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Abstract: The pyrolysis characteristics of cadmium (Cd)-impregnated cellulose, hemicellulose, and
lignin were studied to elucidate the pyrolysis velocity and deoxygenation characteristics of Cd-
contaminated rice straw. The results show that Cd significantly affects the pyrolysis characteristics of
a single biomass component. With a heating rate of 5 ◦C·min−1 and a Cd loading of 5%, the initial
pyrolysis temperature of cellulose and hemicellulose decreases while that of lignin increases. The
maximum pyrolysis velocity of cellulose, hemicellulose, and lignin is decreased by 36.6%, 12.4%,
and 15.2%, respectively. Cd increases the pyrolysis activation energy of the three components
and inhibits their deoxygenation. For the pyrolysis of Cd-contaminated rice straw, both the initial
depolymerization temperature and the pyrolysis velocity of hemicellulose is reduced, while the
pyrolysis velocity of cellulose is accordingly increased. When Cd loading amplifies to 0.1%, 1%, and
5%, the maximum pyrolysis velocity of hemicellulose is decreased by 7.2%, 10.5%, and 21.3%, while
that of cellulose is increased by 8.4%, 62.1%, and 97.3%, respectively. Cd reduces the release of volatiles
and gas from rice straw, such as CO2, CO, and oxygen-containing organics, which retains more oxygen
and components in the solid fraction. This research suggested that Cd retards the pyrolysis velocity
and deoxygenation of rice straw, being therefore beneficial to obtaining more biochar.

Keywords: rice straw; cadmium; pyrolysis velocity; deoxygenation; biochar

1. Introduction

Heavy-metal-contaminated biomass (HMCB), a solid waste with potential environ-
mental risks, is produced in the process of crop cultivation on contaminated soil, the
harvest of phytoremediation engineering, and the adsorption treatment of wastewater by
biomass materials [1–4]. In China, soil heavy metal pollution is serious [5]. Notably, Cd
is the principal inorganic contaminant in cultivated soil and as a result, large amounts of
Cd-contaminated straw crops are generated, such as Cd-contaminated rice straw [6]. This
Cd-contaminated rice straw cannot be reused as fertilizer and feed or privately burned.
Therefore, finding a method to dispose of the Cd-contaminated rice straw with suitable
technologies is urgent [7].

Pyrolysis is regarded as a promising technology for the treatment of HMCB [8], which
can convert various types of lignocellulosic biomass into higher-value-added biochar,
bio-oil, and biogas [9,10]. Furthermore, pyrolysis treatment enriches the original heavy
metals in biochar manyfold, being conducive to subsequent resource recovery [11–13].
The original heavy metals in biomass can be changed from an active state to a relatively
stable state through pyrolysis treatment, thus reducing the environmental risk for biochar
reuse [11,14]. For example, the heavy metals in contaminated biomass were changed from
an acid-soluble/exchangeable state to a residual state after pyrolysis treatment, and the
bioavailability of heavy metals was also significantly reduced [15].
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However, the effect of concentrated heavy metal elements on biomass pyrolysis could
be easily overlooked. Indeed, it was universally found that the heavy metal elements
would act as a heat medium and catalyst during the process of biomass pyrolysis. Cu
could reduce the pyrolysis activation energy [16,17] and increase the yield of biochar and
bio-oil [18]. Pb could enhance the generation of bio-oil [19] and inhibit the pyrolysis of the
cellulose component [20]. Zn could enhance the pyrolysis of the cellulose component [20],
promote the quality of bio-oil [21,22], cleave oxygen-containing bonds, and reduce the
pyrolysis temperature for biomass decomposition [23,24]. These results indicate that heavy
metal elements changed the difficulty of biomass pyrolysis and the distribution of pyrolysis
products. Of course, the above studies were often carried out by artificially introducing
concentrated heavy metal elements into biomass. Nzihou et al. [25] systematically reviewed
the effects of inherent and adsorbed metals on biomass pyrolysis, showing that the prepa-
ration of heavy-metals-concentrated biomass by artificial addition is feasible. Even so, it is
currently unknown whether exogenetic Cd possesses the ability to influence the pyrolysis
process of biomass and what influence Cd can provide, which is the research basis for
revealing the effect of endogenous Cd on biomass pyrolysis. Therefore, the following two
points need to be addressed to fill the gap: Firstly, it is well-known that the pyrolysis of
lignocellulosic biomass is usually regarded as a global reaction. The pyrolysis characteris-
tics of lignocellulose are extremely complex that contain many parallel reactions involving
the pyrolysis of cellulose, hemicellulose, and the lignin component. The effects of Cd
on the pyrolysis of different components may vary significantly. Therefore, the influence
mechanism of Cd on the individual pyrolysis behavior of the cellulose, hemicellulose,
and the lignin component should be preliminarily revealed, including thermogravimetric
characteristics, pyrolysis kinetics, etc. Secondly, theoretical research is more meaningful
when it guides actual production. Assuming that the presence of Cd is beneficial to the
pyrolysis of rice straw, it can be further concluded that it is wise to use the pyrolysis method
for the disposal of Cd-contaminated rice straw. So, the influence mechanism of Cd on
the individual pyrolysis of three model components should be verified or applied to the
natural rice straw’s pyrolysis treatment.

