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SUMMARY

Hypoxia is serving crucial roles in cancers. This study aims to comprehensively
analyze the molecular features and clinical relevance of a well-defined hypoxia-
associated signature in pan-cancer using multi-omics data. Data were acquired
from TCGA, CCLE, GDSC, and GEO. RNA expression pattern, copy number vari-
ation (CNV), methylation, and mutation of the signature were analyzed. The ma-
jority of the 15 genes were upregulated in cancer tissues compared with normal
tissue, and RNA expression was negatively associated with methylation level.
CNV occurred in almost all the cancers, whereas mutation frequency was low
across different cancer types. The signature was also closely related to cancer
hallmarks and cancer-related metabolism pathways. NDRG1 was upregulated in
kidney cancer tissues as indicated by immunohistochemistry. Besides, most of
the 15 genes were risk factors for patients’ overall survival. Our results provide
a valuable resource that will guide both mechanistic and therapeutic analyses
of the hypoxia signature in cancers.

INTRODUCTION

Cancer is a major burden worldwide and is also a leading cause of death (Siegel et al., 2019). It is a multi-

step disease and characterized by complex biological features. Hypoxia, which is defined as reduced ox-

ygen levels, is one of the hallmarks of malignant tumors (Giaccia and Schipani, 2010). Most of the tumor

cells have insufficient blood supply due to rapidly increasing cell proliferation and increasing tumor

mass, resulting in a hypoxic tumor microenvironment (Foster et al., 2014), and hypoxia has a crucial role

in shaping the behavior of cancers. It has been reported that hypoxia could cause tumor cells to acquire

more aggressive phenotypes. Hypoxia can also induce epithelial-mesenchymal transition (EMT) (Muz

et al., 2015), which is closely related to tumor migration and invasion (Mittal, 2018). Moreover, hypoxia pro-

motes self-renewal capability and suppresses the differentiation of stem cells in certain tumors (Li et al.,

2009). Besides, hypoxia is associated with abnormal vasculature (Carmeliet and Jain, 2011), metastasis,

and radio-chemotherapy resistance (Muz et al., 2015).

Some approaches, including both invasive and noninvasive ones, have been developed to measure

tumor oxygen levels in tumors (Vaupel et al., 2007). However, these procedures have limited applica-

tions. Therefore a robust and clinically applicable hypoxia gene signature has been introduced (Buffa

et al., 2010). The signature is composed of 15 genes with known function: VEGF (Vascular endothelial

growth factor A), PGAM1 (Phosphoglycerate mutase 1), ENO1 (Enolase 1), LDHA (Lactate dehydroge-

nase A), TPI1 (Triosephosphate isomerase 1), P4HA1 (Prolyl 4-hydroxylase, a-polypeptide I), MRPS17

(Mitochondrial ribosomal protein S17), ADM (Adrenomedullin), NDRG1 (N-myc downstream regulated

1), TUBB6 (Tubulin, b6), ALDOA (Aldolase A, fructose-bisphosphate), MIF (Macrophage migration

inhibitory factor), SLC2A1 (Solute carrier family 2, member 1), CDKN3 (Cyclin-dependent kinase inhib-

itor 3), and ACOT7 (Acyl-CoA thioesterase 7). The signature is the best performer, proved by recent

extensive researches that have evaluated and validated the power of different hypoxia signatures

(Ye et al., 2019).

Despite the presence of studies about the hypoxia-associated signature, there is still a lack of researches

about the expression, copy number variation (CNV), methylation, or mutations of these hypoxia-related

genes in tumors. In this study, we aimed to comprehensively identify the molecular features and clinical

relevance of these genes across a wide variety of cancer types using multi-omics data.
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RESULTS

Genomic Alterations of Hypoxia-Associated Signature in Different Cancer Tissues

A common and compact hypoxia metagene has been identified and selected (Buffa et al., 2010). We

analyzed the molecular landscape of the 15-gene hypoxia signature in various cancers to provide basic in-

formation for future studies. We analyzed CNV, methylation, and mutation data from TCGA, CCLE, GDSC,

and GEO (Database: TCGA, CCLE, GDSC. and GEO). As shown in Figure 1A, CNV was observed in all the

hypoxia-related genes, among which NDRG1 and MRPS17 had the highest gain frequency across the 33

cancer types. The average mutation frequency of the 15 genes was low, ranging from 0 to 0.25 with an

average value of 0.01 (Figure 1B).

The methylation data from TCGA was also analyzed. The beta value was used to quantify methylation status.

Methylation was observed in most of the 15 genes with the beta value range being 0–0.7 (Figure 1C).

