
Hindawi Publishing Corporation
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 642420, 14 pages
doi:10.1155/2010/642420

Review Article

A Metabolic Model of Human Erythrocytes: Practical Application
of the E-Cell Simulation Environment

Ayako Yachie-Kinoshita,1, 2 Taiko Nishino,1, 3 Hanae Shimo,1, 4

Makoto Suematsu,1, 2 and Masaru Tomita1, 3, 4

1 Institute for Advanced Biosciences, Keio University, 403-1, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
2 Biochemistry and Integrative Medical Biology, School of Medicine, Keio University, Shinanomachi 35,
Shinjuku, Tokyo 160-8582, Japan

3 System Biology Program, Graduate School of Media and Governance, Keio University, Endo 5322, Fujisawa,
Kanagawa 252-8520, Japan

4 Faculty of Environment and Information Studies, Keio University, Endo 5322, Fujisawa, Kanagawa 252-8520, Japan

Correspondence should be addressed to Ayako Yachie-Kinoshita, ayakosan@sfc.keio.ac.jp

Received 1 January 2010; Accepted 19 May 2010

Academic Editor: Maciek Antoniewicz

Copyright © 2010 Ayako Yachie-Kinoshita et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The human red blood cell (RBC) has long been used for modeling of complex biological networks, for elucidation of a wide variety
of dynamic phenomena, and for understanding the fundamental topology of metabolic pathways. Here, we introduce our recent
work on an RBC metabolic model using the E-Cell Simulation Environment. The model is sufficiently detailed to predict the
temporal hypoxic response of each metabolite and, at the same time, successfully integrates modulation of metabolism and of the
oxygen transporting capacity of hemoglobin. The model includes the mechanisms of RBC maintenance as a single cell system and
the functioning of RBCs as components of a higher order system. Modeling of RBC metabolism is now approaching a fully mature
stage of realistic predictions at the molecular level and will be useful for predicting conditions in biotechnological applications
such as long-term cold storage of RBCs.

1. Introduction

Systems level behaviors occur as a consequence of synergistic
interactions between individual components that can func-
tion as single systems, but can also affect the dynamic state of
other components. To understand how components interact
in biological systems, which exhibit nonlinear behaviors,
not only the network structure of the system, but also all
relevant components of the system need to be integrated in a
quantitative manner. Systems biology has emerged to address
these problems, using a combination of computational and
experimental analyses [1, 2].

Kinetic and dynamic modeling is one of the most useful
approaches in systems biology [3]. The E-Cell project was
launched in 1996, early in the systems biology and -omics
technology era, with the aim of developing whole-cell-scale

mathematical models [4, 5]. Although a number of bio-
simulation-specific platforms have been released recently [6],
the approach of E-Cell in a fully object-oriented fashion
is unique and allows for multitimescale/multialgorithm
simulations [7, 8].

When a dynamic mathematical model is obtained, mul-
tiple analyses can be conducted to elucidate the fundamental
design principles of a biological system [9, 10]. Such models
enable researchers to examine experimentally intractable sys-
tems; for example, maintenance of homeostasis in organisms
in vivo can be mimicked in silico, with large approximations,
but not in vitro. Additionally, experimentally costly analyses
such as comprehensive sensitivity analysis of an enzyme
activity in response to perturbation of all components of
the systems’ networks can be modeled. Furthermore, a
successful model that can represent the dynamic behavior of



2 Journal of Biomedicine and Biotechnology

the target system in the intended environment can be used to
predict how the system responds to an external physiological
stimulus or to modification of each component in the
system, which would be extremely useful for development of
biotechnological applications.

The metabolic network in human red blood cells
(RBCs) has been the subject of mathematical modeling
for the past three to four decades. As discussed below, a
number of detailed models of RBC metabolism have been
developed with various levels of abstraction, and many
studies analyzing these models have produced a deeper
understanding of the regulatory properties of metabolic
pathways and provided novel insights for implementation
of both mathematical analysis and metabolic engineering
strategies, which can then be applied to many other cell types.

Our model of RBC metabolism using the E-Cell Simula-
tion Environment focuses on the interrelationship between
metabolism and the functional aspects of RBC physi-
ology, including factors affecting allosteric transitions of
hemoglobin and recent findings regarding the assembly of
intracellular proteins at the plasma membrane. Our model
successfully reproduced the temporal response to hypoxia,
previously measured by metabolome analysis [11]. The
model was then used to predict the metabolic status of RBCs
in long-term cold storage, with the goal of optimizing the
storage conditions [12].

2. The E-Cell System as a Cell
Simulation Environment

Modeling of biological systems requires suitable abstraction
of the system considering the amount, size, and speed of
reactions, as well as many other factors. This process includes
making decisions as to whether continuous processes should
be broken down into discrete steps or, if treated as con-
tinuous processes, using deterministic or stochastic rules
for modeling the process. The E-Cell System provides the
simulation platform for use of these calculations to model
separately, and/or in combination, multialgorithm/multi-
timescale simulations [7].

E-Cell models have three fundamental object classes:
“variable”, with the option of either molar concentration
units or value units, “process”, for writing operations on
the variables, and “system” for identifying logical and/or
physical compartments with/without volume that contain
the variables and processes. This object-oriented approach
enables intuitive description and prevents mistakes in model-
ing because of the one-to-one correspondence between each
chemical process and reaction process in the E-Cell model.
At the same time, once the reaction-module (“process” in
the E-Cell System) has been created and defined, the module
is easily reusable not only in the same model but also in
another models. Similarly, the calculation algorithm itself
can be modified or extended as a module and switched easily
by rewriting one line of the model file, for example, from a
deterministic to a stochastic model.

The system is written in C++ to maximize calculation
speed and the frontends are easily scriptable and extensible

using the Python language. Using Python scripts, users
can program the rules for simulation sessions as well as
the simulation conditions themselves in a given session;
for example, initial parameter settings, time-dependent or
concentration-dependent perturbations, or the output form
of the simulation results. Some widely used methods of
ODE model-based mathematical analysis have been already
provided in the E-Cell Simulation Environment. These
include sensitivity analysis, bifurcation analysis, Metabolic
Control Analysis (MCA), and real genetic algorithms for
parameter optimization.

In the case of large-scale pathways such as whole RBC
metabolism, object-oriented modeling is necessary to ensure
accuracy. In addition, its extensibility is also very helpful for
parametric tuning of the model.