Therefore, this study reveals the pyrolysis characteristics of three Cd-impregnated
biomass components, including cellulose, hemicellulose, and lignin. The thermogravi-
metric behavior, devolatilization performance, pyrolysis kinetics, and pyrolysis residue
characterization of the three representative components were studied in detail. Then, the
pyrolysis characteristics and kinetics of Cd-contaminated rice straw were studied to verify
the pyrolysis principle obtained from the model components. Additionally, thermogravime-
try coupled with Fourier transform infrared spectrometry (TG-FTIR) and thermogravimetry
coupled with mass spectrometry (TG-MS) were used to elucidate the release performance
of the volatile product from Cd-contaminated rice straw. This study aims to provide new
insights into the pyrolysis treatment of Cd-contaminated rice straw.

2. Materials and Methods
2.1. Preparation of Cd-Impregnated Biomass Components and Rice Straw

The model cellulose (CAS number: 9004-34-6, CE), xylan (CAS number: 9014-63-5,
XY), and lignin (CAS number: 9005-53-2, LG) were purchased from Shanghai Macklin
Biochemical Co. Ltd., China. The xylan was selected to represent hemicellulose. The Cd-
contaminated rice straw (RS) was collected from an experimental base in Hunan province,
China. The original rice straw was digested using HNO3-HClO4 (v:v = 5:1) to determine
the Cd content in rice straw by inductively coupled plasma-atomic emission spectrometry
(ICP-AES, ICAP 7400, Thermo Fisher, Waltham, MA, USA). Table 1 lists the basic properties of
three model biomass components and rice straw. The content of cellulose, hemicellulose, and
lignin in rice straw is about 39.7%, 24.8%, and 18.5%, respectively, which is shown in Table S1.

A Cd loading of 5% (wt.%) was selected as a concentrated level to depict clearer
influences of Cd in the process of biomass pyrolysis. The solution impregnation method
was applied for the preparation of Cd-concentrated samples according to Fan et al. [26].
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Specifically, the corresponding weight of the model biomass component and cadmium
chloride (CdCl2·2.5H2O, analytical purity ≥ 99.0%) was weighed in a beaker, and then
plenty of de-ionized water was added for the complete soak. After being stirred for
6 h, the mixture was freeze-dried in a vacuum lyophilizer to remove the moisture. All
control samples were also soaked in deionized water without Cd impregnation, stirred,
and freeze-dried.

Table 1. Proximate and ultimate analysis (wt.%) of three model components and rice straw.

Sample
Proximate Analysis (%) Ultimate Analysis (%)

Cd (mg·kg−1)
M 1 A 2 V 3 FC 4 C H O H/C O/C

CE 3.88 0.02 91.43 4.67 42.4 6.3 51.2 1.79 0.90 -
XY 1.68 0.02 91.36 6.94 41.1 6.6 52.3 1.93 0.95 -
LG 12.26 15.59 47.14 25.01 47.5 4.6 28.3 1.15 0.45 -
RS 8.71 12.00 66.31 12.98 38.4 6.6 40.5 2.06 0.79 9.0

1 Moisture (air-dried basis). 2 Ash (air-dried basis) 3 Volatile matter (air-dried basis) 4 Fixed carbon (air-dried basis).

Based on the original contaminated RS (Cd content of about 0.001%), the impreg-
nated RS with a Cd loading of 0.1%, 1%, and 5% was also prepared by the same solution
impregnation method. Therefore, four kinds of RS samples with different Cd loadings
were obtained to study the effect of Cd on the pyrolysis behavior of RS. The measured
content of Cd in Cd-impregnated samples was shown in Table S2. The Cd-concentrated
cellulose, xylan, and lignin were named CE-5%Cd, XY-5%Cd, and LG-5%Cd, respectively.
The RS-0.1%Cd, RS-1%Cd, and RS-5%Cd represented the rice straw with Cd loading of
0.1%, 1%, and 5%, respectively.

2.2. Thermogravimetric Analysis and Pyrolysis Experiments

The thermogravimetric analysis (TG) and differential thermogravimetric analysis
(DTG) were applied with a thermal analyzer (TGA 8000, PerkinElmer, Waltham, MA, USA)
connected to a gas flow system to work in the N2 atmosphere (20 mL·min−1). For each
test, about 10 ± 0.5 mg of the sample were employed. Four different heating strategies
(5, 10, 20, and 50 ◦C·min−1) were adopted to collect the thermogravimetric data from room
temperature to 700 ◦C. The pyrolysis TG/DTG curves of CdCl2·2.5H2O are shown in Figure S1.

