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Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and
aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and
their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem
cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of
these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and
CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from
an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for
investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of
this condition.

1. Introduction

Nasal polyposis (NP) is a severe, chronic inflammatory
condition of the paranasal sinuses, with a prevalence ranging
from 1% to 4% in the general population [1]. It is frequently
associated with asthma and aspirin sensitivity [1]. NP in
combination with aspirin-induced asthma (AIA) represents
the most severe form of airway inflammation [2].

NP is characterized by overgrowth of nasal mucosa
caused by the influx of a variety of inflammatory cells. The
inflammatory process characteristic of NP is defined mainly
by T-cell activation and arrest of regulatory T-cell function,
with a decrease in Foxp3 expression and concomitant upreg-
ulation of T-bet and GATA-3 levels [3]. The predominance
of T-effector cells in polyp tissue is closely associated with

patient ethnicity. In white European patients a Th2-driven
response is predominant, whereas in Chinese patients, a
Th1/Th17-driven response has been demonstrated [4]. How-
ever, little is known about the inflammatory milieu of nasal
polyposis, and understanding of this process can play an
important role in defining the course of the disease.

The most important features of NP concern its unique
remodeling process, which is characterized by low produc-
tion of transforming growth factor-𝛽 (TGF-𝛽) associated
with a lack of collagen as compared with healthy subjects
[5, 6]. In NP, matrix metalloprotease-7 (MMP-7) and matrix
metalloprotease-9 (MMP-9) levels are increased and tis-
sue inhibitor of metalloproteinases 1 (TIMP-1) levels are,
inversely, decreased as compared with normal nasal mucosa
[7]. This imbalance can be partially explained by the lack of
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TGF-𝛽1 in NP and its inhibitory effect on MMP-9 activity
via TIMP-1 release [8]. TGF-𝛽1-activated PAI-1 (plasminogen
activator inhibitor-1) is also found decreased inNP, leading to
an increase in the levels of plasminogen activator and MMP
levels when compared with controls [6, 9].

Due to the similarities between upper and lower airway
mucosa, the last one has been used as a model to understand
NP [10]. It is demonstrated an epithelium disruption in nasal
tissue less extensive than in the lungs [11], so to repair the
injured epithelium less TGF-𝛽 is produced in nasal mucosa
when compared to bronchial mucosa [12]. Supporting these
findings it is reported that the basement membrane in nasal
mucosa has limited pseudothickening with significant less
elastase positive cells comparatively to bronchial mucosa
[11].

Furthermore, histological examination of biopsy speci-
mens shows a soft tissuewith clear lack of extracellularmatrix
[13], major edema, albumin-filled pseudocysts, and alpha-2-
macroglobulin [14].

Multipotent stromal cells or mesenchymal stem cells
(MSC) are adult, adherent, nonhematopoietic stem cells with
the ability to differentiate into several mesenchymal cell lines
(chondrocytes, adipocytes, and osteocytes) beyond to pro-
mote a prominent immunomodulatory effects on inflamed
environment. MSCs retain low immunogenicity and exert
immunosuppressive effects in allogeneic transplantation [15].
These cells exhibit reduced expression of both major histo-
compatibility complex (MHCs) and costimulatory molecules
(CD80, CD86, and CD40) and have emerged as a very useful
tool for therapeutic use, including in regenerative medicine
and tissue bioengineering [16, 17].

MSCs have been used in experiments involving a very
broad range of diseases, including repair of acutely injured
tissue, chronic diseases, graft rejection, and autoimmune
conditions [18]. Such widespread use of these cells is based on
their distinct natural properties, namely, stromal cell differ-
entiation, soluble factor secretion stimulating hematopoiesis,
ECM maintenance, and immunoregulatory effects [19]. The
immunomodulatory role of MSCs has been demonstrated in
many in vitro and in vivo studies and consists essentially of
downmodulation of the inflammatory process, inhibiting T-
cell, B cell, NK cell, and APC cell proliferation via a paracrine
secretory mechanism [20–22].

Most soluble factors produced by MSCs are associated
with their immunoregulatory properties, including TGF-
𝛽1, prostaglandin-E2 (PGE-2), IDO, IL-10, IL-6, MMP, and
TIMP [17], and could interact with severely inflamed tissues
(such as the NP environment) to restore a balanced T cell-
mediated response. Hence, we hypothesized thatMSCs could
be able to modulate allergic inflammation in the context of
nasal polyposis.