ACOT7, TUBB6, and NDRG1 were the most highly methylated genes as shown in Figure 1C. As gene methyl-

ation is closely correlated with mRNA expression, gene expression data from TCGA and GEO were then

Figure 1. Genomic Alterations of Hypoxia-Associated Signature in Different Cancer Tissues

(A) CNV of the hypoxia-associated signature in cancers. The upper half of each rectangle exhibits the loss frequency, and the bottom half exhibits the gain

frequency.

(B) Mutation frequency of the signature among different cancer types.

(C) Heatmap of the methylation level of the 15 genes in 33 cancer types.

(D) Log2 fold change of the genes in cancer tissues versus normal tissues. Both TCGA (left) and GEO (right) data were used.

(E) Correlation plot of RNA expression and methylation level of each gene in each cancer type. The white grid means p > 0.05

(F and G) (F) Violin plot of each gene in normal tissues and cancer tissues in LIHC. (G) IHC result of NDRG1 expression in kidney cancer tissues.

Data were represented as mean G SEM. **p < 0.01; ***p < 0.001.
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analyzed. Gene expression of normal tissues and cancer tissues was compared. Interestingly, both TCGA and

GEO data showed that lung, kidney, and uterus cancer tissues had general higher hypoxia-associated gene

expression compared with normal tissues (Figure 1D). Linear models were also used to adjust for tumor purity,

ploidy, age, sex, and race (Table S1). To assess the relationship between methylation and gene expression, the

correlation was analyzed, and it indicated that there was a reverse relationship between RNA expression and

methylation level in most of the 33 cancer types (Figure 1E). In particular, RNA expression data from LUSC

were further analyzed, and it showed that 14 of the 15 genes were significantly upregulated in cancer tissues

compared with normal tissue with p < 0.001 (Figure 1F). As NDRG1 was significantly upregulated in kidney can-

cer tissues in both GEO and TCGA data, we validated the results in tissues by immunohistochemistry (IHC). It

showed that NDRG1 was significantly higher in kidney cancer tissues (Figure 1G).

Genomic Alterations of Hypoxia-Associated Signature in Different Cancer Cell Lines

To further understand the molecular landscape of this 15-gene signature (Buffa et al., 2010), we also

analyzed the data of cancer cell lines from CCLE and GDSC. Data of 715 cell lines of 24 cancer types in

CCLE and 988 cell lines of 30 cancer types in GDSC were identified. Unexpectedly, CNV frequency of

most cell lines in CCLE was quite low ranging from 0 to 0.65, whereas CNV frequency in GDSC was high

on average ranging from 0 to 1 (Figures 2A and 2B).

UCEC exhibited the highest mutation frequency among all the cancer types, which is consistent with the

fact that UCEC has a higher global mutation burden. The mutation frequency of the genes in CCLE was

similar to that of GDSC, both ranging from 0 to less than 0.5 (Figures 2C and 2D).

Hypoxia is a potent microenvironmental factor promoting metastatic progression (Rankin and Giaccia,

2016). To evaluate and validate the potential role of the 15-gene signature in metastasis, we further as-

sessed the expression pattern of the signature in metastatic and primary cancer cell lines. The results re-

vealed that the expression of these genes was on an average equal to or higher in metastatic cell lines

in most cancer types (Figures 2E and 2F), indicating a potential role of these genes in cancer metastasis.

Unexpectedly, there was some inconsistency between CCLE and GDSC databases, which could be due to

the use of different array platforms, experimental artifacts, measurement error, or divergence of the cell

lines (Haibe-Kains et al., 2013). Extra attention should be paid for future researchers when using these

databases.

Hypoxia-Associated Signature and Cancer Pathways

Wehypothesized that a variety of pathways interactedwith the hypoxia-related signature. Moreover, genes

do not function in isolation (Li et al., 2019); we thus first investigated the expression correlation among the

hypoxia gene signature. To our expectations, the majority of these genes were positively related to each

other (Figure 3A). In particular, TPI1 and ENO1 weremost closely correlated. GSVA analysis was adopted to

assess the involvement of the signature in cancer-related hallmarks. Cancer hallmark gene sets from

MSigDB collections, which summarize and represent specific well-defined biological states or processes

(Subramanian et al., 2005), were applied in GSVA analysis. We then examined the correlation between

the expression of individual genes of the signature and the activity of cancer hallmark-related pathways.

We found that the expression of the signature was correlated with the activation (correlation coefficient

> 0, p < 0.01) or inhibition (correlation coefficient < 0, p < 0.01) of multiple oncogenic pathways (Figure 3B).