The fixed-bed pyrolysis experiments in a tube furnace were conducted with the N2
atmosphere (20 mL·min−1). The sample was placed in a quartz crucible and heated to
700 ◦C with a heating rate of 5 ◦C·min−1. After cooling to room temperature, the pyrolysis
residue was collected for characterization.

2.3. TG-FTIR and TG-MS Experiments for Cd-Contaminated RS

For the TG-FTIR experiments of Cd-contaminated RS, the functional group character-
istics of pyrolytic volatiles were analyzed using a thermogravimetric analyzer (TGA 8000,
PerkinElmer, Waltham, MA, USA) combined with a Fourier transform infrared spectrom-
eter (Frontier, PerkinElmer, Waltham, MA, USA). In the N2 atmosphere (20 mL·min−1),
the rice straw samples were heated from room temperature to 700 ◦C at a heating rate of
20 ◦C·min−1. The generated volatile products were transmitted to an infrared spectrometer
through a transmission line for real-time online analysis. The temperature of the transmis-
sion line was set at 300 ◦C to prevent the condensation of volatiles. The scanning range of
the infrared spectrum was 500–4000 cm−1 with a resolution of 4 cm−1. The background
interference has been deducted before the experiment.

For the TG-MS experiments of Cd-contaminated RS, the release characteristics of
pyrolytic gas products were analyzed using the thermogravimetric analyzer (SDT 650, TA
Instruments, USA) combined with a mass spectrometer (Discovery MS, TA Instruments,
New Castle, DE, USA). In the N2 atmosphere (20 mL·min−1), the rice straw samples
were heated from room temperature to 600 ◦C at a heating rate of 20 ◦C·min−1, and the
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gas products were transferred to the mass spectrometry analyzer for real-time online
analysis. The temperature of the transmission line was set at 300 ◦C to prevent water vapor
condensation. The ion source energy of the mass spectrometer was 70 eV, and the molecular
weight range of the mass spectrometry was 1–300.

2.4. Kinetic Analysis Based on Isoconversional Method

The overall rate, dα/dt, of a solid-state reaction is expressed in the following form [27]:

dα

dt
= β

dα

dT
= Aexp

(
− E

RT

)
f (α) (1)

where α represents the pyrolysis conversion rate; t represents the pyrolysis time (min);
β represents the heating rate (K·min−1); T represents the reaction temperature (K); A represents
the pre-exponential factor (min−1); E represents the activation energy (kJ·mol−1); R is the
universal gas constant (8.314 J·mol−1·K−1); f (α) accounts for reaction rate dependence on α.

The conversion rate (α) of biomass pyrolysis can be given in the following form:

α =
w0 − wt

w0 − w f
(2)

where w0 represents the mass of the initial sample; wf represents the residual mass of the
sample at 700 ◦C; wt represents the mass at an instant t.

The isoconversional method includes differential form and integral form [28]. The
most common differential form is the Friedman method, which requires high precision of
the thermal analyzer and data. By taking a logarithm of Equation (1), the Friedman method
can be expressed in the following form:

ln
(

β
dα

dT

)
= ln[A f (α)]− E

RT
(3)

For a given conversion rate, the apparent pyrolysis activation energy (APAE) can be
calculated from the linear relation between ln(βdα/dT) and 1/T according to Equation (3).

The most common integral forms include the Flynn–Wall–Ozawa (FWO) method and
the Kissinger–Akahira–Sunose (KAS) method. The FWO method can be expressed in the
following form [29]:

ln(β) = ln
[

AE
Rg(α)

]
− 5.331 − 1.052

E
RT

(4)

For a given conversion rate, the APAE can be calculated from the linear relation
between ln(β) and 1/T according to Equation (4).

The KAS method can be expressed in the following form [30]:

ln
(

β

T2

)
= ln

(
AR

Eg(α)

)
− E

RT
(5)

Similarly, the APAE can be calculated from the linear relation between ln(β/T2) and
1/T according to Equation (5).

More details about fitting results by the isoconversional methods can be seen in Table S3.

2.5. Characterization of Pyrolysis Residues

The three model components and the corresponding pyrolysis residue were analyzed
by Fourier transform infrared spectrometry (FTIR, Nicolet IS10, Thermo Fisher, Waltham,
MA, USA), X-ray photoelectron spectroscopy (XPS, K-Alpha X, Thermo Fisher, Waltham,
MA, USA), and elemental analyzer (Elementar Vario III, Thermo Fisher, Waltham, MA,
USA). For FTIR analysis, the mass ratio of sample to KBr was about 1:100 and the scan
range was from 500 to 4000 cm−1. For XPS analysis, the Al Kα excitation source was used.



Int. J. Environ. Res. Public Health 2022, 19, 8953 5 of 18

Before analyzing the data of XPS, all the samples were calibrated based on C 1 s with a
binding energy of 284.8 eV.