Using MSCs as an immunosuppressive tool, we first
characterized the infiltrating polyp-derived cells and found
that, after coculture with MSCs, the frequency and activation
of inflammatory cells had changed. We also observed that
MSCpromotedmodulation of the cytokine profile, inhibition
of T-cell proliferation, and expansion of CD4+CD25+Foxp3
cells in an in vitro assay.

Table 1

Patients’ comorbidities
Identification Asthma Aspirin intolerance Rhinitis
ECR + + −

FFS + + −

JFE − − −

JFS + − −

LD + + +
MAL − − −

MGN + − +
MS − − −

MFV + + +
NEAP + − −

RSC + − +
RPS + + −

2. Material and Methods
2.1. Patients and Clinical Diagnosis. Nasal polyp tissue sam-
ples of 12 patients with known NP were obtained during
functional endoscopic sinus surgery (FESS) performed at the
Department ofOtorhinolaryngology,University of São Paulo,
Brazil. The study was approved by the local Research Ethics
Committee and written informed consent was obtained from
each patient before sample collection. The diagnosis of NP
was based on medical history, clinical examination, nasal
endoscopy, and computed tomography (CT) of the paranasal
sinuses according to the European Position Paper on the
Primary Care Diagnosis and Management of Rhinosinusitis
and Nasal Polyps 2012 [23].

All subjects underwent a skin prick test for common
inhalant allergens. The diagnosis of asthma was obtained
from theDepartment of Pulmonology at theUniversity of São
Paulo. Information on aspirin intolerance was collected from
patient histories (Table 1).

2.2. MSC Isolation and Preparation of Nasal Polyp Single-Cell
Suspension. Human mesenchymal stem cells (MSCs) were
isolated by rinsing of the cells remaining in bone marrow
collection tubes, kindly provided by the Children’s Hospital
of São Paulo and GRAACC (Support Group for Children
and Adolescents with Cancer), with ethical approval and the
informed consent of the donors (Protocol no. 45/09). The
tubes were washed with PBS, cells were isolated by the Ficoll-
Hypaque protocol (Sigma, USA), and culture was performed
as previously described by Lennon and Caplan (2006) and
Pittenger et al. (1999) [24, 25]. The cells were cultured
in basal medium containing DMEM-low glucose medium
(Gibco, USA) supplemented with 10% HyClone fetal bovine
serum (Thermo, USA), antibiotic (100U/mL penicillin and
100 𝜇g/mL streptomycin,Gibco), and 100mMof nonessential
amino acids (Gibco). The MSCs were subcultured for 10
passages and then used for coculture experimentswith polyp-
derived cells. All polyp-derived cells were isolated frompolyp
tissues by mechanical separation (with surgical scissors and
forceps) followed by digestion in collagenase IV (1mg/mL,
Sigma) for 50 minutes at 37∘C. The cells were then washed
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in complete medium (10% serum), filtered in a 70 𝜇m cell
strainer (BD Biosciences, USA), suspended, and seeded onto
six well plates containing R10 medium: RPMI-1640 culture
medium (Gibco), supplemented with 10% FBS (Gibco) and
antibiotic (100U/mL penicillin and 100𝜇g/mL streptomycin;
Gibco). During coculture assays, both MSCs and polyp-
derived cells were incubated at 37∘C in a 5% CO

2
atmosphere

for 72 hours.

2.3. Phenotype and Differentiation Capacity of MSCs. To
characterize MSC phenotype, the cells were harvested by
treatment with trypsin (Gibco), washed, and suspended in
phosphate-buffered saline (PBS), and approximately 1 × 105
cells were incubated with conjugated monoclonal antibodies
(1 : 100) against CD73, CD90, CD105, CD54, CD45, HLA-
DR, PDL-1, PDL-2, and CTLA-4 (conjugated with PE, FITC,
or PerCP fluorochrome; BD Biosciences). The FACSCanto II
flow cytometer (BD, Biosciences) was used for acquisition,
and analysis was performed using the FlowJo software, ver-
sion 7.2.4 (Tree Star, USA). To assess the ability to differentiate
into several mesenchymal cell lines, the cells were subjected
to adipogenic, chondrogenic, and osteogenic differentiation
protocols, as described by Pittenger et al., 1999 [25].The stem
cells were cultivated at 95% confluence and multipotential
differentiation was induced with specific agents using the
Mesenchymal Stem Cell Adipogenesis, Osteogenesis, and
Chondrogenesis Kit, according to manufacturer instructions
(Chemicon, USA). The medium was replaced every 4 days
for 21 days. Adipocyte-like cells were stained with Oil Red
O to assess neutral lipid accumulation in fat vacuoles.
Chondrocyte-like cells were stained using Safranin O, and
osteogenesis specimen cells were stained with Alizarin Red
for intracellular calcium compounds.