However, due to the lack of a user-friendly Graph-
ical User Interface (GUI) for the display of modeling,
in silico experimentation, and simulation results, the E-
Cell System has been difficult to use, especially for biol-
ogists. Recently, the E-Cell IDE (Integrated Development
Environment), a GUI -based simulation toolkit for Win-
dows, was developed in order to allow non-expert users
to edit, run, and analyze the E-Cell model (Figure 1).
The pathway editor allows users to generate new path-
ways or customize existing pathway maps, and to set
values/concentrations, reactions, and parameters directly
using the GUI toolkit. This system can also read and
write models in SBML (Systems Biology Markup Language)
format [13], which is the most common markup language
for making the models compatible with other cell sim-
ulators, for example, Copasi [14], DBSolve [15], Virtual
Cell [16], Systems Biology Workbench (SBW [17]), and
XPPAUT (http://www.math.pitt.edu/∼bard/xpp/xpp.html).
The E-Cell IDE provides a visual representation of the
dynamics of the simulation on the pathway map by varying
the size and width of each node or edge, respectively. The
GUI tools enable the user to conduct classical mathematical
analyses, such as parameter estimation, using a real number
genetic algorithm and metabolic control analysis. Users can
also perform CUI (Command-line User Interface)-based
simulations and analyses for more complex or large-scale
operations, such as situations in which the automation of
many simulations or parametric computing is needed.

Development of the next-generation E-Cell System (E-
Cell Version 4) has started by aiming to simulate biological
events at the molecular level, so that we can assess “cellular
space” issues such as molecular fluctuation, localization,
and crowding, while keeping complete compatibility and
combinability with the current version (E-Cell Version 3). A
detailed description, the current status, and the future vision
of the E-Cell Simulation Environment are provided in recent
works [7] and the project web page [8].

3. Human RBC Metabolism: A Long History of
Dynamic Simulation

Human RBCs lose their mitochondria and are entirely
dependent on glycolysis to produce ATP. The glucose
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Figure 1: View of the on-screen E-Cell GUI (E-Cell IDE). The E-Cell IDE has a user-friendly pathway editor (left) and a GUI-based
mathematical analysis tool kit (right top). The simulated dynamics is visualized in the tracer of the time histories of variables/processes
(bottom right), as well as in the pathway map (left).

transporter GLUT-1, expressed in RBCs, has a high affinity
for extracellular glucose and remains saturated under physi-
ological concentrations of glucose. Hexokinase (HK), which
catalyzes the initial step of glycolysis in RBCs, also has a
low Km (high affinity) for intracellular glucose. Thus, the
rate of initiation of glycolysis is ensured even when plasma
glucose concentration is low. ATP is required by ion pumps
to prevent cell swelling and is also used in many other
endergonic enzymatic processes. ATP is a necessary substrate
for two of the initial rate-limiting steps in glycolysis (HK,
PFK), but excess ATP can downregulate glycolysis through
the inhibition of PFK. Most of the glucose entering a cell
is converted to lactate through glycolysis (in our model,
87.5% under normoxic steady-state conditions), with the
remainder entering pentose-phosphate pathways (in our
model, 12.5%). This route provides reduced nicotinamide
adenine dinucleotide phosphate (NADPH), which prevents
oxidation of the cell directly and indirectly through the
conversion of glutathione from its oxidative form back to its
active reduced form.

One of the most characteristic pathways in RBCs is
the Rapoport–Luebering cycle, which generates a high con-
centration of 2,3-diphosphoglycerate(2,3-BPG), a diversion
of glycolysis from 1,3-disphosphoglycerate(1,3-BPG) that
prevents excess ATP production by bypassing the process
catalyzed by phosphoglycerate kinase (PGK). The increase in
2,3-BPG facilitates the release of oxygen from hemoglobin to

tissues. In this manner, although the binding and release of
gas molecules (oxygen, carbon dioxide, and so on) through
hemoglobin requires no energy, the regulation of glycolytic
flux, which is important for maintaining oxygen transport
capacity through the maintenance of adequate levels of ATP
and 2,3-BPG.

A single RBC can be assumed to be a closed system
enclosed by a plasma membrane. Human RBCs circulate for
as long as 120 days [18], and, thus, the metabolism in the cell
should be robust in physiological situations. This simplicity
and robustness, as well as the abundance of accumulated
knowledge regarding metabolic enzymes, have made RBC
metabolism a suitable subject for mathematical modeling
and system level analysis of the metabolic/biological path-
ways. There is a long history of construction of metabolic
models of human RBCs, in which RBC metabolism is
described with simultaneous ordinary differential equations
with different levels of detail, depending on the focus of
the model. These models have very different system level
properties (for comparative analysis of several RBC glycolysis
models, see [19]).

The first challenge in modeling human RBC metabolism
was constructing a linear glycolytic model (by Rapoport and
Heinrich [20]), which was intended to test whether a linear
theory suffices for a description of the steady state under
several experimental conditions, and to better understand
the crossover structure. The model also contributed to the
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discovery of the framework in “flux control theorem” [21].
Ataullakhanov et al. expanded the glycolytic model to include
the pentose phosphate pathway, in which ATP and ADP are
treated as parameters, to predict the dependence of glycolytic
flux on ATP content [22].

An extension of the glycolytic model to include the reac-
tions of synthesis and degradation of adenine nucleotides
was provided by Schauer et al., and suggested that adenylate
metabolism, the functional role of which remained poorly
understood at the time, may serve to improve the stabiliza-
tion of the energy charge [23].

Brumen and Heinrich were the first to attempt combin-
ing the models of energy metabolism with the models of
volume regulation [24], and presented a metabolic osmotic
model of RBCs [25]. Reactions synthesizing the adenylate
pool, osmoregulation, electroneutrality, and ion transport
were later incorporated and proved that changes in RBC
volume are associated with glycolysis.

Holzhutter et al. used their mathematical model, which
included glycolysis, the pentose phosphate pathway, and the
2,3-BPG shunt, for analysis of the pathology associated with
pyruvate kinase deficiency [26]. They showed the effects of
severely lowering the activities of several enzymes in the
model and compared their results with experimental data
from patients with deficiencies in these enzymes.

Joshi and Palsson constructed a model to provide a
framework for the integration and interpretation of the
extensive biochemical data on enzymes and metabolites by
means of a comprehensive mathematical model of RBC
metabolism [27, 28]. The model examines three different
interdependent characteristics of RBC: the properties of
the red cell membrane, the kinetics of transmembrane
fluxes of chemical constituents of RBCs and plasma, and
the thermodynamic formulation of the osmotic states. The
model was extended to include the pH dependence of
enzyme activities and mechanisms of volume regulation,
namely electroneutrality and osmotic balances, accounting
for the cell’s interaction with the environment as well as cell
metabolism [29]. They used their comprehensive model to
propose emerging mathematical frameworks for metabolic
analysis such as top-down analysis for revealing metabolic
pools [30–32].

Mulquiney and Kuchel developed a precise model for the
Rapoport–Lubering (2,3-BPG) shunt, as well as glycolysis
and the pentose phosphate pathway, based on enzyme
kinetics derived from their NMR assays [33, 34]. Their
model also includes a detailed description of magnesium
equilibrium and binding of metabolites to oxyhemoglobin
(oxyHb) [35].