3. Results and Discussion
3.1. Pyrolysis Characteristics of Cd-Concentrated Cellulose, Hemicellulose, and Lignin
3.1.1. TG/DTG Analysis

The TG and DTG curves of the three model components and their Cd-impregnated
samples are shown in Figure 1. The pyrolysis processes of the three biomass components
exhibit three stages including dehydration, rapid decomposition with significant weight
loss, and slow carbonization resulting in biochar as a solid product. Taking the TG and
DTG curves at 5 ◦C·min−1 for instance, there is no obvious mass loss of cellulose before
280 ◦C except for the initial dehydration process (Figure 1a). The main pyrolysis region of
cellulose is in the temperature range of 280–350 ◦C. The maximum pyrolysis velocity of
cellulose is reached at 329 ◦C with 14.9 %·min−1. After 350 ◦C, the pyrolysis of cellulose
is basically completed and the remaining solid only consists of about 2.3%. According
to the Broido–Shafizadeh model [31,32], cellulose is first translated into active cellulose,
followed by a fast mass loss through two paths: (1) releasing amounts of volatiles in
which levoglucosan is the main compound; (2) generating small-molecule gas by constant
depolymerization. Therefore, the pyrolysis products of cellulose are mainly volatiles as
well as gas, thus generating fewer solid residues than that of xylan and lignin. Compared
with cellulose, xylan possesses poorer thermal stability that starts to crack at 200 ◦C and
reaches the peak of weight loss rate (4%·min−1) at 278 ◦C (Figure 1c). It is obvious that
there is a shoulder peak at about 234 ◦C in the DTG curve of xylan, indicating a two-stage
reaction in the pyrolysis process of xylan [33]. The branches of xylan firstly tend to depart
from the backbone due to their poor thermal stability, and then, the trunk of xylan begins to
depolymerize and rearrange [34–36]. Therefore, the two peaks of xylan’s DTG curves may
correspond to the two-step reaction. For lignin (Figure 1e), its pyrolysis reaction exhibits
the widest temperature range, from 150 to 700 ◦C. Between 200 and 500 ◦C, about 30%
of mass loss and an obvious peak can be found according to the DTG curves. The mass
loss of lignin at this stage is mainly attributed to dehydration, the fracture of the ether
bond, and the cleavage of the C–O bond which links the phenol ring and side-chain [37].
The molecular network of lignin starts to split, and gas molecular begins to release at the
temperature of 160 ◦C. Between 200 and 330 ◦C, the cracking reaction of lignin accelerates
to generate heavy and light bio-oil. As the pyrolysis temperature is over 330 ◦C, more
oxygen-containing function groups crack [37]. Therefore, the peak of the lignin’s DTG
curve at 350 ◦C is associated with the oxygen-containing function group’s cracking reaction.

The pyrolysis behavior of the three Cd-concentrated model components is obviously
changed. As shown in Figure 1b, the TG/DTG curves of Cd-concentrated cellulose are
shifted to the low-temperature region. Taking 5 ◦C·min−1 for instance, the Ts (the starting
temperature of pyrolysis) is decreased from 282 to 267 ◦C and the Tm (the temperature
of maximum pyrolysis velocity) is decreased from 329 to 325 ◦C, indicating that Cd pro-
motes the initial pyrolysis of cellulose at low temperature. Similar results reported by
Mayer et al. [20] demonstrated that Zn2+ and Fe3+ also catalyzed the cellulose degradation
with a decreased pyrolysis temperature of 4–9 ◦C, while Ca2+ and Pb2+ inhibited the cellu-
lose degradation with an increased pyrolysis temperature of 1–4 ◦C. Importantly, the above
movement trend caused by Cd is more pronounced at the higher heating rate conditions,
which indicates that Cd acts as a heat medium during the pyrolysis reaction and greatly
reduces the thermal hysteresis effect by increasing the heating rate [38]. In addition, Cd also
reduces the peak value of the DTG curve of which Rm (the maximum pyrolysis velocity) is
decreased from 14.9 to 9.44%·min−1. Generally, active cellulose is first formed by reducing
the polymerization degree of cellulose, and then generates levoglucosan and furan through
depolymerization, or generates various small molecules of aldehydes and ketones through
ring-opening reactions [39]. According to the left shift of TG and DTG curves, Cd may
promote the formation of active cellulose, while the decrease of Rm indicates that Cd may
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inhibit the subsequent decomposition reactions. For Cd-concentrated xylan (Figure 1d),
the TG and DTG curves also move to the low-temperature regions and the Rm value is
declined slightly. Since the reaction pathways of xylan are similar to cellulose, it can be
speculated that Cd also enhances the initial depolymerization of xylan and retards the
subsequent decomposition reactions. Conversely, Cd restricts the pyrolysis reaction of
lignin that both Ts and Tm are increased from 151 and 331 ◦C to 166 and 342 ◦C, and Rm is
decreased from 1.05 to 0.89%·min−1 (Figure 1f). These results suggest that the presence of
Cd is not conducive to the fragmentation of lignin and the cracking of its oxygen-containing
functional groups [37]. The above analysis shows that Cd does affect the three model com-
ponents’ pyrolysis behavior. In general, Cd has a relatively consistent effect on cellulose and
xylan that promotes the initial depolymerization but slows down the subsequent cracking.
However, the effect of Cd on lignin pyrolysis was mostly negative, increasing the initial
pyrolysis temperature and decreasing the maximum pyrolysis velocity.
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3.1.2. Devolatilization Performance