2.4. Cellular Phenotyping of Nasal Polyp-Derived Tissue. To
determine the immune cell profile of whole polyp cells,
fresh and cultured (for 72 hours) cells were harvested (both
adherent and nonadherent cells) without enzymatic dissoci-
ation and labeled with a set of various specific fluorescent
antibodies, such as CD4-Pacifc Blue, CD8-PECy7, CD11c-PE,
CD14-PerCPCy5.5, CD19-Viollet, CD25-APC, CD40-FITC,
CD69-FITC, and NK1.1-PE (all from BD Biosciences). These
sets of antibodies were used for both fresh and in vitro
coculture analysis. To investigate the CD4+CD25+Foxp3+ T
lymphocyte profile, intracellular staining for FoxP3 expres-
sion was performed after 72 hours in culture with or without
the presence ofMSCs.The cells were fixed and permeabilized
using the Fix/Perm Buffer Set Kit (BD Biosciences). Staining
was performed using FoxP3 (PE), CD4 (APC-Cy7), and
CD25 (APC) antibodies at 1 : 100 dilution (BD Biosciences).
Analysis was determined by flow cytometry (FACSCanto
II cytometer, BD Biosciences) within FSC and SSC gate
in CD4+ T cells. All acquisitions were performed using a
FACSCanto II flow cytometer (BD Biosciences), and analysis
was again done using the FlowJo 7.2.4 software (Tree Star).
During analysis, gates for mononuclear cells were performed
in FSC and SSC parameters after doublet exclusion. Results
are presented as cell frequency.

2.5. T-Cell Proliferation Assay. To determine the ability of
MSCs to modulate the polyp microenvironment, fresh whole
polyp cells were labeled with 5 𝜇M carboxyfluorescein suc-
cinimidyl ester (CFSE, BD Bioscience) and seeded in culture
with or without MSCs for 5 days. MSCs from nonrelated
donors were cocultured with 1 × 105 whole polyp cells in
a 1 : 3 ratio in R10 medium supplemented with 100mM of
vitamin complex (Thermo), antibiotic (Pen/Strep, 100U/mL,
Gibco), 100mM L-Glutamine Mixture (Gibco), 100mM
MEM nonessential amino acids (Gibco), and 1mMHyClone
sodium pyruvate (Thermo). After 5 days, all polyp cells
were stained with anti-CD4 and anti-CD8 antibodies (1 : 100
ratio, BD Biosciences), and CFSE dilution was read in FITC
channel by flow cytometry analysis (FACSCanto II cytometer,
BD Biosciences).This analysis was performed within the FSC
and SSC gate using histograms for the T-cell type of interest
(CD4+ or CD8+). Phytohemagglutinin A (1𝜇g/mL) (PHA,
Invitrogen, USA) was used as a polyclonal-positive stimulus.

2.6. Cytokine Profile of Nasal Polyp-Derived Cells. Isolated
polyp culture and coculture (MSC and polyps) supernatants
(from 6 out of 12 NP samples) were further harvested after
72 hours for cytokine quantification, using the Cytometric
Bead Array (CBA) Th1/Th2/Th17 Cytokine Kit, according
to manufacturer recommendations (BD, Becton Dickinson
Biosciences). Acquisitionwas performed in the FACSCanto II
cytometer (BD Biosciences) and the samples analyzed using
FCAP Array software v3.0 (Soft Flow Inc., HUN).

2.7. Statistical Analysis. Results were assessed for normal
distribution by the Kolmogorov-Smirnov test. Categorical
variables were expressed as percentages (%), and continuous
variables (data) were presented as means ± standard devi-
ations. The Mann-Whitney nonparametric test was used to
assess between-group differences. For analysis among three
or more groups, the Kruskal-Wallis nonparametric test for
one-way analysis of variance was used. For all analyses,
a P value ≤ 0.05 was considered statistically significant.
All statistical testing and plotting were performed using
GraphPad Prism 5 (GraphPad software, Inc., USA).

