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Introduction
Myelodysplastic syndromes (MDS) are clonal 
stem cell disorders, characterized by inefficient 
hematopoiesis, morphologic dysplasia, and varia-
ble degrees of cytopenias.1 Demethylation abnor-
mality is one of the key mechanisms of MDS. It 
has been gradually recognized that in addition to 
epigenetic abnormalities, immune dysregulation 
also plays a key role in the development and pro-
gression of MDS. Many studies have elucidated 
that improper activation of the immune system is 
an important factor in the pathogenesis of MDS,2 
whereas the escape of mutated hematopoietic 
cells from immune surveillance may play a sepa-
rate role in the biology of high-risk MDS and pro-
gression to acute myeloid leukemia (AML). MDS 
and aplastic anemia (AA) are categorized as bone 
marrow (BM) failure syndromes and possess sev-
eral common features including immune mecha-
nisms, partly certain clinical and laboratory 
features, although the impaired cell lineages and 
mutational abnormalities differ. AA is mainly 

caused by T lymphocyte-mediated autoimmune 
attack on hematopoietic stem and progenitor 
cells,3 while MDS progresses due to serial acqui-
sition of somatic variants, and the improper acti-
vation of the immune system is an important 
factor in the pathogenesis of MDS, whereas 
escape of mutated hematopoietic cells from 
immune surveillance may play a separate role in 
the biology of high-risk MDS and progression to 
AML.4 Immunosuppressive therapy (IST) is one 
of the important treatment options for low-risk 
MDS (LR-MDS) and most AA patients.5 
Underlying clinical manifestations of MDS result 
from both the proliferation and aberrant differen-
tiation of mutated malignant hematopoietic stem 
cells (HSCs) and their progeny, along with cloned 
MDS cells that replace normal BM. It is ulti-
mately the interaction between these two groups 
of cells that determine the course of MDS. At 
present, there is accumulating evidence suggest-
ing that the progress and/or amplification of 
malignant clones is highly associated with immune 
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dysregulation in the tumor microenvironment, 
resulting in MDS cells evading immunosurveil-
lance.6,7 Immune cell dysfunction, aberrant 
cytokine production, and stromal cell destruction 
are the three core aspects of immune microenvi-
ronment dysfunction and are also central to the 
development and progression of MDS. 
Concurrently, the occurrence and progression of 
MDS is also known to be affected by the altera-
tion of the immune checkpoint pathway, PD-1/
PD-L1 or antigen presentation.8–10

In addition, stromal cells in the BM microenvi-
ronment play a fundamental role in disease  
progression through multiple mechanisms. 
Interactions between multiple endogenous and 
clonal cell populations disrupt immune surveil-
lance and promote the progression of MDS. To 
date, very few reviews have explored these inter-
actions; therefore, this review was focused on 
reporting the latest updates on the effects and 
interactions of dysregulated immune cells, stro-
mal cells, and cytokines in the pathogenesis and 
progression of MDS. We also discuss several dif-
ferent classes of immunotherapeutic approaches, 
including the targeting of T-cells, direct inhibi-
tion of inflammatory cytokines, repurposing cyto-
toxic cells, and adoptive cell therapy, to better 
understand the development of new approaches 
for MDS treatment.

Immune cells
In MDS, immune cells in the BM microenviron-
ment are altered, specifically T-cells, natural killer 
(NK) cells, macrophages, myeloid-derived sup-
pressor cells (MDSCs), and B-cells. Many stud-
ies strongly indicate that alterations in the 
numbers and functions of these immune cells are 
associated with MDS progression, Therefore, 
understanding their mechanisms of dysfunction is 
critical in the development of new targeted thera-
pies for MDS.

T-cells
The dysfunction of T-cells plays an essential role 
in apoptosis in low-risk MDS.11 A study has 
shown that the hypomethylating agent (HMA), 
azacitidine, enhances T-cell response to cancer-
testis antigens by inducing the upregulation of 
cancer-testis antigens, which is a fundamental 
part of tumor surveillance.12 In contrast, clinical 