The first E-Cell RBC model that was published presented
an analysis of the pathology associated with hereditary G6PD
deficiency [36]. This model was subsequently expanded by
incorporating the Joshi and Palsson model and also by the
inclusion of the GSH synthesis pathway and GSSG transport
system, and suggested that normally inactive pathways may
have an essential role in abnormal conditions such as enzyme
deficiencies.

Using E-Cell, we also constructed a model of the
two metHb-reduction pathways in RBCs by expanding the

Mulquiney and Kuchel model [37]. The model assessed
the mechanism that switches between NADPH dependent
and NADH dependent pathways of metHb reduction. The
former pathway has a high response rate to hemoglobin
oxidation with a limited reducing flux, and the latter has
a low response rate with a high-capacity flux, correlated
to the supply of NADH and NADPH from central energy
metabolism.

Recently, we published a model that contains not
only enzymatic or ion binding reactions combined with
existing models, but also includes allosteric transitions in
hemoglobin in response to the partial pressure of oxygen
and the binding of plasma membrane proteins to glycolytic
enzymes and hemoglobin ([11], described below).

Based on the same assumptions, Hald et al. focused
on the alteration of RBC metabolism caused by changes
in oxygen and carbon dioxide partial pressures during
circulation, and showed that changes in these gases resulted
in glycolytic flux oscillations, with consequent overshoots in
levels of central metabolites [38].

4. Metabolic Model of Human RBCs Using
the E-Cell System

4.1. Model Construction

4.1.1. Metabolic Reactions. The metabolic model constructed
with the E-Cell system is shown schematically in Fig-
ure 2, which includes enzyme reactions, transporter func-
tions, binding interactions, and a process for determining
hemoglobin allosteric transitions. For detailed descriptions
of all equations, see the supporting material from our
previous reports [11, 12].

The metabolic network developed in this mathematical
model covers a majority of the metabolic pathways: glycol-
ysis, the pentose monophosphate shunt, the purine salvage
pathway, glutathione metabolism, and Na+-K+-ATPase activ-
ity coupled to the leak of Na+ and K+. Membrane trans-
porters for pyruvate, lactate, adenine, adenosine, hypox-
anthine, and inosine are modeled, and the concentrations
of all the extracellular metabolites, as well as intracellular
glucose, are fixed at physiological concentrations. The rate
equations for metabolic reactions are derived from previ-
ously published experimental data, and are largely based
on the Mulquiney model [23, 33] and, in part, on other
previous mathematical models [27, 36]. Most enzyme rate
equations were derived using the King-Altman method for
each of the enzyme-catalyzed reactions, with the exception of
some reactions in purine metabolism and purine transport
processes, which were described using Michaelis-Menten or
first-order kinetics. Following the Mulquiney model, the
following reactions are modeled as pH-dependent kinetics
where intracellular pH is treated as an independent param-
eter: key enzymatic reactions in glycolysis, such as hex-
okinase (HK), phosphofructokinase (PFK), glyceraldehyde
phosphate dehydrogenase (GAPDH), pyruvate kinase (PK),
lactate dehydrogenase (LDH), the 2,3-BPG shunt reactions
(2,3-BPG shunt), and binding of metabolites to Mg2+ and
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Figure 2: A Metabolic pathway map constructed using the E-Cell RBC model. The complete reaction network of the metabolism in
the E-Cell RBC model. MgX/oxyHbX/deoxyHbX/band3X denotes the complex formed by compound “X” and Mg2+, oxyhemoglobin,
deoxyhemoglobin, or band 3, respectively. Abbreviations used in this figure: GLC, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-
phosphate; F1,6-BP, fructose-1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GA3P, glyceraldehyde-3-phosphate; 1,3-BPG, 1,3-
bisphosphoglycerate; 2,3-BPG, 2,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate;
PYR, pyruvate; LAC, lactate; GL6P, gluconolactone-6-phosphate; GO6P, gluconate-6-phosphate; RU5P, ribulose-5-phosphate; X5P, xylulose-
5-phosphate; E4P, erythrose-4-phosphate; S7P, sedoheptulose-7-phosphate; R5P, ribose-5-phosphate; PRPP, 5-phosphoribosyl-1-phosphate;
ADE, adenine; IMP, inosine monophosphate; R1P, ribose-1-phosphate; INO, inosine; ADO, adenosine; HX, hypoxanthine; AMP, adenosine
monophosphate; ADP, adenosine diphosphate; ATP, adenosine triphosphate; NADP, nicotinamide adenine dinucleotide phosphate;
NADPH, nicotinamide adenine dinucleotide phosphate (reduced); NAD, nicotinamide adenine dinucleotide; NADH, nicotinamide adenine
dinucleotide (reduced); Ki, potassium ion; Nai, Sodium ion; Pi, inorganic phosphate; L GC, L-glutamyl cysteine; GSH, glutathione
(reduced); GSSG, glutathione (oxidized).

hemoglobin. The overall oxidization of glutathione in the
cell and dephosphorylation of ATP except for Na+/K+-
ATPase and kinases in above-mentioned major pathways are
simplified into first-order reactions.

4.1.2. Hemoglobin Transition. The capacity of RBCs to
deliver oxygen to tissues is fundamentally linked to the equi-
librium between the two main states of hemoglobin struc-
ture, a tense state, “T” (or “deoxy”), and a relaxed state, “R”
(or “oxy”), although the transition between the structures is
not a simple two-state mechanism. The ability of oxygen to
bind to hemoglobin is allosterically regulated by intracellular
components such as 2,3-BPG and ATP. An increase in 2,3-
BPG stabilizes the T-state of Hb, thereby facilitating O2

dissociation from the Hb. Since T-state hemoglobin has
a higher affinity for 2,3-BPG and ATP than the R-state,
stabilization of hemoglobin in the T-state by increasing
the amount of 2,3-BPG binding reduces the amount of
free 2,3-BPG and ATP, leading to a further acceleration of
metabolism. Under these circumstances, consideration of
the hemoglobin transition may exert considerable effects on
RBC metabolism, especially on glycolysis, and vice versa.

