20 and 30 mg/kg in mice
xenograft. Symbols indicate control condition (black squares), 10 mg/kg AZ968 (black circles), 20 mg/kg (grey diamonds), and 30 mg/kg (grey
triangles). Initial tumor volume was fixed at 180 mm3 as estimated from initial data points. C) Fitting of same AZ968 data using the Simeoni model.
doi:10.1371/journal.pone.0109747.g008
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observed drug effect on tumor size. The effect of this feature is

seen in the signature profile of the cycle-specific drug effect model

shown in Figure 6D. Note the low degree of dose-separation for

the effect of drug on tumor size. A low EC50 value results in

saturation of drug effect for all doses, prolonging the duration, but

not the intensity, at higher doses. The effects of this model

characteristic will be further evident in the following case study.

Case Study 1 - Tumor Growth Inhibition by Paclitaxel
Data for this case study was obtained from literature [11]. In

this study paclitaxel was administered i.v. at 30 mg/kg every 4

days starting from day 8 after tumor inoculation. Tumor growth

data and model prediction by our lifespan TGI are shown in

Figure 7. We began by fitting the unperturbed growth data.

Prediction from our lifespan TGI model overlapped well with the

experimental data (Figure 7A). Examination of the parameter

estimates shows biologically relevant values (Table 1). The

doubling time, T, was estimated to be 1.46 days, initial division

efficiency, p0, estimated to be 1.44, past tumor production rate,

kin0, was estimated to be 0.0386 g?day21, and tumor threshold,

wth, to be 2.55 g. The precision of the parameter estimates are

high for both p0 and wth, which had coefficient of variance (CV%)

of 7.44% and 24.3%. The precision for the estimate of kin0 was not

as high as the other two, but was still within acceptable levels of

precision (CV% of 77.8%).

For the second part of this case study we fitted both unperturbed

and paclitaxel inhibited tumor growth data. Because paclitaxel is

considered a cycle-specific anti-cancer drug, we fitted the data

using the cycle-specific drug effect model. Figure 7B shows the

experimental data and lifespan TGI model predicted values, which

overlap well. Examination of the model parameter estimates show

that values from the simultaneous fit were very similar to the

estimates from the unperturbed data (Table 2). Estimate for p0 was

1.44, kin0 was 0.404 g day21 and wth was 2.461 g. The estimate of

T was kept constant from the result of the grid search from the

unperturbed data fitting. Parameters unique to the cycle-specific

drug effect model are TA, EC50 and Emax. EC50 was estimated to

be 83.28 ng/mL, Emax was fixed to 1 due to lack of escalating

doses, and TA, which also has discontinuous property similar to T,

was estimated to be 0.536 days. The advantage of the

simultaneous fitting is the availability of more data points. As

expected the precision of the model estimates was increased

compared to fitting only unperturbed data. CV% value of p0, kin0,

wth and EC50 were 0.0744%, 0.0908%, 2.225% and 0.043%,

respectively. This case study demonstrates that our model is fully

capable of fitting real experimental data from animal xenograft

models. Interestingly, the estimated EC50 value is very low

compared to the peak plasma concentration of paclitaxel, which

can reach 37040 ng/mL (data not shown), according to the PK

model. Similar to the sensitivity analysis of the cycle-specific drug

effect model, this observation is due to the limited time that a

fraction of the tumor cells will be affected by the drug. Implication

of this model characteristic will be discussed further in the

following section. Regardless of the unique characteristic of the

model, the high precision of the parameter estimates confirms the

identifiability of the model parameters in the unperturbed model

of tumor growth and the cycle-specific drug effect model.

However, interpretation of the model parameters must be done

with care, and adjustments of the model may be required, which

will be discussed in the following section.