E2F target pathway, MYC target pathway, glycolysis pathway, hypoxia pathway, and unfolded protein

response pathway were the most frequently and highly activated pathways, whereas myogenesis pathway,

hedgehog signaling pathway, heme metabolism pathway, bile acid (BA) metabolism pathway, and Kras

signaling pathway were the most highly inhibited pathways (Figure 3B). Besides, the activated pathways

greatly outnumber the inhibited pathways (Figure 3C), indicating a cancer promotion role of these genes.

To further study the role of hypoxia-related genes in the regulation of metabolites, metabolomics data

were retrieved from CCLE. The correlativity between metabolomics and transcriptomics data of the 15-

gene signature were then analyzed. RNA-metabolite pairs with |R|R0.6 and p < 0.05 were shown in Fig-

ure 3D. We further investigated the metabolic pathways that were engaged in the network. It showed

that about 30 metabolism pathways were included in the network. Interestingly, most of these pathways

were identified as common cancer-related pathways like BA biosynthesis, biopterin metabolism, and lysine

metabolism (Table S2).
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Figure 2. Genomic Alterations of Hypoxia-Associated Signature in Different Cancer Cell Lines

(A–G) CNV frequency of the 15 genes in cell lines of CCLE (A) and GDSC (B). Mutation frequency of the 15 genes in cell

lines of CCLE (C) and GDSC (D). Log2 fold change of genes’ expression in metastatic cell lines versus primary cell lines in

CCLE (E) and GDSC (F). Heatmap of the correlation between CNV of the signature and patient’s OS. Red shows that a

higher copy number was related to a worse OS, and blue shows a link with a better OS (G).
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Hypoxia promotes cancer malignancy, so the 15-gene hypoxia signature is supposed to contribute to can-

cer cells’ progression. We adopted cellular fitness analysis, which could predict the functions of genes in

various biological processes (Kurata and Lin, 2018; Perez et al., 2017), to validate the roles of the 15 genes

in normoxic cancer cells. Cell fitness data from Sanger genome-wide CRISPR essentialities were used in our

study to evaluate the function of these genes in cells. These essentiality profiles provide a measure of the

loss or gain of cellular fitness resulting from knocking out a gene from targeted disruption via a single guide

RNA. There was a dramatic decrease in cellular fitness after knocking out ALDOA, LDHA, TPI1, and PGAM1

in most cancer types, whereas only a slight increase in cellular fitness after knocking out TUBB6, ACOT7,

NDRG1, CDKN3, VEGFA, and MIF (Figure 3E). These data suggested that the 15-gene signature mainly

acts as cancer promoters. In addition, clinically actionable genes were collected and downloaded from a

previously published article (Van Allen et al., 2014) to study the potential clinical and medical use of the

15-gene hypoxia signature. Interactions between these genes with the hypoxia-associated signature

Figure 3. Hypoxia-Associated Signature and Cancer Pathways

(A) RNA correlation plots of the 15 hypoxia-associated genes.

(B) Network of cancer hallmarks and the hypoxia-associated signature.

(C) Number of activated and inhibited cancer hallmarks of each gene. The red sector represents activated hallmarks, and the blue sector represents inhibited

hallmarks.

(D) Network of metabolites and the hypoxia-associated signature.

(E) Log2 fold change of cellular fitness after knocking out each gene in cells.

(F) Correlation between clinically actionable genes and hypoxia-associated genes.

(G) Average correlations between the gene of interest and functional states in different cancers.
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were evaluated, and 80 of 121 genes were found to be associated with the signature (Figure 3F), which indi-

cated that the hypoxia signature might interact with these genes and be used as drug targets. Moreover,

correlations between the gene list and functional states in different cancers were analyzed. As shown in Fig-

ure 3G, most of the genes were positively related to malignant behaviors, especially hypoxia, invasion, and

EMT.

Prognostic Role of the Hypoxia-Associated Signature in Cancers

The hypoxia-associated signature was playing important roles in cancers based on the aforementioned

findings. Therefore we speculated that the signature would also affect clinical outcomes. Cox analysis

was adopted to evaluate the effect of the 15 genes on overall survival (OS) of patients. The results demon-

strated that the majority of these genes were risk factors for OS in various cancer types, especially in liver

hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD) (Figure 4A). Therefore, LIHC cases, as

an example, were divided into two groups according to the median risk score (Risk Score =
Pn

i = 1Coef ðiÞ�
xðiÞ). Based on the risk score pattern of the signature, two subgroups of patients with LIHC cancer were

identified (Figure 4B). As shown in Figure 4C, cases of a low risk score had a much better OS than those

of a high risk score. The data demonstrated that the signature is powerful to predict OS at least for

LIHC. Time-dependent receiver operating characteristic analysis was then used to evaluate the accuracy

of the signature-based prognostic prediction model in LIHC. Area under the curve = 0.69 showed that

the model had excellent predictive value (Figure 4D). The role of P4HA1 in the prognosis of cancers was

also analyzed, and it indicated that P4HA1 was a risk factor in more than one-third of all cancers (Figure S1).