trials have demonstrated that a similar or lower 
risk of progression to AML occurs after IST.5 
Through a variety of mechanisms including dys-
function of T-cells and cytokine expression, and 
changes in BM stromal, MDS tumor cells are 
able to escape tumor surveillance. Programmed 
death 1 (PD-1) is a T-cell surface co-inhibitory 
receptor that binds to Programmed Death-Ligand 
1/2 (PD-L1/PD-L2) to prevent immune overacti-
vation.13,14 After PD-1 binds to PD-L1, it destroys 
a series of signaling pathways downstream of the 
T-cell receptor (TCR), such as the PI3K/AKT, 
RAS-ERK1/2, and PKC signal pathways, thereby 
promoting apoptosis of effector T-cells and inhib-
iting cell proliferation and cytokine secretion15–18 
(see Figure 1). However, this protective function 
of the PD-1/PD-L1 signal can also maintain an 
immunosuppressive tumor microenvironment 
and promote tumor cell proliferation.19 Kondo 
et al.20 revealed that PD-L1 was only observed in 
individuals with 5% or more blasts and found that 
its high expression level was related to the high-
risk International Prognostic Score System for 
Myelodysplastic Syndrome (IPSS) category in 
MDS.

CD8+ T-cells
In vitro studies have shown that T-cells play a role 
in inhibiting the growth of malignant and non-
malignant hematopoietic cells, and is possibly 
mediated by CD8+ T-cells, which target MHC-
class I molecules on hematopoietic precursors.21 
In MDS, CD8+ T-cells have directly cytotoxic 
and produce cytokines such as tumor necrosis 
factor alpha (TNF-α), interleukin 6 (IL-6), 
IL-1Ra, CCL3, CCL4, FAS-L, and TRAIL, with 
distinct characteristics. CD8+ T-cells have also 
been found to exhibit CD39 markers associated 
with T-cell failure. T-cells expressing CD39 
may promote the inhibitory immune microenvi-
ronment in sAML by inhibiting T-cell 
activation.22,23

Regulatory T-cells
Regulatory T-cells (Tregs) were initially found to 
be the key immunomodulators of autoimmunity, 
maintaining self-tolerance by inhibiting autoreac-
tive T-cells.24 Ineffective hematopoiesis and BM 
failure in low-risk MDS are associated with 
immune disorders and autoimmunity, while high-
risk MDS is characterized by clonal expansion of 

Xiaoying Zhang
Xingcheng Yang 
Department of 
Hematology, Tongji 
Hospital, Tongji Medical 
College, Huazhong 
University of Science and 
Technology, Wuhan, Hubei, 
China

Ling Ma  
Department of Clinical 
Laboratory, Union 
Hospital, Tongji Medical 
College, Huazhong 
University of Science and 
Technology, Wuhan, Hubei, 
China

https://journals.sagepub.com/home/tah


X Zhang, X Yang et al.

journals.sagepub.com/home/tah	 3

malignant tumor cells and immune escape. Tregs 
are dysfunctional in the early stages of MDS due 
to the downregulation of CXCR4, which seri-
ously affects BM homing of Tregs through the 
CXCL12/CXCR4 axis.25 Many studies have 
shown that effective inhibition of the local 
immune response can promote the selective 
migration of Tregs to the inflammatory site and 
retain them by changing the homing receptor of 
Tregs.26 However, in late MDS, both systemic 
and local Tregs maintain function and migration 
ability. Studies have suggested that Treg amplifi-
cation may be driven by tumor-associated anti-
gens because Treg clones result from the 
uncontrolled growth of pre-leukemic clones and a 
large number of tumor antigens, thus tumor-spe-
cific Tregs can effectively inhibit the specific 
immune response of tumor-associated anti-
gens.27,28 The lack of Treg inhibition and dysreg-
ulated BM transport can play a fundamental role 
in the development of early MDS, while an 

increase in Treg activity can promote the progres-
sion of leukemic clones in advanced diseases. In 
addition, Treg subtypes may also be transformed. 
A study demonstrated that a subset of the high-
risk MDS patients displayed a significant shift 
from central memory Treg cells (TregCM) to 
effector memory Treg cells (TregEM).29

NK cells
NK cells play an important role in the host’s 
defense against malignant transformation by 
secreting cytokines and through their cytolytic 
activity.30 Decreased numbers of NK cells have 
been observed in high-risk MDS patients, allow-
ing for further clonal evolution. However, in low-
risk MDS, it appears that NK cells are cytotoxic 
to cloned MDS precursors, thus inhibiting pro-
gression. In addition to a quantitative change, it 
has been observed that the expression of 
NK-activated receptors is significantly decreased 