The devolatilization performances (Di) of three model components are further calcu-
lated using the following Equation (6) [40]:

Di =
Rm

TsTm∆T1/2
(6)

where Rm represents the maximum pyrolysis velocity; Ts represents the starting temperature of
pyrolysis; Tm represents the temperature corresponding to Rm; ∆T1/2 represents the temperature
difference between T1/2 and Tm. T1/2 is the temperature corresponding to the 0.5 Rm.

As shown in Figure 2, the Di value of three model components follows the order of
cellulose > xylan > lignin, indicating that cellulose possesses a higher releasing performance
of volatiles, followed by xylan and lignin. The stronger devolatilization performance of
cellulose is also the reason why the pyrolysis residue from cellulose is less than that of
xylan and lignin. Interestingly, the Di value of three model components is reduced with
the involvement of Cd, suggesting that Cd inhibits the devolatilization performance of
cellulose, xylan, and lignin. Namely, Cd can promote the formation of solid residue in the
view of mass conservation. This seems to explain why the pyrolysis rate of Cd-concentrated
cellulose, xylan, and lignin is reduced in Figure 1. Meanwhile, increasing the heating rate
promotes the Di values, indicating that the three model components are more volatile
with a high heating rate. Generally, a rapid heating rate shortens the residence time in the
low-temperature region and thus equivalently lengthens the residence time in the high-
temperature region [40]. Moreover, the coking reaction for char is exothermic while the
devolatilization reaction is endothermic, thus a high heating rate promotes volatile release
and inhibits the carbonization reaction [40]. Furthermore, the linear relation between Di
values and heating rates shows a sensitivity of devolatilization to heating rate, and the
sensitivity follows the sequence of CE > XY > CE-5%Cd > XY-5%Cd > LG > LG-5%Cd,
indicating that Cd reduces this sensitivity of cellulose, xylan, and lignin to heating rate, and
even inhibits their devolatilization performance at a higher heating rate. The results also
suggest that the involvement of Cd is more conducive to the coking of biomass into biochar.
In summary, Cd inhibits the volatiles escape of cellulose, xylan, and lignin, and enhances
the formation of biochar, which is significantly different from the alkali or alkaline earth
metals that catalyze the pyrolysis of biomass to obtain more bio-oil products. Although the
pyrolysis characteristics analysis by TG/DTG can help grasp the effect of Cd contamination
on macroscopic phenomena of the pyrolysis of cellulose, xylan, and lignin, pyrolysis
kinetics analysis needs to be carried out to reveal the inner influence mechanism of Cd.
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3.1.3. Pyrolysis Kinetics Analysis

To facilitate the analysis of the change of APAE in pyrolysis progress, the main pyrolysis
process with the α between 0.2 and 0.8 is extracted to describe whether Cd also inhibits the
kinetic process of the three model components. The corresponding relationship between α and
the pyrolysis temperature is supplemented in Table S4. As shown in Figure S2, the Arrhenius
plots were calculated using three isoconversional methods. Given fitting results (Table S3),
the KAS method and the FWO method are more suitable than the Friedman method, which
could be caused by the experimental data noise and numerical instability [41].

The APAE of the three model components with different α is shown in Figure 3.
Similar calculation results and variation trends are obtained using the three isoconversional
methods. Among them, the results based on the FWO method and the KAS method are
highly consistent, indicating that the FWO and KAS methods are more applicable. For
cellulose (Figure 3a), the APAE shows a gradual downward trend from 147 to 139 kJ·mol−1,
which may be due to the lower energy required for the scission of active cellulose [40].
Zong et al. [40] also reported that the APAE of cellulose gradually decreased, with an
average of 157 kJ·mol−1. When Cd is involved in the pyrolysis reaction, the APAE of Cd-
concentrated cellulose is significantly higher than that of cellulose with an increased value of
54–134 kJ·mol−1, indicating that Cd increases the devolatilization difficulty of cellulose and
thus more energy is needed to maintain the pyrolysis reaction during the cracking process.
Generally, the lower APAE represents the faster pyrolysis velocity. Therefore, the reduced
pyrolysis velocity of Cd-concentrated cellulose in Figure 1b can be reasonably explained.
For xylan (Figure 3b), the APAE is gradually increased from 128 to 221 kJ·mol−1 when α
is increased from 0.2 to 0.7, while a significant increase is observed when α is increased
from 0.7 to 0.8. The rapid increase of APAE indicates that the devolatilization of xylan
was basically completed and that it had entered the slow carbonization stage [40]. For Cd-
concentrated xylan, it can be seen that the APAE between α = 0.5 and α = 0.65 is significantly
elevated, indicating that the devolatilization process of xylan is inhibited. Combined with
DTG curves of XY and XY-Cd, the inhibited devolatilization process may be the second
characteristic reaction of xylan, including the depolymerization and rearrangement of
xylan’s trunk [34,35]. As shown in Figure 3c, the APAE of lignin is gradually increased from
297 to 480 kJ·mol−1 when α is increased from 0.2 to 0.75, indicating that the devolatilization
of lignin is poorer than that of cellulose and xylan. Similar to cellulose and xylan, Cd
elevates the lignin’s APAE in each pyrolysis stage, especially between α = 0.6 and α = 0.7,
indicating that Cd also inhibits the major pyrolysis processes such as fragmentation and
bond cracking. In summary, Cd retards the pyrolysis velocity of cellulose, xylan, and lignin
by increasing their APAE.
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3.1.4. Characteristics of Pyrolysis Residues