DISCUSSION

In our study, we comprehensively analyzed multi-omics data of hypoxia-associated signature. Metabolo-

mics, transcriptomics, epigenetics, and proteomics data are integrated to investigate the role of the

hypoxia-related signature in cancers in an extensive manner. Multi-omics data enable us to predict novel

functional interactions between molecular mediators at multiple levels. Also, these data have the potential
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Figure 4. Prognostic Role of the Hypoxia-Associated Signature in Cancers

(A) Heatmap of the relationship between the expression of the signature and OS. Red shows that a higher expression was related to a worse OS, and blue

shows a link with a better OS.

(B) Risk score value distribution in patients with LIHC.

(C) Survival plot of patients with LIHC according to the risk score.

(D) Receiver operating chanracteristic curve of risk score prediction model.
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to uncover crucial biological observations into hallmarks and pathways that would otherwise not be

obvious through single-omics studies. Hypoxia has been paid wide attention recently. Ye et al. classified

tumor samples into hypoxia score-high and score-low groups based on the same hypoxia signature and

identified molecular alterations that correlated with drug responses to anticancer drugs (Ye et al., 2019).

Also, Bhandari et al. quantified hypoxia in various cancer types and found elevated hypoxia associated

with increased mutational load (Bhandari et al., 2020), as well as observed widespread hypoxia-associated

dysregulation of microRNAs (Bhandari et al., 2019). However, molecular description of the 15-gene hypoxia

signature in cancer tissues and cell lines is still lacking. Our study performed a comprehensive analysis of

the hypoxia signature, aiming to provide a useful resource for future related researches.

CNVs are nearly ubiquitous in cancer (Heitzer et al., 2016; Zack et al., 2013) and have a great effect on cancer

genome as a key typeofgenomic variations (Heitzer et al., 2016).Genes’ CNV landscape is varied acrossdifferent

cancer types, and specific CNVs are related to cancer outcomes (Nibourel et al., 2017). In our study, we found

that NDRG1 and MRPS17 are characterized by high gain frequency across the 33 cancer types. Further analysis

showed that the copy number gains of NDRG1 and MRPS17 are prone to be risk factors in cancers (Figure 2G).

Therefore, CNVs of the two genes might be used to predict prognosis in some cancers.

Not up toexpectations, the generalmutation frequency of thesegenes is quite lowwith amaximum frequencyof

0.25, indicating thatmutation is not themain alteration of these genes.Methylation is oneof the commonepige-

neticmechanisms that involved in cell proliferation, autophagy, differentiation, and cell cycle in cancer (Pan et al.,

2018). We also looked at the methylation level of the 15 genes across all the 33 cancer types. The methylation

level of the signature is similar in 30 of the 33 cancer types, demonstrating the homogeneity of the signature

in cancers. DNA methylation in the gene body is supposed to increase gene expression, whereas promoters’

methylation is negatively related to gene expression (Yang et al., 2014). The negative correlation between

RNA expression and methylation status for the majority of the genes reveals that promoter methylation is com-

mon for these genes, and methylation inhibitors might be used based on the presumed therapeutic target,

particularly in the case of NDRG1, TUBB6, and ACOT7.

Data from TCGA andGEO showed alike RNA profiling in normal tissue and cancer tissue, proving the reliability

of our analysis. Also, RNA data from cell lines invalidated themetastasis promoter roles for most of these genes.

These data are consistentwithprevious studies (Bhandari et al., 2019, 2020; Yeet al., 2019) and further proved the

roles of hypoxia in carcinogenesis and cancer development process. Interestingly, the RNA expression patterns

of COAD are much the same as those of READ, indicating the general histological homogeneity of colon and

rectum. On the other hand, the patterns are almost opposite between KIRC and KIRP, both of which are from

renal tissues. It illustrates the discrepancy of clear cell cancer and papillary cancer of the kidney.