3. Results

3.1. Characterization of Mesenchymal Stem Cells and Polyp
Infiltrating Cells. The bone marrow-derived mesenchymal
stem cells used in this study exhibited most important
characteristics of MSCs, such as a plastic-adherent growth
pattern (Figure 1), fibroblast-like morphology (Figure 1(a)),
expression of specific surface antigens (CD105, CD54, CD90,
and CD73), and immunoregulatorymolecules (CTLA-4, PD-
L1, and PD-L2), and no expression of the immunogenic
and hematopoietic surface markers HLA-DR and CD45,
respectively (Figure 1(k)). Additionally, MSCs demonstrated
the ability to differentiate into adipocytes (Figures 1(c)-1(d)),
chondrocytes (Figure 1(f)), and osteocytes (Figure 1(h)) in
vitro. The polyp-derived cells spread from the whole polyp
in culture and exhibited spheroid-like morphology (Figures
1(i) and 1(j)).
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Figure 1: Characterization of bone marrow-derived mesenchymal stem cells and polyp-derived cells. (a) MSCs exhibiting fibroblastic-like
morphology in vitro; (b) MSC culture in adipogenic control medium showing absence of lipid vesicles; (c) MSCs containing lipid vesicles
(black arrow) in adipogenic differentiationmediumwithoutOil Red stain; (d)MSC culture in adipogenic differentiationmedium stainedwith
Oil Red (black arrow); (e) MSC culture in chondrogenic control medium; (f) MSC culture in chondrogenic differentiation medium stained
with Safranin O; (g) MSC culture in osteocyte control medium; (h) MSC culture in osteogenic differentiation medium stained with Alizarin
Red; ((i)-(j)) representative view of polyp-derived cells spreading and growing in culture (black arrow); and (k) immunophenotypic signature
of MSCs in culture, demonstrating absence of hematopoietic (CD45 and CD34) and immunogenic (HLA-DR) markers and expression of
CD105, CD90, CD73, and CD54, as well as immunoregulatory receptors such as PDL-1 and -2 and CTLA-4.

The immunophenotype of whole NP-derived cells sho-
wed the presence of distinct immune cells after single-cell
suspension. NK cells, T cells, dendritic cells, monocytes,
and B cells were present (Figures 2(a)–2(h)). The frequency

of each subtype of immune cells was as follows: NK
cells, 10.60 ± 6.28%; CD4+, 11.26 ± 4.70%; CD4+CD69+,
6.71 ± 4.31%; CD4+CD25+, 6.77 ± 4.35%; CD8+, 11.19 ±
3.49%; CD8+CD69+, 6.73 ± 5.09%; CD11c+, 14.17 ± 4.83%;
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Figure 2: Phenotypic aspects of polyp-derived cells. (a)Gate strategies for selection of themononuclear fraction of polyp-derived cells; (b)NK
cells (NK1.1+); (c) CD4 and CD4+CD69+ T cells; (d) CD4+CD25+ T cells; (e) CD8 and CD8+CD69+ T cells; (f) CD11c+ and CD11c+CD40+
dendritic cells; (g) CD14+ and CD14+CD40+ monocytes and (h) B cells (CD19+). Several types of activated and nonactivated immune cells
were observed within the polyp parenchyma.

CD11c+CD40+, 5.52 ± 5.14%; CD14+, 22.88 ± 15.06%;
CD14+CD40+, 5.06 ± 2.92%; and CD19+, 7.88 ± 4.36%
(Figures 2(a)–2(h)). In our samples, the ratio of activated cells
to nonactivated cells within the polyp ranged from 60% to
20%, depending on cell type. ForCD4+ andCD8+T cells, this
index was approximately 60%, for dendritic cells 35%, and for
monocytes 20% (Figures 2(a)–2(h)).