Model Comparison – Tumor Growth Inhibition by AZ968
Now that we have demonstrated the flexibility of our lifespan

TGI model, and confirm identifiability of the model parameters,

we will explore the capability of our model to describe mouse

xenograft data compared to the TGI model presented by Simeoni

and colleagues [11]. We first modeled the PK profile of AZ968,

using a two-compartment model. Model fitting is shown in

Figure 8A. Estimates of model parameter values are listed in

Table 3. Due to observed non-linear PK, dose-specific values of kel

and V were needed to fit PK data (Table 3). Unlike the paclitaxel

datasets, data from this study show only linear growth kinetics. We

will make the assumption that the tumor sizes at the first

measurement have already surpassed the tumor threshold. The

data will be modeled using the linear version of the lifespan TGI

model (see eq. 16), and the linearized version of the Simeoni, et al.,

model of TGI (see eq. 33). AZ968 is a potent casein kinase 2 (CK2)

inhibitor, which induces apoptosis of tumor cells. There is no

known mechanism of AZ968 to suggest the compound is active

only at specific cell cycles, therefore the non-cycle-specific drug

effect model is used for this study. Model fitting of both the lifespan

TGI model and the reference TGI model (eq. 33) are shown in

Figure 8. Predictions from both models overlay well with the data

points, and both models are able to capture the delayed onset of

drug effect on tumor size. Parameter estimates for both model

fittings are listed in Table 4. While the estimated value

corresponding to ‘time till cell death’ (TA = 5.56 days for our

model, and mean transit time (4/k1) = 2.68 days for Simeoni’s) are

not identical, they are comparable. The potency constant, k2, from

the two models is estimated to be very similar: the lifespan TGI

Table 3. Parameter Estimates for PK Fitting of AZ968.

Parameter Estimates Units CV%

ka 46.8a 1/day -

kel 10 mg/kg 33.9 1/day 1.40

kel 20 mg/kg 26.0 1/day 1.40

kel 30 mg/kg 24.7 1/day 1.40

k12 8.74 1/day 3.44

k21 11.2 1/day 0.801

V 10 mg/kg 2.70 L/kg 1.49

V 20 mg/kg 2.07 L/kg 1.49

V 30 mg/kg 1.97 L/kg 1.49

aParameter was fixed.
doi:10.1371/journal.pone.0109747.t003
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model gives k2 = 0.0023 ng21 mL?day21 and the Simeoni model

k2 = 0.0020 ng21?mL?day21. Examination of the precision of the

model estimates demonstrates that both models were able to

estimate the parameters with high precision (see Table 4). This

comparative study demonstrates that the lifespan TGI model is

fully capable of describing real experimental data with precision

comparable to that of one of the most commonly used models of

TGI.

Case Study 2 - Tumor Growth Inhibition by AZD1208
Data for this case study was provided by AstraZeneca [18]. For

the purpose of this case study we will set time according to when

the first dose of AZD1208 was administered, which we count as

day 1. We began with a compartmental PK analysis after a single

oral administration of AZD1208 at 3, 10 and 30 mg/kg and found

it well described using a one-compartment PK model with first

order absorption as shown in Figure 9A. Parameter values of

ka = 5.52 day21 and V/F = 4.86 L/kg were estimated with high

precision (Table 5), with the exception of the elimination rate

constant, kel, which was estimated to be same value as ka and

therefore we set kel to equal ka value in the final PK model.

After establishing the PK model, we fit the TGI data using the

lifespan TGI model. Since AZD1208 is a pan-Pim kinase inhibitor

that promotes apoptosis at any stages of cell cycle, the data were

analyzed using the non-cycle-specific model. Model fitting of the

AZD1208 TGI data is shown in Figure 9B. Interestingly, the

tumor data in this study exhibited only exponential growth

kinetics. In order to adapt the lifespan TGI model to account for

only exponential growth we simply set the tumor threshold, wth, to

a very large value well beyond the observed values of tumor size.