The majority of these 15 genes are upregulated in cancer tissues compared with normal tissue, implying that

these genes could be positively correlated with each other. Data from RNA correlation analysis consistently vali-

dated the hypothesis. In particular, TPI1 and ENO1 are themost closely related. Both TPI1 and ENO1 are glyco-

lytic enzymes, and studies have reported that TPI1 and ENO1 are overexpressed in various types of cancers,

along with other glycolytic enzyme members like ALDOA and LDHA (Fedorova et al., 2019; Hamaguchi et al.,

2008; Migneco et al., 2010). TPI1 and ENO1 would also be functionally correlated. Therefore, future studies

about hypoxia or glycolysis could incorporate TPI1 andENO1 into existing knowledge.Moreover,GSVA analysis

also found that these 15 genes are more likely to be oncogenes as the number of activated pathways is much

larger than that of inhibited pathways. Furthermore, a lot of important cancer hallmarks, such as apoptosis,

p53 pathway, and transforming growth factor-beta signaling, interact with the signature. It is not surprising

that the signature promotes cancer, but we listed the activated pathways in our results aiming to provide

some useful clues for future studies. To our expectation, hypoxia is significantly related to the majority of these

15 genes. Of interest, there are some overlaps between the signature-related cancer hallmarks and metabolo-

mics pathways among which are glycolysis and BA biosynthesis. Aerobic glycolysis has been closely linked with

tumorigenesis for a long timeever since the ‘‘Warburg effect’’ was proposed (Warburg, 1956). Yet, the underlying

mechanistic details regarding the causes and effect of the metabolic phenotype remained unclear (Ganapathy-

Kanniappan andGeschwind, 2013). Our studymight provide some clues to subsequent studies. BAbiosynthesis

has been serving crucial roles in multiple cancers and a large number of pathways linking BAs to cancer have

been identified including oxidative stress with DNA damage and genomic instability, apoptosis, epigenetic fac-

tors, activation of nuclear receptors and metabolic and cellular homeostasis, and interactions with and changes

of gut microbiota (Di Ciaula et al., 2017). Studies have showed that BA could be linked to glycolysis. BA
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interruption by BA sequestrants is able to affect Carbohydrate-response element-binding protein (ChREBP)

transactivity, subsequently influencing aerobic glycolysis through p53 inhibition (Iizuka, 2017). Also, BAs could

potently modulate microbiome (Tian et al., 2020), and microbial communities provide molecules and metabo-

lites, which are essential for glycolysis (Belizario et al., 2018). It has been suggested that hypoxia could repress BA

synthesis through inhibition of CYP7A1 expression (Moon et al., 2016).Moreover, hypoxia could negatively regu-

late BA homeostasis by regulating the biosynthesis, conjugation, secretion, and absorption of BAs via Farnesoid

X receptor (FXR) (Fujino et al., 2009). Our results were consistent with those of the aforementioned studies that

most of the genes from the 15-gene signature were negatively associated with BA metabolism pathway. Tyro-

sine, a crucial component of tyrosinemetabolism and biopterin metabolism pathways, is widely involved inmul-

tiple cancer pathophysiologies. We also found that some genes of the signature were correlated with tyrosine

metabolism. Previous studies showed that hypoxia could decrease tyrosine by directly or indirectly upregulating

tyrosine hydroxylase (Kumar et al., 2003; Lim et al., 2015). Therefore, tyrosine might be used to prevent hypoxia-

induced effects. In fact, it has been proved that tyrosine administration counters hypoxia-induced decrements in

learning and memory (Shukitt-Hale et al., 1996). Future researches are warranted to develop drugs targeted on

tyrosine to treat cancers.

Cellular fitness has been applied in many fields to uncover new oncogenes (Kurata and Lin, 2018) and study

molecular structures (Perez et al., 2017). In our study, cellular fitness was used tomeasure the potential func-

tion of these genes in cells. The results also indicate that most of these genes are essential to maintain

normal cancer cellular fitness. It is worth noting that the cellular fitness here was performed in cancer cells,

which were cultured under normoxia. Multiple hypoxia-mediated gene regulatory networks will be initiated

and produced under lasting or temporary hypoxic situations and finally lead to significant change of cellular

functions and behaviors (Chen et al., 2020). Subsequently, irreversible processes develop, which could

result in pathophysiological disorder consequences. Therefore, the cells that are cultured in normoxia

cannot completely reflect the the functions of the signature in hypoxia. However, these data could at least

provide and validate some information about roles of the 15 genes. Also, cells from CCLE and GDSC were

cultured under normoxia, therefore data from these cells are not closely related to hypoxia in primary can-

cers. However, we aimed to provide a molecular landscape of the signature in cancer cells, which could aid

future researchers to select suitable hypoxia cell models.