3.2. Effect of MSCs on Nasal Polyp-Derived Cells. To evaluate
the role of MSCs in the modulation of the NP microen-
vironment, we carried out a coculture assay for 72 hours
and assessed the frequency of polyp-derived infiltrating cells.
We found a significant decrease in the frequency of most
inflammatory cells. NK cells (NK1.1+), T helper cells (CD4+),

and cytotoxic T cells (CD8+) showed a significant decrease in
frequency when cocultured with MSC; however, no changes
in the activated T cell compartment (CD4+CD69+ and
CD8+CD69+) were observed (Figures 3(a)–3(d)). The fre-
quency of B cells, monocytes, and dendritic cells also tended
to decrease after coculture with MSCs. De novo, the fraction
of activated cells included in the monocyte and dendritic cell
subpopulations was not altered in comparison with cultures
performed in the absence of MSCs (Figures 3(e)–3(g)).

3.3. Effect of MSCs on the Expansion/Proliferation Capacity of
the T-Cell Compartment in Nasal Polyp-Derived Cells. On the
basis of the fact that MSC had promoted a decrease in the
frequency of most inflammatory cells in NP-derived tissue,
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Figure 3: Bone marrow-derived mesenchymal stem cells modulating the polyp microenvironment in vitro. (a) NK cell (NK1.1+) frequency
alone and in coculture with MSCs; (b) CD4+ and CD8+ frequencies alone and in coculture with MSCs; (c) CD8+ and CD69+ frequencies
alone and in coculture with MSCs; (d) CD4+ and CD69+ frequencies alone and in coculture with MSCs; (e) B cell (CD19+) frequency alone
and in coculture with MSCs; (f) CD11c+ and CD11c+CD40+ dendritic cell frequencies alone and in coculture with MSCs and CD14+ and
CD14+CD40+ monocyte frequencies alone and in coculture with MSCs. The presence of MSCs may immunomodulate the phenotype of
polyp-derived cells toward an immunosuppressive profile.

we sought to investigate whether MSCs could promote the
functional ability to arrest NP-derived T-cell proliferation
in vitro. Surprisingly, we observed significant inhibition of
expansion/proliferation of both T helper cells (CD4+) and
cytotoxic T cells (CD8+) derived from NP stimulated with
PHA in compared with cells stimulated but cultured in the
absence of MSCs (Figures 4(a) and 4(b)). The immunosup-
pressive effect of MSCs on NP-derived T cells was evident,

considering that the index of proliferation of CD4+ and
CD8+ T cells cocultured with MSCs did not differ from that
of control unstimulated T cells.

The immunoregulatory effect of MSCs is almost always
associated with an expansion of regulatory T cells (CD4+
CD25+Fosp3+). Thus, in the present work, we investigated
the presence of CD4+CD25+Foxp3+ T cells in culture with
or without the presence of MSCs. A significant increase in
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Figure 4: Bone marrow-derived mesenchymal stem cells exhibit functional immunosuppressive action on polyp-derived cells in vitro. (a, b)
Proliferative index of CD4+ and CD8+ cells, respectively, stimulated with phytohemagglutinin (PHA), in the presence or absence of MSCs;
(c) frequency of CD4+CD25+Fpxp3+ cells in the presence or absence of MSCs. Functionally, MSCs exhibited immunosuppressive action on
polyp-derived cells, as represented by inhibition of proliferation of CD4+ andCD8+ cells with a concomitant increase in CD4+CD25+Fpxp3+
frequency.

number of CD4+CD25+Foxp3+ T cells was observed in the
presence of MSCs as compared with cultures of T cells alone
(Figure 4(c)), suggesting that these cells can play an essential
role in the development of the chronic inflammatory process
in NP.

3.4. Effect of MSCs on the Cytokine Profile of Nasal
Polyp-Derived Cells. Finally, to elucidate the mechanism
underlying the immunosuppressive effect of MSCs in NP,
we analyzed six NP samples using the Cytometric Bead
Array Technique. Analysis of culture supernatants showed a
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Figure 5: In vitro cytokine profile of polyp-derived cells cultured in the presence or absence of bonemarrow-derivedmesenchymal stem cells.
A decrease in inflammatory cytokines (IL-2, TNF-𝛼, and IFN-𝛾) and enhancement of anti-inflammatory cytokine (IL-10 and IL-6) levels was
observed when MSCs were cocultured with polyp-derived cells.

prominent shift from an inflammatory to an anti-infla-
mmatory cytokine profile. In coculture, MSCs promoted an
increase in anti-inflammatorymolecules such as IL-10, with a
concomitant decrease in inflammatory cytokines such as IL-
2, TNF-𝛼, and IFN-𝛾 (Figure 5).