As shown in Figure 4, FTIR analysis was further used to verify whether Cd affects
the function group characteristics of pyrolysis residues. For cellulose (Figure 4a), the
typical characteristic peaks of O–H (3470 cm−1), C=O (1640 cm−1), C–O (1310–1428 cm−1),
and C–O–C (1060–1160 cm−1) groups disappear after pyrolysis treatment, indicating that
strong deoxidation reactions occur during the pyrolysis process, such as dehydration,
decarbonylation, and decarboxylic group [42]. After involvement with Cd, the absorption
intensity of these oxygen-containing functional groups is slightly increased, indicating that
Cd may inhibit the deoxidation reaction of cellulose. Similarly, the peak strength of the
C=O (1730 and 1640 cm−1) and C–O (1040–1380 cm−1) of xylan decreases after pyrolysis,
and the presence of Cd also increases the absorption intensity of the C–O group. As shown
in Figure 4c, Cd significantly increases the absorption intensity of the C–O group in the
pyrolysis residue of lignin, indicating that Cd may inhibit the crack of the C–O group such
as the methoxide on the benzene ring. Therefore, a preliminary conjecture may be that Cd
could retard the deoxidation reaction of three model components.
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Figure 4. FTIR spectrums of three model components and their pyrolysis residue. (a) CE, RCE, and RCE-
5%Cd; (b) XY, RXY, and RXY-5%Cd; (c) LG, RLG, and RLG-5%Cd. RCE, RXY, and RLG represent the
pyrolysis residue of cellulose, xylan, and lignin, respectively. RCE-5%Cd, RXY-5%Cd, and RLG-5%Cd
represent the pyrolysis residue of Cd-concentrated cellulose, xylan, and lignin, respectively.

As shown in Figure 5, XPS analysis was used to characterize the C oxidation state
(C 1s) of pyrolysis residue. It can be seen that the presence of Cd increases the proportion
of the oxidation state of C element. The proportion of C–O in Cd-concentrated cellulose,
xylan, and lignin is increased from 6.30%, 9.52%, and 12.91% to 7.45%, 10.16%, and 17.62%,
respectively. The proportion of C=O in Cd-concentrated cellulose, xylan, and lignin is
increased from 1.40%, 2.57%, and 3.60% to 1.83%, 3.20%, and 4.22%, respectively. The results
based on XPS analysis confirmed the hypothesis that Cd may inhibit the decarbonylation
and decarboxylic process, increasing oxygen-containing groups in pyrolysis residue.

More intuitive results for element content of C, H, and O in pyrolysis residue are shown
in Table 2. After pyrolysis, the C content of cellulose and xylan increases significantly from
42.44% and 41.10% to 89.55% and 85.85%, respectively. Inversely, the O content of cellulose
and xylan decreases from 51.20% and 52.27% to 7.40% and 11.10%, respectively. For lignin,
the pyrolysis residue still contains an O content of 33.25%, indicating that the deoxidation
degree of lignin is significantly lower than that of cellulose and xylan. When Cd is involved
in the pyrolysis system, the O content of cellulose, xylan, and lignin is increased from 7.40%,
11.10%, and 33.25% to 8.64%, 12.93%, and 33.82%, respectively, indicating that Cd does
inhibit the deoxidation reaction of cellulose, xylan, and lignin, and retains more organic
oxygen-containing components in pyrolysis residue.
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Figure 5. XPS spectra (C1 s) of three model components and their pyrolysis residue. (a) CE;
(b) RCE; (c) RCE-5%Cd; (d) XY; (e) RXY; (f) RXY-5%Cd; (g) LG; (h) RLG; (i) RLG-5%Cd. RCE,
RXY, and RLG represent the pyrolysis residue of cellulose, xylan, and lignin, respectively. RCE-5%Cd,
RXY-5%Cd, and RLG-5%Cd represent the pyrolysis residue of Cd-concentrated cellulose, xylan, and
lignin, respectively.

Table 2. C, H, and O content in pyrolysis residue of three model components.