A previous study has found that hypoxia status could affect most clinically actionable genes and experi-

mentally validated the predicted effects of hypoxia on the response to several drugs in cultured cells (Ye

et al., 2019). In our study, we further evaluated the correlation of the 15-gene signature and 121 clinically

actionable genes in a direct way and also showed that the hypoxia signature is closely related to the clin-

ically actionable genes. Both the studies warrant that hypoxia-targeted therapy is a promising cancer treat-

ment, probably as a component of combination therapy targeting clinically actionable genes.

Prognosis prediction of cancers is crucial, as it can aid the subsequent clinical management of patients.

Despite the fact that remarkable improvement has been achieved in cancer research globally over the

past several decades, it is still a big challenge to predict patients’ prognosis. We also attempted to eval-

uate the role of the signature in cancer prognosis. The findings demonstrate that the genes are risk factors

in about 65% gene-cancer pairs, which accords with the cancer promoter role of these genes in cancers.

The risk score based on expression and hazard ratio could greatly separate LIHC cases, and the risk score

is powerful to predict the prognosis of LIHC. This evidence warrants further study of hypoxia-associated

signature in cancers. It could be also used as an effective prognosis prediction model.

There may be some possible limitations in this study. Data from multiple sources are difficult to be pro-

cessed and analyzed under a unifying framework given the diversity of methodological work in this area

(Wu et al., 2019). It may lead to minor inconsistencies between our study and others’. Besides, some

data are collected from retrospective studies in which some critical parameters are not recorded, and

remarkable biases could influence selection of controls. Therefore, further prospective clinical studies

are needed to validate our findings.

In conclusion, we systematically analyzed the landscape of genetic, epigenetic, and metabolomics alter-

ations and biological and clinical relevance of hypoxia-associated signature in cancers. It helps to better

understand the dysregulation of hypoxia in cancer. The findings from our study can be readily applied

to further studies and are highly promising for personalized treatment regimens and clinical management.
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Limitations of the Study

Cells that were used to analyze the profile of the hypoxia signature were cultured in normoxia. This would

not perfectly reflect the situation of cells that are cultured in hypoxia.
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Fig.S1 The role of P4HA1 in 5-year overall survival in cancers Related to Figure 1. Cases were divided into 

High Expresison group and Low Expression groups depending on median P4HA1 RNA expression in each 

cancer type. 

  



Table S2 Metabolites and pathways in cancer cell lines, Related to Figure 3 

Metabolites Pathways 

Taurocholate Bile acid biosynthesis 

Tyrosine Tyrosine metabolism|Biopterin metabolism 

Sorbitol Galactose metabolism|Fructose and mannose metabolism 

Lactose Galactose metabolism 

Sucrose Galactose metabolism 

Acetylcholine Glycerophospholipid metabolism 

Choline Glycerophospholipid metabolism|Glycine, serine, alanine and threonine metabolism 

Serine Methionine and cysteine metabolism|Vitamin B9 (folate) 
metabolism|Glycerophospholipid metabolism|Glycosphingolipid metabolism|Glycine, 

serine, alanine and threonine metabolism 
Dimethylglycine Glycine, serine, alanine and threonine metabolism 

(5-L-glutamyl)-L-alanine Glycine, serine, alanine and threonine metabolism 

Phosphocreatine Glycine, serine, alanine and threonine metabolism 

Betaine Glycine, serine, alanine and threonine metabolism 

Sarcosine Glycine, serine, alanine and threonine metabolism 

4-(Phosphonooxy)-L-threonine Glycine, serine, alanine and threonine metabolism 

Creatine Glycine, serine, alanine and threonine metabolism 

3-Phosphoglycerate Glycine, serine, alanine and threonine metabolism|Glycolysis and Gluconeogenesis 

PEP TCA cycle|Glycolysis and Gluconeogenesis 

Malate TCA cycle|Glycolysis and Gluconeogenesis 

Carnosine Histidine metabolism 

2-Aminoadipate 6-semialdehyde Lysine metabolism 

3-Hydroxy-N6,N6,N6-trimethyl-L-
lysine 

Lysine metabolism 

Carnitine Lysine metabolism|Urea cycle and metabolism of arginine, proline, glutamate, aspartate 
and asparagine 

gamma-Trimethyl-
hydroxybutyrobetaine 

Lysine metabolism|Urea cycle and metabolism of arginine, proline, glutamate, aspartate 
and asparagine 

(R)-3-Mercaptolactate Methionine and cysteine metabolism 

homocysteine thiolactone Methionine and cysteine metabolism 

Cystathionine Methionine and cysteine metabolism 

Taurine Bile acid biosynthesis|Methionine and cysteine metabolism 

Methionine Methionine and cysteine metabolism|Glycine, serine, alanine and threonine 
metabolism 