The equation for the kinetics of oxygen saturation of
hemoglobin, derived by Dash and Bassingthwaighte [39],
was used to calculate the ratio of oxy-(R-) hemoglobin to
total hemoglobin. The saturation kinetics is described by the

Hill equation, with dependencies on the levels of pO2, pCO2,
intracellular pH, concentration of 2,3-BPG, and tempera-
ture. In our model, pO2, pCO2, pH, and temperature are
independent variables. Once the ratio between oxy-(R-) and
deoxy-(T-) hemoglobin (oxygen saturation of hemoglobin,
SHbO2) is determined under given conditions at a certain step
in the simulation, the velocity of a reversible conversion of
free T-state hemoglobin to free R-state hemoglobin in the
step is derived as

velocity(T→R) = k ·
(
Ttotal · SHbO2

1− SHbO2
− Rtotal

)
, (1)

where SHbO2 ranges from 0 to 1, Ttotal and Rtotal are the sum
of all complexed forms and the free form of each state of
hemoglobin, and k denotes the scaling constant, which is set
to 1200 to be equal to those in other binding reactions. In our
model, it is assumed that this transition occurs only between
free form R/T-hemoglobins, even though Ttotal and Rtotal in
the equation above are the “total hemoglobin” of each state.
In our model, the P50 value, which is the partial pressure of
oxygen at half-saturation of hemoglobin, is calculated to be
25-26 mmHg under virtual cell-free conditions with 5 mM
2,3-BPG. However, if the concentrations of the free forms of
T-state and R-state hemoglobin are substituted for Ttotal and
Rtotal, the P50 is calculated to be approximately 50 mmHg,
which is significantly different from the physiological
value.
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4.1.3. Binding between Band 3 and Glycolytic Enzymes or
Hemoglobin. Band 3 is the major anion transporter in RBCs
and plays a role in chloride/bicarbonate exchange, as well as
an important structural role as a plasma membrane protein
that contributes to stabilization of the membrane surface by
forming multiprotein complexes [40]. Band 3 has multiple
cytoplasmic domains, including an N-terminal cytoplasmic
domain, which binds to the glycolytic enzymes PFK, ALD
and GAPDH. PK and LDH are also localized to the plasma
membrane when intact RBCs were fixed in their oxygenated
states, but there has been no evidence of direct association
with band 3 [41]. The N-terminal cytoplasmic domain of
band 3 also binds to Hb, with a greater affinity for T-
state hemoglobin than R-state [42]. Recent observations have
shown the enzymatic activities of PFK, ALD, and GAPDH
are completely blocked by binding to band 3, whereas their
activities are recovered upon dissociation from band 3. No
changes in PK and LDH activities have been detected [43]
and the membrane docking sites of PK and LDH have yet
to be identified [44]. We were the first to incorporate the
binding of band 3 to glycolytic enzymes/hemoglobins into
the mathematical model of major RBC metabolism [11]. The
binding affinity of the metabolite-hemoglobin complex to
band 3 is assumed to be the same as that of the free form
of hemoglobin (e.g., deoxyHb and deoxyHb-2,3BPG). We
simply used the published association constants evaluated in
vitro.

4.2. Application of the Model I: Analysis of the RBC Response to
Hypoxia. ATP is required in the initial steps of glycolysis by
HK and PFK to trigger glycolytic ATP synthesis, and a frac-
tion of the intracellular ATP is released to the extracellular
space under hypoxia to elicit hypoxia-induced vasodilation,
although the amount of ATP released is small, compared to
intracellular levels [45]. At the same time, RBCs are known
to accelerate glucose consumption in response to exposure
to hypoxia, which results from acceleration of glycolysis, as
judged by the increase in 2,3-BPG [46]. This change leads to
further T-state Hb stabilization and increases the supply of
oxygen to hypoxic tissues. Taking into account these features,
researchers have hypothesized that RBCs have appropriate
mechanisms for responding quickly to hypoxia to upregulate
de novo ATP synthesis and glycolytic flux, leading to the
increase in 2,3-BPG. Historically, the hypoxic acceleration of
glycolysis in RBCs was thought to be induced by alterations
in pH or the metabolic compensation of ATP [47, 48].
However, recent evidence from studies with intact RBCs has
shown that T-state hemoglobin triggers an increase in the
activities of glycolytic enzymes that interact with band 3 and
plays a central role in acceleration of glucose consumption
to increase the synthesis of ATP and 2,3-BPG [49]. Our
model was used to elucidate the mechanistic features of the
coordination and dynamics of sequential glycolytic reactions
and the outcomes, in terms of alterations in levels of
intracellular metabolites upon hypoxia, in particular as a
result of band 3 interactions. To mimic hypoxic conditions,
the pO2 of the model, which was initially set to 100 mmHg,
was reduced to 30 mmHg, a value consistent with capillary
microvessels in vivo [50].

A comparison between three models in predicting
temporal alterations of glycolysis during a 3-min virtual
hypoxia is illustrated in Figure 3(a). Model A includes
Band 3 interactions with hemoglobin and glycolytic enzymes
(corresponding to the BIII(+) model described in [11]).
Model B uses the same initial and normoxic steady-state
conditions as model A, but omits interactions between Band
3 and hemoglobin/enzymes (corresponding to the BIII(−)
model in the reference [11]). By comparing model A with
model B, we can estimate the pure effect of hypoxia-induced
glycolytic activation exerted by the accumulation of T-state
hemoglobin. In Model C, all of the glycolytic enzymes exist
in dissociated forms, even in the initial (PO2 = 100) state.
Thus, the initial and steady-state conditions of model C are
different from those of model A and model B. As shown in
Figure 3(a), the overall activities of the glycolytic enzymes
in model A are significantly accelerated relative to the other
models. As expected, the activities of PFK, ALD, and GAPDH
spiked immediately as a result of their release from band
3 upon hemoglobin binding, while these enzyme activities
did not change significantly in model B. These differences in
enzyme activities between the two models created a distinct
metabolome profile: the glycolytic intermediates in model A
displayed a pattern opposite to those in model B. In model
A, G6P and F6P decreased by 50% and F1,6BP, DHAP, 3PG,
and PEP increased by 40% versus the corresponding baseline
levels (Figure 3(a)). The time-dependent alteration in levels
of glycolytic intermediates predicted by model A is entirely
consistent with results obtained from metabolome analyses
using capillary electrophoresis mass spectrometry (CE-MS).
These trends in time-variation in glycolytic fluxes/metabolite
concentrations have also been reproduced in model C,
where no band 3 interactions are considered. However, the
alterations seen in model C exhibit much less variation
than the experimental results. In both models (model A
and model C), the activation of HK is caused by a decrease
in the free form of 2,3-BPG, which is a strong inhibitor
of HK; however, HK activity in model A exhibited greater
activation. This difference appeared to result from a decrease
in G6P and an increase in ATP, leading to a reduction in HK
product inhibition. The distinct hypoxia-induced increase in
glycolytic flux arising from hemoglobin transition and the
consequent changes in band 3-interactions have been verified
by several separate experiments. Messana et al. showed that
the hypoxia-induced increase in glucose consumption dis-
appeared in RBCs treated with 4,4′-diiso-thiocyanostilbene-
2,2′-disulfonate (DIDS), which acts as an anion exchange
inhibitor targeting band 3 [51]. We demonstrated that CO
pretreatment of RBCs to stabilize hemoglobin in the R-state
attenuated the hypoxia-induced acceleration in the conver-
sion of 13C-glucose into 13C-lactate [11]. Furthermore, a
recent study by Lewis et al. provided direct evidence for
the role of band 3 in mediating metabolic shifts under
more physiological conditions in intact RBCs, in which the
metabolic fluxes were measured using (1)H-(13)C NMR and
RBCs were treated with pervanadate, a reagent that blocks
the interaction between band 3 and glycolytic enzymes [49].