4. Discussion

Nasal polyposis is characterized by the most severe upper-
airway inflammatory process observed in clinical practice.
This process is crucial to understand the mechanisms that
underlie development of polyposis. It is known that MSCs
have immunomodulatory properties, as demonstrated in
some organs such as the brain, kidney, heart, bone, and lung
[26–30]. MSC-mediated immunomodulation can occur via
cell-to-cell contact or by release of soluble factors, which
are associated with many regulatory effects of these cells in
a tissue inflammation context. The best documented MSC-
secreted cytokines are TGF-𝛽1, PGE-2, IDO, IL-10, IL-6,
MMP-2,9, TIMP-2,3, nitric oxide (NO), chemokine ligand
2 and 5 (CCL2,5), human leukocyte antigen 5 (HLA-G5),
heme oxygenase-1 (HO-1), hepatocyte growth factor (HGF),
and leukemia inhibitory factor (LIF) [17]. On the basis
of their properties, MSCs have been explored in a wide
range of experiments and have been used for therapeutic
purposes more extensively than any other subtype of stem
cell. These cells also retain further important features, such
as low immunogenicity, and promote inhibition of prolifera-
tion/activation in allogeneic lymphocytes [18].

Thus, in the present study, we assessed the impact of
MSCs onmodulation of the inflamedNPmicroenvironment.
Firstly, we demonstrated that several types of inflammatory
cells (NK cells, B cells, T cells, monocytes, and dendritic
cells) are found in this milieu. After characterization of MSC
phenotype and differentiation, these cells were cultured with
polyp-derived cells, and a direct immunomodulatory effect
on the inflammatory NP cell compartment was observed.
There was a significant decrease in the frequency of CD4+,
CD8+, CD14+, and NK cells, as well as a significant increase
in CD4+CD25+Foxp3+ T cells, when MSCs were cocultured
with NP-derived cells. A decrease in regulatory T cells has
been described as a feature of the NP disease course. This is
an important finding, and the increase in CD4+CD25+Foxp3
cells induced by presence of MSCs in the present study may
help in our understanding of the progression of NP. Func-
tionally, we observed that MSCs inhibited both CD4+ and
CD8+ polyp-derived T cell proliferation and efficiently chan-
ged the local inflammatory pattern, promoting a shift
from an inflammatory to an anti-inflammatory cytokine
profile.

The stem cells actions arewidely dependent on the disease
and time of therapy. Contact-dependent immunosuppression
is one mechanism of MSC action and can be associated with
the expression of immunoregulatory molecules expressed on
the surface of MSCs or by delivering microvesicles carrying
bioactive molecules [31]. CTLA-4, PDL-1, and PDL-2 were
present in the MSCs used in this study, and their role in
inhibition of proliferation and activation of T lymphocytes
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has been reported extensively in the stem cell literature [32,
33].

MSC is also capable of exerting influence on inflamed
process via paracrine action [34] even far from the injured tis-
sue.The soluble factors released byMSCs are anothermecha-
nism that may also have influenced modulation of the polyp-
derived cell microenvironment. Many studies have demon-
strated the effect of TGF-𝛽 secreted by MSCs on suppression
of peripheral blood mononuclear cell (PBMC) proliferation
[35]. TGF-𝛽 is also capable of increasing the frequency of
regulatory T cells, especially when associated with PGE2 [36–
38]. In a model of asthmatic mice, TGF-𝛽 secreted by MSCs
showed a beneficial effect by decreasing levels of IL-4, IL-5,
IL-13, and immunoglobulin in bronchoalveolar lavage fluid
[38].

Although the role of TGF-𝛽 on remodeling process is still
controversial in the literature, there is a strong evidence inNP
that the lack of TGF-𝛽 is involved in decreasing extracellular
matrix formation [5, 6, 39] highlighting the importance
of this molecule on the development of inflammation in
NP.

In addition, PGE2 is another molecule which is found
in low levels in NP tissue [40] and MSCs produce PGE2.
PGE2 exerts an immunosuppressive action on T cells and,
consequently, promotes a decrease in IFN-𝛾 andTNF-𝛼 levels
[41, 42]. Our study corroborates these findings, demonstra-
ting decreased IFN-𝛾 andTNF-𝛼 expression inNP cells cocu-
ltured withMSCs in comparison with cultures of NP-derived
cells alone; maybe PGE2 is contributing to decrease these
interleukins.