Inositol Phosphatidylinositol phosphate metabolism 

Glucuronate Phosphatidylinositol phosphate metabolism 

malondialdehyde Prostaglandin formation from arachidonate 

Urate Purine metabolism 

Inosine Purine metabolism 

AMP Purine metabolism 

Adenine Purine metabolism 

Xanthosine Purine metabolism 

(9-D-Ribosylxanthine)-5'-
phosphate 

Purine metabolism 

Guanosine Purine metabolism 

GMP Purine metabolism 

Adenosine Purine metabolism 



cAMP Purine metabolism 

dCMP Pyrimidine metabolism 

Cytidine Pyrimidine metabolism 

N-Carbamoyl-beta-alanine Pyrimidine metabolism 

UMP Pyrimidine metabolism 

Thymine Pyrimidine metabolism 

Uridine Pyrimidine metabolism 

Uracil Pyrimidine metabolism 

Thymidine Pyrimidine metabolism 

CMP Pyrimidine metabolism|Glycosphingolipid biosynthesis - ganglioseries 

L-Palmitoylcarnitine Saturated fatty acids beta-oxidation 

cis-Aconitate TCA cycle 

Isocitrate TCA cycle 

Citrate TCA cycle 

Tryptophan Tryptophan metabolism 

3-Hydroxy-L-kynurenine Tryptophan metabolism 

Serotonin Tryptophan metabolism 

3,4-Dihydroxy-L-phenylalanine Tyrosine metabolism 

D-Aspartate Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine 

5-Oxo-L-proline Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine 

Putrescine Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine 

O-Acetylcarnitine Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine 

Citrulline Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine 

GABA Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine 

L-Asparagine Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine 

beta-Alanine Histidine metabolism|Urea cycle and metabolism of arginine, proline, glutamate, 
aspartate and asparagine|Pyrimidine metabolism 

2-Ketovaline Valine, leucine and isoleucine degradation 

(2S)-alpha-Leucine Valine, leucine and isoleucine degradation 

L-Isoleucine Valine, leucine and isoleucine degradation 

Thiamine Vitamin B1 (thiamin) metabolism 

NAD Vitamin B3 (nicotinate and nicotinamide) metabolism 

1-Methylnicotinamide Vitamin B3 (nicotinate and nicotinamide) metabolism 

Niacinamide Vitamin B3 (nicotinate and nicotinamide) metabolism 

NADP Vitamin B3 (nicotinate and nicotinamide) metabolism 

Pantothenate Vitamin B5 - CoA biosynthesis from pantothenate 

Glycine Urea cycle and metabolism of arginine, proline, glutamate, aspartate and 
asparagine|Bile acid biosynthesis|Porphyrin metabolism|Leukotriene 

metabolism|Glycine, serine, alanine and threonine metabolism|Vitamin B9 (folate) 
metabolism|Lysine metabolism 

 

 

Transparent Methods 

The Cancer Genome Atlas (TCGA) data acquisition and analysis 



Gene expression, methylation, CNV and clinical data of 33 different types of cancer were downloaded from 

Broad GDAC Firehose (https://gdac.broadinstitute.org/). For genes with multiple methylation probes 

(usually from the Infinium arrays), we only include methylation data from the probe with the strongest 

negative correlation between the methylation signal and the gene's expression. The beta value was used 

to denote the methylation level. The cancer types and tissue information were as follows: ACC, 

Adrenocortical carcinoma; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC, 

Cervical squamous cell carcinoma, and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; COAD, 

Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA, Esophageal 

carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney 

Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LAML, 

Acute Myeloid Leukemia; LCML, Chronic Myelogenous Leukemia; LGG, Brain Lower Grade Glioma; LIHC, 

Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; MESO, 

Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, 

Pheochromocytoma, and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; 

SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ 

Cell Tumors; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; 

UCS, Uterine Carcinosarcoma; UVM, Uveal Melanoma. 

Wilcox’s rank-sum test was used to determine differentially expressed genes between cancer and normal 

tissues. Benjamini-Hochberg procedure was applied to adjust p values. Genes with adjusted p-values <0.05 

and at least log2 fold change>1.5 in expression were considered to be differentially expressed in each 

cancer type. Linear models were also used to adjust for tumor purity, ploidy, age, sex and race. Methylation 

levels were also analyzed between cancer and normal tissues to identify potential methylation markers. 

Correlation between methylation level and the gene expression level was analyzed with Pearson 

Correlation analysis. 

Survival analysis of hypoxia-correlated signature  

https://gdac.broadinstitute.org/


To analyze the role of the hypoxia-related signature, survival analysis was performed. The log-rank test was 

used to examine whether CNV, methylation, and RNA expression were associated with overall survival (OS). 