Figure 1.  Schematic representation of biochemical signaling altered by T-cells and the functional implications 
in PD-1.
PD-1 inhibits TCR-mediated activation of the PI3K/Akt and PLCgamma-1/Ras/MEK/Erk1/2 pathways. As a consequence, 
T-cells are unable to progress through the S phase of the cell cycle to produce cytokines and genes responsible for the 
activation and differentiation programs initiated by TCR ligation. PD-1 has a major effect on the metabolic reprogramming 
of activated T-cells by suppressing glycolysis and promoting FAO. This altered metabolic reprogramming impacts the 
differentiation program of T-cells by preventing the generation of effector T cells and promoting the generation of Treg cells. 
It promotes the apoptosis of effector T-cells, which in turn, promotes MDS cell proliferation.
FAO, fatty acid β-oxidation; HSCs, hematopoietic stem cells; MSCs, mesenchymal stem cells.
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and NK cells with a non-cytotoxic phenotype 
(CD56bright) increase in MDS, which plays an 
immunomodulatory role in both early and late 
stages of the disease,31 and provides an opportu-
nity for the treatment of myeloid malignant 
tumors, including MDS.32

Macrophages
Macrophages may also be involved in the pro-
gression of MDS. Recent studies have shown that 
the increased phagocytosis of granulocyte/mono-
cyte progenitor cells by macrophages may lead to 
periodic and specific loss of granulocyte/mono-
cyte progenitor cell populations in the BM of low-
risk MDS patients. This deregulated phagocytosis 
is thought to be controlled by the interaction 
between calreticulin on the surface of target cells 
and the low-density lipoprotein receptor-related 
protein (LRP1) receptor on macrophages.33 
Macrophages also mediate angiogenesis, which is 
elevated in high-risk MDS.34,35 Furthermore, 
high-risk MDS macrophages have characteristics 
such as low IL-12 expression, high IL-10 expres-
sion, low tumor-killing activity, and promotion of 
tissue remodeling and angiogenesis, which are 
M2-related characteristics.36

Myeloid-derived suppressor cells
MDSCs are a heterogeneous population of 
immature myeloid cells that are recruited by 
chemokines and regulate immunosuppression, 
providing immunosuppressive signals in MDS. 
Previous studies have shown that MDSCs inter-
fere with immunity by inhibiting cytotoxic T- 
cells,37 and the interaction of pro-inflammatory 
S100A9 with CD33 promotes MDSC expan-
sion. A study found that S100A9 and CD33 
form a functional ligand/receptor pair that 
recruits components to CD33’s immunorecep-
tor tyrosine-based inhibition motif (ITIM), 
inducing secretion of the suppressive cytokines, 
IL-10 and TGF-β.38 In addition to these immu-
nomodulatory actions, the inflammatory media-
tors secreted by MDSCs in MDS can directly 
disrupt erythropoiesis and promote disease 
progression.39

B-cells
Multiple studies have demonstrated that many 
patients with early MDS present with abnormalities 

in the B-cell progenitor compartment. A feature 
of early MDS may be the reduced expression of 
genes principally expressed in B-cell progeni-
tors.40 Compared with those with normal BM, 
MDS patients had significant levels of apoptosis 
in BM CD19+ cells.41 Furthermore, the num-
ber of B-cells or their precursors have been 
found to be significantly reduced, and the fre-
quency of pro-B (CD34+19+) cells has also been 
found to be significantly reduced in patients with 
5q-syndrome compared with those with normal 
cells.42