Another unique feature of this dataset is the inclusion of saturating

doses. To accommodate the dose ranges we replaced the drug

potency constant, k2, in eq. 18 with the Emax model. The process

of fitting was the same as for the previous studies, however, in this

study the control data were very sparse and the doubling time, T,

could not be estimated. In order to proceed with the analysis we

set T = 3 days based on the doubling time reported by the

commercial vendor of the MOLM-16 tumor cell used in the study,

which was similar to the doubling reported the original study when

the cells were initially collected [33]. Doubling times for mouse

xenografts have been found to be in the range of 2–8 days,

approximately [34]. The remaining parameters were estimated

with high precision and are well within biologically feasible ranges

(see Table 6). This case study demonstrates the flexibility of the

lifespan model to accommodate different types of TGI data while

maintaining parameter identifiability and precise estimates of

parameter values.

Discussion

The lifespan model of TGI presented here is the first

mechanistic model to describe tumor growth through the process

of cellular division. By using division efficiency as the restriction

factor due to tumor burden, the lifespan TGI model is able to

account for multi-phasic growth patterns, a critical feature in

many models of TGI [8,9,35–38]. Exploration of the model

behavior through simulations, and data fitting capability through

case studies have confirmed that our mechanistic approach to

modeling TGI is fully capable of describing real experimental data

in a biologically relevant context.

Major concerns for development of mechanistic models are the

cost of increased number of parameters, and their identifiability.

For comparative purposes, we will focus on a well-known TGI

model developed by Simeoni and colleagues [11], which is one of
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the most popular models of TGI. The Simeoni model is a perfect

example of modeling parsimony. Its flexibility and robustness

allows the model to fully capture tumor growth and tumor growth

inhibition data with very few parameters, making it an ideal model

for rapid screening of drug libraries. However, the model describes

tumor growth empirically through rate kinetics, and utilizes little

information about physiological processes in its structural design.

The foundation of our lifespan model is the biological mechanism

of cancer growth: cell division. Although we introduce more

parameters, (four parameters, compared to Simeoni et al.’s two

parameters), the sensitivity analysis demonstrated that all the

parameters are identifiable. Furthermore, the parameters we

introduce have much greater biological relevance: T is the exact

representation of the doubling time of tumor cells; p0 is the

division efficiency of the tumor cells at the first observation; and

wth is the tumor size at which the rate of tumor growth changes

from exponential to linear. The biological relevance of these

parameters can be valuable for inter-species translation, and

increase the accuracy of our predictions to human patients. For

instance, the doubling time T can be directly compared to the

doubling time of tumor cells in cancer patients to evaluate any

potential in predicting human efficacy of anti-cancer drugs.

Appropriate clinical data is required to explore the predictive

power of our lifespan TGI model.

The only parameter in the lifespan TGI model that is difficult to

interpret is the kin0, which is the tumor growth rate at the

beginning of the experiment. A function describing the tumor

growth in the past is necessary due to the use of delay differential

equations in our model. By incorporating this parameter, we make

the assumption that tumor growth prior to start of the experiment

(between t = 2T to 0) is constant. This is a safe assumption since

the doubling time is small in comparison to the duration of the

experiment and any tumor growth during that period will be

negligible compared to the tumor sizes that will be measured

throughout the course of the experiment. It is theoretically feasible

to describe the history as a function of time rather than a constant.

However, other assumptions will still be necessary, and the

implementation of the model becomes very complex and outside

the scope of this report.

To incorporate anti-cancer drug mechanism into our lifespan

model of TGI, specifically the non-cycle-specific drug effect, we

introduced two additional parameters, the drug potency constant

k2 and duration of apoptosis, TA. It should be noted that the drug

effect can also be modeled using the Emax function or any other

function, but for simplicity and model comparison purposes

(reference model uses the same function) we used the simplest drug

effect function possible. An additional cell population with a

lifespan, TA, was incorporated to account for the delay in onset of

observable drug effect on tumor size, a well reported feature of

anti-cancer drug treatment [5–7]. This population is generated as

a result of anti-cancer drug effect and the lifespan of this

population can be interpreted as the time for cell death via

apoptosis. Many PKPD models use transit compartments to

incorporate delays [9–11,39]. We used the lifespan model to

describe the process of cell division, and since transit compart-

ments are approximations of lifespan models, and are equivalent

under certain conditions [40,41], it was natural for us to describe

the dying tumor cells using a lifespan model as well.