Sample C (%) H (%) O (%)

CE 42.44 6.32 51.20
RCE 89.55 2.26 7.40

RCE-5%Cd 88.67 2.04 8.64

XY 41.10 6.60 52.27
RXY 85.85 2.46 11.10

RXY-5%Cd 83.96 2.57 12.93

LG 47.51 4.55 43.87
RLG 60.95 1.98 33.25

RLG-5%Cd 60.91 1.84 33.82
Note: RCE, RXY, and RLG represent the pyrolysis residue of cellulose, xylan, and lignin, respectively. RCE-
5%Cd, RXY-5%Cd, and RLG-5%Cd represent the pyrolysis residue of Cd-concentrated cellulose, xylan, and
lignin, respectively.
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3.2. Pyrolysis Characteristics of Cd-Contaminated Rice Straw
3.2.1. TG/DTG Analysis

The TG/DTG curves of rice straw with different amounts of Cd loading are shown in
Figure 6. At the initial stage of pyrolysis (from room temperature to 150 ◦C), the rice straw
shows a certain weight loss of about 7%, which was mainly related to moisture removal.
With the increase of Cd loading, the shape of TG curves does not change significantly and
the weight loss rate of four different rice straws is about 70%. However, it can be observed
from the DTG curves that Cd has a great influence on the pyrolysis rice straw. Taking
50 ◦C·min−1 for instance, rice straw starts to decompose significantly at 229 ◦C and then
reaches an inapparent peak at 315 ◦C as well as an apparent peak at 347 ◦C, indicating that
there is a pyrolytic superposition between the hemicellulose component and the cellulose
component. The first peak at 315 ◦C is not salient; that is, it is difficult to observe at the low
heating rate. However, as shown in Figure 6b,d, the two DTG peaks of rice straw with Cd
loading of 0.1%, 1%, and 5% are easily distinguished, and the separation of the two peaks
is more significant with the increase of Cd loading. These results are significantly different
from previous studies [8]. Li et al. [8] reported that Zn contamination could increase the
overlap between hemicellulose and cellulose. In this study, inversely, Cd contamination
promotes the separation between hemicellulose and cellulose. The two opposite effects
may be related to the different properties of Zn and Cd. Next, the pyrolysis separation of
the cellulose component and hemicellulose component is further studied by using the peak
fitting tools in Origin 9.0 software.
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As shown in Figure 7, the main pyrolysis stage between 200 and 400 ◦C of DTG curves
can be further differentiated into two peaks, which belong to the hemicellulose component
(Peak 1) and cellulose component (Peak 2), respectively. First, with the increase of Cd
loading, Peak 1 moves to the low-temperature region while the position of Peak 2 is less
affected. Secondly, the peak value of Peak 1 is decreased with the increase of Cd loading
while that of Peak 2 is significantly increased. Thirdly, the overlap area of Peak 1 and
Peak 2 is significantly reduced. Therefore, the above three phenomena indicate that: (1) the
presence of Cd promotes the early pyrolysis of rice straw’s hemicellulose component but
decreases its pyrolysis rate, which is highly consistent with the results from the pyrolysis of
model xylan; (2) as the peak value of the overall DTG curve of rice straw does not change
significantly and Peak 1 moves to a low temperature, the contribution of the cellulose
component’s pyrolysis to the whole DTG curve of rice straw is significantly increased;
(3) the presence of Cd effectively separates the pyrolytic overlap between the hemicellulose
component and cellulose component. It is noteworthy that the promoting effect of Cd on
the cellulose component of rice straw is significantly different from the model cellulose.
For the pyrolysis of model cellulose at a heating rate of 5 ◦C·min−1 (Figure 1a,b), Cd
significantly reduces the maximum pyrolysis velocity of cellulose by about 36.6%. However,
the maximum pyrolysis velocity of the cellulose component of rice straw is increased by
about 11%, 61%, and 100% when the Cd loading is 0.1%, 1%, and 5%, respectively. This
contradictory phenomenon may be due to the complexity of the components of rice straw.
According to previous studies, the lignin component could catalyze the pyrolysis of the
cellulose component [43,44]. Therefore, the cellulose component of rice straw may be
catalyzed by the concomitant lignin component, thus increasing the pyrolysis velocity of
cellulose. In particular, no separate peaks were subjectively calculated for lignin due to its
small contribution to the overall pyrolysis process of rice straw.

3.2.2. Pyrolysis Kinetics Analysis

The APAE of rice straw was calculated based on the FWO method (Figure S3) and the
KAS method (Figure S4). According to the fitting results, the early (α = 0.1–0.2) and the
late (α = 0.7–0.9) pyrolysis stages have a lower fitting degree than the midterm (α = 0.2–0.7)
stage. Therefore, the FWO method and the KAS method can be better applied at the stage of
rapid mass loss (α = 0.2–0.7). As shown in Figure 8, the results based on the FWO method
and KAS method are highly consistent. During the main pyrolysis stage (α = 0.2–0.7),
the APAE of rice straw increases from 148.9 kJ·mol−1 to 178.4 kJ·mol−1. As Cd loading
is gradually increased to 5%, the APAE of rice straw is increased to 202.8–243.2 kJ·mol−1,
indicating that the presence of Cd increases the APAE of rice straw and thus promotes the
difficulty of pyrolysis, which is consistent with the results from the model components.