In mice, macrophages from septic lungs produced higher
levels of IL-10 when treated with MSCs than untreated
macrophages. The authors suggested that the EP2 and EP4
receptors (prostaglandin receptors) were responsible for this
increase in IL-10 production [43]. In this context, IL-10 is
considered to be the main immunosuppressive interleukin,
and we found higher levels of IL-10 in NP cells treated with
MSCs than in untreated cells.

Consistently with what is found in a variety of other dise-
ases [44, 45], the presence of MSCs in NP cell cultures
increased the expression of IL-6 (an interleukinmainly prod-
uced by Th1 cells). Paradoxically, although IL-6 is associated
with increased production of IL-2 [46], we found decreased
levels of this inflammatory interleukin in NP cells treated
with MSCs. One plausible explanation is the fact that MSCs
can secrete TGF-𝛽 and IL-6 and that differentiation of Treg/
Th17 depends on the proportion of these two cytokines [47].
In the present study, we did not detect IL-17 production in
NP cell cultures, with or without the presence of MSCs. This
may suggest that the interaction of distinct soluble factors
with different cell types could alter the immune context of
NP.

Furthermore, indoleamine 2,3-dioxygenase (IDO), a
rate-limiting enzyme that catalyzes the degradation of trypto-
phan, is found at increased levels during chronic inflammat-
ory diseases induced by inflammatorymediators such as IFNs
and IL-6 [48]. Elevated IDO expression has been observed in
nasal polypoid tissue as compared with healthy nasal mucosa
[49]. IDO is an immunoregulatory enzyme and belongs to

the MSC arsenal. The role of MSCs in induction of tolera-
nce in renal allograft recipients was not confirmed in IDO
knockout mice, showing the crucial importance of IDO to
the immunosuppressive effect of MSCs via regulatory T cells
[50].

In addition, we observed an elevated presence of IFN-
𝛾 and IL-6 in cultures of NP-derived cells. After coculture
with MSCs, IL-6 levels increased whereas IFN-𝛾 declined. It
is important to note that a decrease in IFN-𝛾 could indicate a
decrease inTh1 cells activation.

Different types of T cells are implicated in the pathogen-
esis and progression of NP, but, in populations of European
descent, Th2-driven disease is still a hallmark of the condi-
tion. In the Asian population NP is aTh17/Th1-driven disease
with increase of neutrophils. We characterize our patients as
descendants of European and none was of Asian origin. In
our sample the inflammatory cells profile was similar to the
one found in European population (increase of Th2 cells and
eosinophils).

Some studies have demonstrated that MSCs are able to
promote conversion of theTh1 phenotype into aTh2 response
[51]. In this sense, MSCs could contribute to NP, considering
themicroenvironment already saturatedwithTh2-dependent
interleukins in this setting. In the present study, we did not
detect IL-4 which is considered an important interleukin that
induces differentiation fromTh0 toTh2 immune response in
NP-derived cell cultures, regardless of the presence of MSCs.
This would suggest that in our coculture experiments with
NP-derived cells, MSCs could not intensify a specific Th2
response.

Additionally, in the presence of MSCs, Th1 cytokines
profile was altered, Th2 cytokines were not detected, and IL-
10 was increased. These results indirectly suggest that the T-
cell profile may have been directed to a regulatory pattern,
considering the prominent increase of CD4+CD25+Foxp3+
T cell frequency in our MSC cocultures.

The NP treatment is based on two main pillars: oral
and topical steroids and surgery, with the recurrence of
NP after surgery being usual. The understanding of MSC
mechanism in decreasing the inflammatory process in NP
could be helpful to reduce the intake of steroids and the
surgery indications.

In conclusion,we demonstrated thatMSCs can be a useful
tool for the investigation of the inflammatory microenviron-
ment of NP. These results were obtained entirely in vitro,
and any conclusions about the actual effects of MSCs in
NP in vivo remain to be explored. However, our findings
clearly demonstrate an immunoregulatory effect of MSCs
on immune cells (especially T cells) derived from nasal
tissue affected by polyposis. Finally, we hope that further
studies will be performed in the search for an understanding
of the mechanism of MSC activity in the context of NP
inflammation.
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