Through the activation of glycolysis, the energy charge
is greater in the band 3-implemented model than the



Journal of Biomedicine and Biotechnology 7

Normoxia Hypoxia

Simulated

metabolite concentrations
Simulated

enzyme activities

Measured

metabolite concentrations

Normoxia Hypoxia Normoxia Hypoxia

1

1.5

2

2.5

1

1.2

1.4

1

1.5

2

2.5

1

1.5

2

2.5

1

2

3

1

2

3

4

1

1.2

1.4

1.6

0.8

1

1.2

0.6

0.8

1

1

1.5

2

0.8

1
1.2

1.4

1.6

1

1.5

2

2.5

0.6

1

1.4

0.2

0.6

1

0.2

0.6

1

0.8

1

1.2

0.6

0.8

1

1

1.5

2

0.8
1

1.2
1.4
1.6

1

1.5

2

2.5

0.6

1

1.4

0.2

0.6

1

0.2

0.6

1

0 1 2 3 0 1 2 3 0 1 2 3

Time (min) Time (min) Time (min)

L
D

H
P

K
P

G
K

G
A

P
D

H
A

LD
P

FK
H

K

LA
C

P
Y

R
P

E
P

3P
G

D
H

A
P

F1
,6

B
P

F6
P

G
6P

GLC

∗

∗
∗

∗

∗
∗

∗ ∗ ∗

(a)

Figure 3: Continued.



8 Journal of Biomedicine and Biotechnology

3.61

3.62

3.63

3.64

3.61

3.62

3.63

3.64

3.61

3.62

3.63

3.64

0.9

0.91

0.92

0.9

0.91

0.92

0.9

0.91

0.92

HK is activated PK is activated PFK/ALD/GAPDH are activated

Normoxia Hypoxia Hypoxia Normoxia Normoxia Hypoxia

0 1 2 3 0 1 2 3 0 1 2 3

Time (min) Time (min) Time (min)

To
ta

l2
,3

-B
P

G
(m

M
)

E
n

er
gy

ch
ar

ge

To
ta

l2
,3

-B
P

G
(m

M
)

E
n

er
gy

ch
ar

ge

E
n

er
gy

ch
ar

ge
To

ta
l2

,3
-B

P
G

(m
M

)

(b)

Figure 3: Temporal alterations in glycolysis in response to hypoxia. (a) Predicted alterations in glycolytic enzyme activities under hypoxia
and comparison of time-courses of glycolytic intermediates between the simulations and metabolome measurements using CE-MS. The
simulation results of model A (including Band 3 interactions, corresponding to the solid red line in Figure 2 of [11]), model B (using the
same initial steady-state conditions as A but neglecting further Band 3 interactions, corresponding to the dotted blue line in Figure 2 of
[11]), and model C (with all enzymes dissociated from Band 3) are represented by the solid black (model A), dotted black (model B), and
solid gray (model C) lines, respectively. See the main text for discussion of the models. In the metabolome data collected by CE-MS, closed
circles indicate ratios of hypoxic metabolite concentrations to normoxic control concentrations, which are represented with open circles.
Values are the means ± SE of four separate experiments. Asterisks: P < .05 versus the steady-state baseline values. (b) Results of model
analysis to determine whether or not increasing the activity of a particular enzyme (HK, PK, or PFK+ALD+GAPDH) by 2-fold can promote
a simultaneous increase in the energy charge and in 2,3-BPG under conditions of hypoxia.

other models. The basal energy charge under normoxic
steady-state conditions was predicted to be 0.912, which is
comparable to that reported in previous studies (ranging
from 0.86 [52] to 0.935 [53]), and the value rose to 0.917 after
three minutes in hypoxia. At the same time, the total amount
of 2,3-BPG in model A was also predicted to be greater than
the other two models, which is likely to contribute to a rapid
increase in the formation of hemoglobin-2,3-BPG complexes
that consequently lead to the release of residual hemoglobin-
bound oxygen from the RBC. The calculated amount of
oxygen released by increasing 2,3-BPG in three minutes of
hypoxia was 6 μmol per L of RBC volume.

Another key finding of this simulation study is that PFK
activation is a crucial step for the upregulation of both
energy charge and 2,3-BPG generation, while activation of
the other so-called rate-limiting enzymes, at the initial (e.g.,
HK) or final (e.g., PK) steps of the glycolytic pathway, fails
to satisfy these requirements. HK activation resulted in a
decrease in energy charge and an increase in 2,3-BPG, while
PK activation increased energy charge without stimulating
2,3-BPG generation (Figure 3(b)).

Through these analyses, our model has demonstrated
a pivotal role for band 3-intracellular protein interactions
in enhancing activation of glycolysis in RBCs as part of
a metabolic response to hypoxia, and in the consequent

increase in both cell energetics and oxygen-carrying capacity.
Taken together with the recent findings that the oxygenation-
dependent assembly of glycolytic enzymes on the membrane
is conserved in mammalian erythrocytes even in the absence
of the intracellular band 3 binding site [44], the hypoxia
induced glycolytic activation may be necessary for RBC via-
bility over the long term and/or for temporally appropriate
oxygen supply to the tissues.

4.3. Application of the Model II: Prediction of Metabolism of
RBCs in Long-Term Storage. Whereas the kinetic metabolic
models of human RBCs have led the simulation studies in the
systems biology era, there has been no practical application
of the RBC metabolic models for biotechnological use, at
least to our knowledge. We intend to use our RBC model
as a virtual experiment for optimization of RBC storage
conditions. In the field of emergency medicine, it is critical to
store RBCs in such a manner that their viability and capacity
for oxygen delivery are retained after transfusion. These
characteristics are strongly correlated with the intracellular
metabolic status. Long-term cold storage reduced intracellu-
lar ATP and 2,3-BPG, which causes a reduction in deforma-
bility, oxygen-carrying capacity, and reduces energy sources
for intracellular processes. In Japan, a mannitol-adenine-
phosphate (MAP) solution is commonly used for storing
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RBCs (RC-MAP). In this solution, approximately 50% of
ATP is retained after 42 days in storage, but 2,3-BPG is almost
completely depleted after 2 weeks [54]. However, the large
metabolic network of the RBC that underlies the depletion
of these two metabolic indicators has not been considered.

To develop an “RC-MAP model” that can represent the
long-term dynamics of cold MAP-stored RBC metabolism,
concentrations of glucose and adenine of the basal model
were set to the values in MAP-solution, and the extracellular
sodium ion and inorganic phosphate concentrations were
changed by calculating the content of sodium phosphate,
sodium chloride and sodium citrate in the solution. The
intracellular pH of RBCs in RC-MAP is lowered due to the
large addition of citrate and gradually decreases further over
time in storage due to the accumulation of lactate [55]. Thus,
the initial pH and pH variation during cold storage were
set according to the reported time-course pH data in the
literature [54], where the decrease in intracellular pH is fitted
by first-order kinetics. As the cold temperature stabilizes
hemoglobin in the R-state, all hemoglobin was designated R-
state in the RC-MAP model.