3.3. Characteristics of Pyrolytic Volatiles from Cd-Contaminated Rice Straw
3.3.1. TG-FTIR Analysis

The infrared spectrum of volatile products from Cd-contaminated rice straw is shown
in Figure 9. The temperature region of volatiles releasing is consistent with the DTG
curves in the range of 250 ◦C to 400 ◦C. The absorption peaks of the main functional
groups include the O–H bond (3500–3750 cm−1), C–H bond (2780 cm−1), CO2 (2360 cm−1),
CO (2190 cm−1), C=O bond (1750 cm−1), benzene ring (1500 and 1450 cm−1), and
C–O bond (1100 cm−1), indicating that the main detected volatiles include H2O, CH4,
CO2, CO, and C=O/C–O/benzene-ring-containing components [40]. The generation of
CO2 is related to the cracking of carboxyl, carbonyl, and ester groups which are widely
found in cellulose, hemicellulose, and lignin components. Similarly, CO is also produced
by the cracking of the ether group and carbonyl group. CH4 is generated by the cracking
of the methoxy group (–O–CH3) and methyl group (–CH3). The lignin component is the
largest contributor to the generation of CH4 due to its large amounts of methoxy groups
and methyl groups [40,45]. Moreover, the bonds of C=O, C–O, and the benzene ring indi-
cate that the volatiles also includes aldehydes, ketones, acids, and phenolic compounds.
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In addition, it can be seen on the right side of Figure 9 that Cd affects the generation of
volatile products. The absorbance peak of the CO2 decreases gradually with the increase
of Cd loading. Meanwhile, the absorbance peak of the C=O bond, C–O bond, and CO
also declines with the increase of Cd loading. The above results indicate that Cd has an
inhibitory effect on the cracking of the oxygen-containing groups in rice straw.
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3.3.2. TG-GC/MS Analysis

Figure 10 shows the releasing characteristics of gaseous products from rice straw. The
gaseous products mainly include CH4, H2O, CH2O, CH3OH, CO2, and HCOOH. The
gaseous products are concentrated in the range of 250 ◦C to 400 ◦C which is the pyrolysis
temperature of cellulose, hemicellulose, and lignin, indicating that the cellulose component,
hemicellulose component, and lignin component are the main sources of gaseous products.
For CH4 (Figure 10a), it is still generated beyond 400 ◦C, indicating that CH4 is also
produced by the latter pyrolysis of the lignin component. With the involvement of Cd in
the pyrolysis process of rice straw, the gaseous products are decreased with the increase
of Cd loading. For example, as shown in Figure 10e, the yield of CO2 is followed by the
order of RS > RS-0.1%Cd > RS-1%Cd > RS-5%Cd, which is consistent with the results of
TG-FTIR (Figure 9). Similar results are found in Figure 10d,f. The above results verify that
Cd provides an inhibition effect on the deoxygenation reaction of rice straw’s pyrolysis. He
et al. [12] reported that heavy metals (including Cr, Zn, As, Cd, and Pb) could reduce the
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yield of pyrolytic gas and bio-oil from Avicennia marina biomass but increase the yield of
biochar. In this study, the pyrolytic gas and oxygen-containing organic volatiles (Table S5)
are reduced by Cd contamination, resulting in the retention of oxygen elements in biochar.
Meanwhile, the inhibited deoxygenation of Cd-contaminated rice straw also results in
high-quality bio-oil [10]. Therefore, Cd-contaminated rice straw may be more conducive to
preparing biochar with high oxygen content and bio-oil with low oxygen content through
pyrolysis treatment.
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CH4; (b) is the H2O; (c) is the CH2O; (d) is the CH3OH; (e) is the CO2; (f) is the HCOOH, respectively.

4. Conclusions

The effect of Cd on the pyrolysis of lignocellulosic biomass has often been overlooked.
The pyrolysis characteristics of Cd-impregnated model cellulose, hemicellulose, and lignin
were studied, and the findings from the model components were further verified using the
pyrolysis of Cd-contaminated rice straw in this work. The thermogravimetric behavior,
pyrolysis kinetics, and properties of pyrolytic products from the Cd-impregnated model
components and rice straw were studied in detail. Based on the results from the above
study, it can be inferred that Cd retards the pyrolysis velocity and deoxygenation behavior
of the single biomass component as well as rice straw. Interestingly, Cd promotes the
decomposition of the hemicellulose component of rice straw at a lower temperature, which
provides important inspiration for the selective pyrolysis of the hemicellulose component
in lignocellulosic biomass. In summary, the pyrolysis treatment of Cd-contaminated rice
straw is more conducive to preparing biochar containing high oxygen content.
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