Figure 9. Tumor Growth Inhibition by AZD1208. A) Pharmacokinetic profile of AZD1208 was described using a 1 compartment model with
equal values for absorption and elimination rate constants. PK data (symbols) were collected following a single oral administration of AZD1208 at 3,
10 and 30 mg/kg (model prediction in lines). B) Observed (symbol) and lifespan model predicted (lines) tumor growth and inhibition by AZD1208 at
0.3, 1, 3, 10 and 30 mg/kg given orally. Initial tumor volume was fixed to 170 mm3, which is the value of the first tumor size measurement.
doi:10.1371/journal.pone.0109747.g009

Table 5. Parameter Estimates for PK Fitting of AZ968.

Parameter Estimates Units CV%

ka 5.52 1/day 7.48

V/F 4.86 L/kg 17.89

doi:10.1371/journal.pone.0109747.t005
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The mechanistic nature of our lifespan TGI model also allows

for incorporation of different anti-cancer drug mechanisms.

Although many drugs exhibit the mechanism of action by

inducing apoptosis at any stage of the tumor cell life cycle, there

are numerous drugs that are cell-cycle-specific [31] and only target

cells at specific points in their life cycle. Previous models relied on

the time-dependent transition of tumor cells into different drug-

sensitivity states [42]. More recent mechanistic models are

describing the cell-cycle in more detail [29,43,44], however, these

models are more complex and require rich data with numerous

biomarkers. In our lifespan TGI model we can mechanistically

describe a cycle-specific drug action because the model describes

changes in tumor size after each round of cell division. After each

division cycle, the effect of the drug can be imposed on the tumor

cells. And since the time it takes for any cell-cycle stage to repeat

itself is the doubling time, this model is applicable for drugs that

target different stages of the cell cycle. The application of this cell-

cycle-specific drug effect model was demonstrated in Case Study 1,

where we examined the effect of paclitaxel on mice xenograft

tumors. The model performed well and was able to estimate

parameter values with high precision. Interestingly, the model

predicted a very low EC50 relative to the plasma concentration. As

discussed earlier, this is due to the model equation which only

allows the drug to act for a short period of time, during which the

drug can affect only a fraction of cells that are sensitive. In other

models it is assumed that as soon as the tumor cells are exposed to

the drug they are marked for death. The delay for cycle-specific

drugs would include not only the time for apoptosis to occur, but

also for the time it takes for the cells to become sensitive to the

drug. This is not the case in our model, which only exposes the

cells to the drug after the doubling time, but this, as demonstrated

by the case study, has its drawbacks in the compensatory high

estimate of potency. This suggests that cycle-specific drugs must

have some means of accumulating in the system. Drug accumu-

lation can be easily modeled using an effect compartment rather

than linking the PD to plasma drug concentration. Tumor

permeation and clearance can also cause disassociation of

predicted drug effect based on plasma drug concentration.

Modeling efforts are focused on addressing issues such as tumor

vascularization, intra-tumor drug gradients, and tumor heteroge-

neity, which all can cause discrepancies between intra-tumor and

plasma drug PK (see review [45]). However, such modeling efforts

require additional data, such as intra-tumor drug PK measure-

ments that we do not have access to. It would be very interesting to

combine our lifespan TGI model with a more complex intra-

tumor PK model, which would allow for more accurate prediction

of efficacy than predictions made based on plasma PK. It should

be noted that although this model is able to describe the action of

cycle-specific drugs, it is unable to identify the specific cell cycle

phase at which the drug becomes active. Inclusion of cell cycle

phases are required for cycle identification, and such model is

outside the scope of this report.