In the process of parameter estimation, we focused
on those enzymatic activities that may be altered by
physical changes in the storage conditions relative to the
circulating conditions, the cold temperature and the low
pH. All chemical reactions, including enzymatic reactions,
chemical-binding reactions, and active transport processes,
should be significantly reduced but not completely stopped
at 4◦C. In particular, the Na+/K+-ATPase pump is very
sensitive to lowered temperature [56]. Moreover, there are
many reports that enzymes involved in purine metabolism,
including adenosine deaminase, adenosine monophosphate
phosphohydrolase (AMPase), inosine monophosphatase,
and adenosine monophosphate deaminase are optimized or
activated at relatively low pH, such as in the RC-MAP storage
conditions, but adenosine kinase and hypoxanthine-guanine
phosphoryl-transferase are not. From these knowlodge, we
grouped all reaction activities into three groups: Na+/K+

pump activity, purine metabolism enzyme activities, and
all remaining enzymatic or binding activities. The three
groups of reaction activities are then treated as “adjustable
parameters” for the parameter estimation.

As a result of the GA (Genetic Algorithm) analysis,
the three adjustable parameters were determined and their
estimated values were supported by previous knowledge, as
follows. (1) Na+/K+ pump activity was 0.6% of the basal
values, since it decreases to 0.2–0.8% of the level at body
temperature when the temperature is decreased to 5◦C in
most mammalian erythrocytes [56]. (2) The activity of
purine metabolism enzymes was 24% of the basal model,
which is considerably higher than that of other enzymatic
processes. Furthermore, the loss of intracellular adenine
within three weeks was reproduced only by the model when
this parameter was 20–30% [12]. (3) The activity level of
the other reactions was estimated to be 3.5%, since, in
general, enzyme activities at 4◦C are reduced to 1–5% of
those at the normal body temperature [57]. The dynamics
of the estimated RC-MAP model during cold storage was
then compared with the experimentally measured glycolytic

intermediates in MAP-stored RBCs using capillary elec-
trophoresis time-of-flight mass spectrometry (CE-TOFMS),
as previously described [12, 58] (Figure 4(b)).

In CE-TOFMS measurements, PYR, LAC, HX, and S7P
were significantly increased, and all glycolytic intermedi-
ates, with the exception of PYR and LAC, were markedly
decreased after 49 days. These measured alterations of
intermediates were qualitatively reproduced in an estimated
model that was fitted to the reported RC-MAP data. The
models using random sets of adjustable parameters failed
to predict these final increases and/or decreases in the
concentrations of the glycolytic intermediates. However, the
dynamics of the intermediates, such as the extraordinarily
large increases in F1,6-BP and DHAP in the first week
or the initial stagnation of PYR, could not be predicted
by the estimated model. These gaps may be the result
of both the level of simplicity of setting the adjustable
parameters and the difference in experimental conditions in
our lab relative to commercial RC-MAP usage. The early
large peaks of F1,6-BP and DHAP did appear when the
initial pH was set to lower values, but some mechanism
of reduction in PK activity was needed to reproduce the
initial stagnation of PYR (see the supporting material in
[12]). More detailed refinement of the settings of the RC-
MAP model using comprehensive metabolome data will be
necessary to increase the predictive power of the model.

Based on the sensitivity analysis of the RC-MAP model,
2,3-BPG levels may be maintained when hemoglobin is
shifted to the T-state. Reducing enzyme activities in purine
metabolism would be very effective for maintaining ATP,
whereas the ATP concentration control of enzymes in purine
metabolism is small. Another interesting prediction of the
model is that a slight activation of HK and PFK during
storage can maintain both ATP and 2,3-BPG, despite the fact
that all prior studies of blood storage have aimed to reduce
enzymatic activities. These factors can serve as a possible
target of the next round of experiments for improving RBC
storage conditions.

However, many physicochemical aspects have yet to be
incorporated in the model, such as the maintenance of
cellular homeostasis through regulating intracellular pH and
cell volume in connection with ion balance. In this study, the
effects of additives in the MAP solution, such as mannitol
and sodium chloride, as osmoregulatory substrates that
prevent erythrocyte hemolysis, as well as the acidotic shift
due to lactate accumulation, were ignored (or considered to
be unchanged from normal circulating RBCs).

5. Discussion: Future Perspectives of
RBC Metabolic Model

A mathematical model of the metabolic networks in human
RBCs with precise enzyme kinetics and linkages between
metabolism and oxygen pressure can provide us with a better
understanding of the response to environmental stimuli that
may occur in vitro or in storage conditions. Our model
is the first to include the effects of intracellular protein-
protein interactions (competitive binding to band 3 between
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Figure 4: Continued.
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Figure 4: Modeling of metabolism in RBCs during long-term cold storage and model verification. (a) The work flow of developing and
analyzing the “RC-MAP model”. (1) The values of external parameters in our E-Cell RBC model (basal model), which assumes normal
circulating conditions, are modified to meet the conditions of the cold-MAP solution. (2) Adjustable parameters, which are thought to be
changed by storage conditions, are determined. (3) Adjustable parameters are estimated using experimental data on metabolic alterations in
RC-MAP. (4) The relevance and robustness of the parameter choices are checked. (5) The dynamics of metabolism are compared between
the RC-MAP simulation and experimental treatment. (6) A sensitivity analysis of the model is conducted to find key reactions, metabolites,
and parameters to maintain the energetics and oxygen-carrying capacity of stored RBCs. (7) Candidate components for optimized storage
conditions are determined by computationally testing various combinations of factors that can be modified experimentally. (8) Finally, the
candidate models are validated by a metabolome analysis. In (3), we employed the classical read number genetic algorithm within the E-Cell
Simulation Environment to fit the model to the reported time-course data of ATP and 2,3-BPG concentration changes in RBCs held in cold
RC-MAP for 49 days. (b) A comparison of time-related changes in ATP and 2,3-BPG levels between reported experiments (Shiba et al., 1991)
and the “RC-MAP model” is presented. The time-course of ATP (solid black) and 2,3-BPG (broken black) in RC-MAP at 4◦C for 49 days in
(a) previously reported data and (b) the prediction of the estimated model derived by the Genetic Algorithm. Experimental values are shown
as the mean ± S.D. of 19 separate experiments. Values are percentages of the initial concentrations. (c) Measured (left) and simulated (right)
time-dependent alterations in glycolytic intermediates. In CE-TOFMS measurements, the RBC samples were suspended in cold-MAP for
49 days under laboratory conditions. Data represent the means ± S.D. of five separate experiments. “G6P + F6P” indicates the sum of the
concentrations of G6P and F6P. Values are represented as percentages of the initial concentration of each metabolite.
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hemoglobin and glycolytic enzymes) on RBC metabolism
and to show the relevance of these interactions to the supply
of ATP and 2,3-BPG over time.