The survival package in R program (https://cran.r-project.org/web/packages/survival/index.html) was 

adopted to perform survival-related analysis. The p-values <0.05 were considered as significant. The risk 

score of each case was calculated based on the formula: Risk Score=∑ 𝐶𝑜𝑒𝑓(𝑖) ∗ 𝑥(𝑖)𝑛
𝑖=1 , where Coef(i) is 

the Hazard Ratio of each selected gene analyzed by Cox analysis, and x(i) is the FPKM (fragments per 

kilobase of exon model per million reads mapped) value of each selected gene (Chai et al., 2019). 

Multi-omics data for cell lines and cancers 

To comprehensively understand the effect of the 15-gene hypoxia signature, metabolite and genomic data 

of cancer cell lines were also retrieved and analyzed. Multi-omics data, including metabolomics, CNV, 

methylation, mutation and gene expression, were downloaded from the Broad Institute Cancer Cell Line 

Encyclopedia (CCLE) and the Genomics of Drug Sensitivity in Cancer database (GDSC) for cell lines. Cancer 

types of these cell lines were defined according to the annotation of the cells. The unique cancer types in 

CCLE and GDSC were as follows: ALL, Acute lymphocytic leukemia; CLL, Chronic lymphocytic leukemia; MB, 

Myeloid blasts; MM, Multiple myeloma; NB, Neuroblastoma; SCLC, Small cell lung cancer. We characterized 

the mutation and CNV frequency of each gene in each cancer type as the proportion of cell lines with 

mutations and CNV alterations respectively. Pearson Correlation was used to identify the gene expression 

and metabolites intensity in different cell lines. Metabolite-gene pairs with correlation coefficient more 

than 0.6 and adjusted p-value of less than 0.05 were plotted. 

Gene Expression Omnibus data acquisition and analysis 

Gene Expression Omnibus (GEO) was also used to get RNA expression data of the genes in the signature to 

further verify the molecular profiling in different cancer types. Expression data of about 22,000 samples 

standing for 19 tissues were acquired manually. To reduce the potential bias result from different platforms, 

only data generated from the Affymetrix Human Genome U133 (HG-U133) Plus 2.0 Array were applied (Li 

et al., 2019). Combat method was adopted to normalize and adjust the batch effect (Leek et al., 2012). 

https://cran.r-project.org/web/packages/survival/index.html


Pathways analysis in different cancer types 

We also explored the potential pathways that are involved in the hypoxia signature. Gene Set Variation 

Analysis (GSVA) was used to characterize pathways from gene expression datasets (Hanzelmann et al., 

2013). Pearson Correlation between the expression of genes of hypoxia-associated signatures and pathway 

activity was calculated to assess the relationship between the genes and pathways. The gene-pathway pairs 

with the absolute value of the correlation coefficient of more than 0.4 and adjusted p-value<0.05 were 

determined as correlated pairs. 

Immunohistochemistry (IHC) 

Standard methods were used for staining de-paraffinized and rehydrated tissue sections from the patient 

samples (4 normal tissues and 5 cancerous tissues from 9 patients). The histology types were defined by 

three pathologists independently. Anti-NDRG1 was from Wanleibio (WL03071). Each sample was assigned 

a score based on the proportion and the intensity of positive cells (For the propor-tion,  0≤10%,  1=10%-

25%,  2=26%-50%,  3=51%-75%,4≥75%; For the intensity, 0=negative, 1=weak, 2=moderate, 3=strong). 

 Correlation among hypoxia-associated genes 

Pearson Correlation method was adopted to assess the relationships among these 15 genes based on RNA 

expression. Besides, STRING (https://string-db.org/) database was used to further identify the protein-

protein interactions (PPI) among the genes. PPI between these genes and 121 medically actionable genes 

which were downloaded from a previous study (https://software.broadinstitute.  org/cancer/cga/target) 

(Van Allen et al., 2014) were visualized with Cytoscape.  

Roles of hypoxia-related signature in cell fitness 

Cell fitness data was used to evaluate the function of individual gene of the hypoxia signature in cancer 

cells. CRISPR KO Data were downloaded from the Cell Model Passports 

(https://cellmodelpassports.sanger.ac.uk/downloads). These essentiality profiles provide a measure of the 

https://string-db.org/
https://software.broadinstitute/
https://cellmodelpassports.sanger.ac.uk/downloads


loss or gain of cellular fitness resulting from knocking-out a gene from targeted disruption via a single guide 

RNA (sgRNA). 
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