Although all model parameters are identifiable, the estimation

of the doubling time, T, and duration of apoptosis, TA, cannot be

accomplished using traditional minimization algorithms. As

discussed earlier, this is due to a discontinuity of the model

equation with respect to the two parameters. In order to have an

estimate of the parameters, a grid search was performed. Although

this method is capable of identifying the global minimum, its

precision is limited by the run time and number of parameters to

be estimated. Furthermore, there are no conventional statistical

evaluations available for this approach. The other parameters

were estimated using a minimization algorithm after values for T
and TA were determined by the grid search method and fixed.

Although this is a limitation of the lifespan TGI model, there are

options to overcome this issue. One solution is to fix the parameter

to in vitro values as was done for Case Study 2 with AZD1208

induced TGI. The inclusion of a grid search process greatly adds

to the computational time of this model, which can take several

hours. This is in addition to the added computation time required

for the delay differential equation solver in the algorithmic fitting

process, which for the case study presented was more than ten

times longer (179 s for lifespan TGI, and 12 s for Simeoni TGI

model). Until we can resolve the requirement for a grid search, this

model will continue to run much slower by comparison to

conventional TGI models.

One of the biggest potential limitations of mechanistic models in

general is the need for high resolution data due to their complexity

and high number of parameters. The model comparison study

showed that although we introduced two additional parameters in

our lifespan TGI model compared to the reference TGI model

[11], the parameters in our model were estimated with high

precision, and that the model was able to describe the data well

compared to the reference model. Furthermore, the estimated

values of equivalent parameters between the two models were in

very good concordance. This comparative study demonstrates that

our model not only offers a mechanistic approach to describing

tumor growth, it also has comparable robustness to the reference

model when applied to real experimental data. Although the

model comparison was done with real data, the cost of the extra

parameters could become apparent with sparse data [46]. Even

though our model is based on biological processes, some of the

concepts we introduce are difficult if not impossible to confirm

with current technologies. For instance the proliferation efficiency,

Table 6. Parameter Estimates for Lifespan Model fitting of Tumor Growth Inhibition by AZD1208.

Parameter Estimates Units CV%

T 3a days -

TA 1.92a days -

p0 1.57 - 2.17

kin0 27.8 mm3/day 13.5

Emax 0.159 - 5.73

EC50 182 ng/mL 2.2961022

aParameter was fixed.
doi:10.1371/journal.pone.0109747.t006
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described by the p(w) function, cannot be confirmed as it is not

feasible to track in vivo cell division in real time. Certain model

parameters, such as the initial tumor growth rate, kin0, the

doubling time, T, and time for tumor death, TA, are all values that

cannot be confirmed in vivo. Therefore the accuracy of the model

and its parameter estimates must be taken with caution. One of the

greatest limitations of many TGI models is the oversimplification

of the cellular composition of tumors. Tumor heterogeneity has

been widely observed both clinically and experimentally [47–50].

However, in order to characterize heterogeneous cell populations,

additional biomarkers are required. Although it is very feasible to

quantify mixed cell populations through flow cytometry or

histological techniques, such experiments are invasive and would

disrupt accurate collection of continuous tumor growth data.

Mixed cell population modeling would also require additional

model parameters. In regards to model parsimony and given the

nature of the available data, many established TGI models have

relied on the simplification of the tumor cellular composition

[8,10,11].

The lifespan TGI model presented in this report is a novel

mechanistic approach to modeling tumor growth and tumor

growth inhibition by anti-cancer drugs. We have demonstrated

that the model has the versatility to address different tumor growth

kinetics and different drug mechanisms of action, and the

robustness to provide precise parameter estimates from experi-

mental data. Most importantly, the mechanistic nature of the

model and the parameters has biological relevance, which can

have real implications in inter-species predictions.
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