Several factors must be considered in order for the
model to provide an insight into the possible physiological
importance of these intracellular events. First, a precise
estimation of the energy demand of the cell, such as the
energy required to maintain its biconcave shape, should be
made [59]. Among all previously published mathematical
models of RBC metabolism, the processes utilizing ATP are
oversimplified into first-order kinetics with respect to the
ATP concentration, with the exception of Na+-K+ pump
ATPase activity in Jasimidi and Palsson’s model [27, 28],
and in our models [11, 36], despite the fact that both the
glycolytic flux and the concentration of ATP are largely
controlled by the ATP demand [19].

Secondly, it is important to examine the external effects
of RBC metabolism, that is, the modulation of oxygen car-
rying capacity by altering the hemoglobin allostery by intra-
cellular ATP and 2,3-BPG. Including these features requires
knowing “when” and “to what extent” the environmental
oxygen demand is raised, in order to obtain information at
a systems level of behavior. In other words, the model would
need to make a connection between the efficiency of carrying
gas molecules in the RBC and the underlying metabolism, as
well as the behavior of the RBC population in response to
capillary geometry and blood flow. Bassingthwaights’ group
has begun to construct a multiscale model in their physiome
project: A model of blood-tissue/tissue-capillary exchange of
oxygen, carbon dioxide, which includes exchange of bicar-
bonate and hydrogen ion for considering Bohr and Haldane
effects in RBC, intraerythrocytic adsorption of CO2 and O2

on hemoglobin, and extraerythrocytic tissue-dependent gas
consumptions [58, 60]. Furthermore, a novel aspect of RBC
metabolism is the recently observed release of intracellular
ATP into the extracellular space in response to hypoxia,
although the actual amount of ATP released is very small
compared to levels within the cell [45]. The released ATP
regulates blood flow by binding to P2Y purinergic receptors
on the luminal surface of the endothelium, initiating the
signaling events that result in vasodilation. A theoretical test
of the contribution of the hypoxia-dependent ATP release by
RBCs to an increase in vessel diameter in upstream arterioles
has been carried out using a simplified theoretical blood-
flow model [61]. An understanding of the physiological
importance of temporal alterations in RBC metabolism
could be accomplished by using these theoretical frameworks
to develop models that connect the detailed metabolism in
the RBC to higher level processes outside the cell.

Another intriguing addition to the model would be the
incorporation of spatial or intracellular locus information
into the metabolic model. Because RBCs do not contain any
bound organelles in the cytoplasm, the intracellular system
has been modeled as homogeneous in space. However, recent
observations that glycolytic enzymes form a macromolecular
complex [43] suggest the importance of considering spatial
effects, even in models that focus on metabolic reactions.
Additionally, another cytoplasmic domain of band 3 (C-
terminal) binds carbonic anhydrase, which plays an impor-

tant role in RBCs by catalyzing the hydration of carbon
dioxide [62]. This interaction may improve the efficiency of
Cl−/HCO3

− exchange and, at the same time, may change the
local pH significantly. Since the interactions between intra-
cellular proteins and band 3 are strongly dependent on pH
and ionic conditions [63], the local pH may control glycolytic
flux both directly and indirectly. The intracellular compart-
mentalization and the diffusion of the glycolytic enzyme
complexes and hemoglobin need to be taken into consider-
ation for precise estimation of the functional requirements
of the gas (oxygen or carbon dioxide) dependent assembly
of these macromolecules, especially for the juxtamembrane
localization of PK and LDH (whose activities are not masked
by binding to the plasma membrane).
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[18] H. S. Hsieh and E. R. Jaffé, “Electrophoretic and functional
variants of NADH-methemoglobin reductase in hereditary
methemoglobinemia,” Journal of Clinical Investigation, vol. 50,
no. 1, pp. 196–202, 1971.

[19] F. B. du Preez, R. Conradie, G. P. Penkler, K. Holm, F. L.
J. van Dooren, and J. L. Snoep, “A comparative analysis of
kinetic models of erythrocyte glycolysis,” Journal of Theoretical
Biology, vol. 252, no. 3, pp. 488–496, 2008.

[20] T. A. Rapoport, R. Heinrich, G. Jacobasch, and S. Rapoport,
“A linear steady state treatment of enzymatic chains: a
mathematical model of glycolysis of human erythrocytes,”
European Journal of Biochemistry, vol. 42, no. 1, pp. 107–120,
1974.

[21] R. Heinrich and T. A. Rapoport, “Mathematical analy-
sis of multienzyme systems. II. Steady state and tran-
sient control,” BioSystems, vol. 7, no. 1, pp. 130–136,
1975.

[22] F. I. Ataullakhanov, V. M. Vitvitsky, A. M. Zhabotinsky, et
al., “The regulation of glycolysis in human erythrocytes. The
dependence of the glycolytic flux on the ATP concentration,”
European Journal of Biochemistry, vol. 115, no. 2, pp. 359–365,
1981.

[23] M. Schauer, R. Heinrich, and S. M. Rapoport, “Mathemat-
ical modelling of glycolysis and of the adenine nucleotide
metabolism of human erythrocytes. II. Simulation of the
adenine nucleotide breakdown after glucose depletion,” Acta
Biologica et Medica Germanica, vol. 40, no. 12, pp. 1683–1697,
1981.

[24] D. C. Tosteson and J. F. Hoffman, “Regulation of cell volume
by active cation transport in high and low potassium sheep red
cells,” The Journal of General Physiology, vol. 44, pp. 169–194,
1960.

[25] M. Brumen and R. Heinrich, “A metabolic osmotic model of
human erythrocytes,” BioSystems, vol. 17, no. 2, pp. 155–169,
1984.

[26] H.-G. Holzhutter, G. Jacobasch, and A. Bisdorff, “Mathemat-
ical modelling of metabolic pathways affected by an enzyme
deficiency. A mathematical model of glycolysis in normal and
pyruvate-kinase-deficient red blood cells,” European Journal of
Biochemistry, vol. 149, no. 1, pp. 101–111, 1985.

[27] A. Joshi and B. O. Palsson, “Metabolic dynamics in the human
red cell. Part I. A comprehensive kinetic model,” Journal of
Theoretical Biology, vol. 141, no. 4, pp. 515–528, 1989.

[28] A. Joshi and B. O. Palsson, “Metabolic dynamics in the human
red cell. Part II. Interactions with the environment,” Journal of
Theoretical Biology, vol. 141, no. 4, pp. 529–545, 1989.

[29] N. Jamshidi, J. S. Edwards, T. Fahland, G. M. Church, and B.
O. Palsson, “Dynamic simulation of the human red blood cell
metabolic network,” Bioinformatics, vol. 17, no. 3, pp. 286–
287, 2001.

[30] N. D. Price, J. L. Reed, J. A. Papin, S. J. Wiback, and B. O.
Palsson, “Network-based analysis of metabolic regulation in
the human red blood cell,” Journal of Theoretical Biology, vol.
225, no. 2, pp. 185–194, 2003.

[31] N. Jamshidi and B. O. Palsson, “Top-down analysis of
temporal hierarchy in biochemical reaction networks,” PLoS
Computational Biology, vol. 4, no. 9, Article ID e1000177,
2008.

[32] N. Jamshidi and B. O. Palsson, “Using in silico models to sim-
ulate dual perturbation experiments: procedure development
and interpretation of outcomes,” BMC Systems Biology, vol. 3,
article 44, 2009.

[33] P. J. Mulquiney, W. A. Bubb, and P. W. Kuchel, “Model
of 2,3-bisphosphoglycerate metabolism in the human ery-
throcyte based on detailed enzyme kinetic equations: in
vivo kinetic characterization of 2,3-bisphosphoglycerate syn-
thase/phosphatase using 13C and 31P NMR,” Biochemical
Journal, vol. 342, no. 3, pp. 567–580, 1999.

[34] P. J. Mulquiney and P. W. Kuchel, “Model of 2,3-
bisphosphoglycerate metabolism in the human erythrocyte
based on detailed enzyme kinetic equations: equations and
parameter refinement,” Biochemical Journal, vol. 342, no. 3,
pp. 581–596, 1999.

[35] P. J. Mulquiney and P. W. Kuchel, “Model of the pH-
dependence of the concentrations of complexes involving
metabolites, haemoglobin and magnesium ions in the human
erythrocyte,” European Journal of Biochemistry, vol. 245, no. 1,
pp. 71–83, 1997.

[36] Y. Nakayama, A. Kinoshita, and M. Tomita, “Dynamic simu-
lation of red blood cell metabolism and its application to the
analysis of a pathological condition,” Theoretical Biology and
Medical Modelling, vol. 2, article 18, 2005.

[37] A. Kinoshita, Y. Nakayama, T. Kitayama, and M. Tomita,
“Simulation study of methemoglobin reduction in erythro-
cytes: differential contributions of two pathways to tolerance
to oxidative stress,” FEBS Journal, vol. 274, no. 6, pp. 1449–
1458, 2007.

[38] B. Hald, M. F. Madsen, S. Danø, B. Quistorff, and P. G.
Sørensen, “Quantitative evaluation of respiration induced
metabolic oscillations in erythrocytes,” Biophysical Chemistry,
vol. 141, no. 1, pp. 41–48, 2009.

[39] R. K. Dash and J. B. Bassingthwaighte, “Blood HbO2 and
HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG
and temperature levels,” Annals of Biomedical Engineering, vol.
32, no. 12, pp. 1676–1693, 2004.

[40] L. L. Peters, R. A. Shivdasani, S.-C. Liu et al., “Anion exchanger
1 (band 3) is required to prevent erythrocyte membrane
surface loss but not to form the membrane skeleton,” Cell, vol.
86, no. 6, pp. 917–927, 1996.



14 Journal of Biomedicine and Biotechnology

[41] H. Chu and P. S. Low, “Mapping of glycolytic enzyme-binding
sites on human erythrocyte band 3,” Biochemical Journal, vol.
400, no. 1, pp. 143–151, 2006.

[42] A. Tsuneshige, K. Imai, and I. Tyuma, “The binding of
hemoglobin to red cell membrane lowers its oxygen affinity,”
Journal of Biochemistry, vol. 101, no. 3, pp. 695–704, 1987.

[43] M. E. Campanella, H. Chu, and P. S. Low, “Assembly and
regulation of a glycolytic enzyme complex on the human
erythrocyte membrane,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 102, no. 7, pp.
2402–2407, 2005.

[44] M. E. Campanella, H. Chu, N. J. Wandersee et al., “Char-
acterization of glycolytic enzyme interactions with murine
erythrocyte membranes in wild-type and membrane protein
knockout mice,” Blood, vol. 112, no. 9, pp. 3900–3906,
2008.

[45] M. L. Ellsworth, T. Forrester, C. G. Ellis, and H. H. Dietrich,
“The erythrocyte as a regulator of vascular tone,” American
Journal of Physiology, vol. 269, no. 6, pp. H2155–H2161, 1995.

[46] C. Lenfant, J. Torrance, E. English et al., “Effect of altitude
on oxygen binding by hemoglobin and on organic phosphate
levels,” Journal of Clinical Investigation, vol. 47, no. 12, pp.
2652–2656, 1968.

[47] N. Hamasaki, T. Asakura, and S. Minakami, “Effect of oxygen
tension on glycolysis in human erythrocytes,” Journal of
Biochemistry, vol. 68, no. 2, pp. 157–161, 1970.

[48] I. Rapoport, H. Berger, S. M. Rapoport, R. Elsner, and G.
Gerber, “Response of the glycolysis of human erythrocytes to
the transition from the oxygenated to the deoxygenated state at
constant intracellular pH,” Biochimica et Biophysica Acta, vol.
428, no. 1, pp. 193–204, 1976.

[49] I. A. Lewis, M. E. Campanella, J. L. Markley, and P. S. Low,
“Role of band 3 in regulating metabolic flux of red blood cells,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 106, no. 44, pp. 18515–18520, 2009.

[50] K. Suganuma, K. Tsukada, M. Kashiba et al., “Erythrocytes
with T-state-stabilized hemoglobin as a therapeutic tool
for postischemic liver dysfunction,” Antioxidants and Redox
Signaling, vol. 8, no. 9-10, pp. 1847–1855, 2006.

[51] I. Messana, M. Orlando, L. Cassiano et al., “Human erythro-
cyte metabolism is modulated by the O2 -linked transition of
hemoglobin,” FEBS Letters, vol. 390, no. 1, pp. 25–28, 1996.

[52] S. V. Komarova, E. V. Mosharov, V. M. Vitvitsky, and F.
I. Ataullakhanov, “Adenine nucleotide synthesis in human
erythrocytes depends on the mode of supplementation of
cell suspension with adenosine,” Blood Cells, Molecules, and
Diseases, vol. 25, no. 3-4, pp. 170–179, 1999.

[53] T. Shimizu, N. Kono, H. Kiyokawa et al., “Erythrocyte
glycolysis and its marked alteration by muscular exercise in
type VII glycogenosis,” Blood, vol. 71, no. 4, pp. 1130–1134,
1988.

[54] M. Shiba, T. Mura, T. Masuyama, et al., “Preparation and
preservation of red blood cell concentrates in MAP solution
by quadruple bag system,” Japanese Journal of Transfusion
Medicine, vol. 37, pp. 404–410, 1991.
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