The stromal microenvironment
MDS is a functional disorder of the whole BM, 
including hematopoietic cells and mesenchymal 
components. The study of BM function in 
patients with MDS has shown that there is a close 
relationship between hematopoietic cells and 
stromal cells.43 Colony-forming unit (CFU-F) 
analysis of human BM fibroblasts has indicated 
that mesenchymal stem cells (MSCs) from MDS 
patients have reduced CFU-F counts when com-
pared with those purified from healthy controls. 
Furthermore, MSCs from MDS samples did not 
maintain a high passage in culture when com-
pared with healthy control samples.44 The dicer1-
deficient mouse model demonstrated that a 
dysfunctional stromal environment may initiate 
myelodysplasia.45 Another study demonstrated 
that a mouse model of MDS could be more effi-
ciently transplanted into aged recipient mice than 
into young recipient mice, suggesting that aged 
BM stroma are more favorable for the develop-
ment of MDS.39 In an MDS mouse model, an 
increase in the WNT/ β-catenin signal in MSCs, 
and the activation of β-catenin in osteoblasts 
derived from MSCs led to the occurrence of 
AML, indicating that the WNT signal from BM 
stroma also promote the progression of MDS.46,47 
Furthermore, some of the MSC genetic path-
ways (Wnt/β-catenin, Jagged-1, proinflammatory 
genes, miR-155) identified in mouse cancer 
models are also correlated with human clinical 
outcomes46,48–51 Transcriptome analysis has 
revealed the transcriptional signature of BM stro-
mal cells from MDS patients with cellular stress 
and upregulation of inflammation-associated 
secreted factors.52 Thus, some aspects of MDS 
may be driven by MSCs, while others may be a 
mechanism of MDS progression and transforma-
tion to leukemia.
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Production of inflammatory and aberrant 
cytokine
In recent years, the main pathogenic factors of 
MDS have been found to be malignant cloning 
and abnormal innate immune activation, as well 
as pro-inflammatory signal transduction in the 
BM microenvironment.53 Toll-like receptor 
(TLR) signaling is involved in immune response; 
however, in MDS, TLRs and their downstream 
effectors are aberrantly activated.54,55 Studies 
have shown that low-dose lipopolysaccharide 
(LPS) activates TLR signaling and alters hemat-
opoiesis.56 In addition, a study using a transgenic 
mouse model demonstrated that overexpression 
of S100A9 also induces cytopenia and dysplastic 
hematopoiesis.38 Furthermore, S100A9-mediated 
inflammatory activation of nod-like receptor pro-
tein 3 (NLRP3) leads to a pyroptotic cell death, 
which is the basis of many typical features of the 
disease.57 This pathway, and the accompanying 
release of other risk-related molecular patterns, 
expands MDSCs, creating a feedforward process 
that magnifies inflammatory body activation. In 
the inflammatory body family, NLRP3 is related 
to the pyroptosis of MDS cells. Furthermore, 
pyroptosis-associated gene transcripts and inflam-
masome assembly are profoundly upregulated in 
MDS.57 Somatic gene mutations of different 
functional categories cause NLRP3 to share a 
common phenotype, including the excessive pro-
duction of reactive oxygen species, proliferation 
induced by Wnt/β-catenin, cell swelling induced 
by cation flux, and caspase-1 activation. Although 
these findings contradict the observed competi-
tiveness of MDS cells, the relationship between 
NLRP3 as drivers of MDS amplification need to 
be further explored.

High-Mobility Group Box 1 (HMGB 1) is a 
nuclear protein involved in chromatin folding, 
transcription, and signaling in inflammatory 
states. It can be passively shed by necrotic cells or 
actively released by mononuclear cells, further 
amplifying inflammation. Aberrant inflammatory 
signaling induces apoptosis, NLRP3 inflammas-
ome activation, and pyroptosis of BM progeni-
tors, which may induce anemia by interfering 
with hemoglobin homeostasis and EPO signal-
ing.58,59 Circulating HMGB1 has been found to 
be increased in MDS but not in other BM failure 
syndromes, which further suggests that HMGB1 
is involved in the immune pathogenesis of MDS.60 
Inhibitors of HMGB1 and neutrophil elastase 

have been used in combination with azacitidine to 
reduce the expansion of abnormal (but unhealthy) 
MDS CFU in vitro. Inhibition of HMGB1 has 
also been shown to reduce the expression of TLR 
and NF-κB in LR-MDS cells;61 therefore, it may 
be a therapeutic target for MDS. Recent studies 
have shown that aspirin may play a role in reduc-
ing inflammation by inhibiting the activity of 
HMGB1.62,63 Thus, the possible beneficial effects 
of aspirin in reducing inflammation in MDS are 
worth exploring.

Abnormal cytokines play a complex and impor-
tant role in immune dysregulation in MDS.64,65 
In BM samples from patients with MDS, the lev-
els of many cytokines and growth factors were 
found to be abnormal.66 Furthermore, in the BM 
and serum of MDS patients, elevated levels of 
TNF-α in particular were associated with multi-
ple effects such as increased apoptosis, an 
increased number of BM cells, suppression of 
hematopoiesis, and activation of downstream 
signaling pathways and transcription factors.67–70 
Cytokines play vital roles in regulating cell-cell 
interactions, and the behavior and functions of 
immune cells are also regulated by the interplay 
with cytokines. For example, T-helper 17 (Th17) 
T-lymphocytes act by producing IL-17, which is 
a cytokine that in turn, activates macrophages 
and DCs to produce additional pro-inflammatory 
cytokines. Studies have shown that IL-17 levels 
are elevated in low-risk MDS, and may play a role 
in the induction of apoptosis.

Inflammation and immune dysregulation are 
crucial in the initiation and progression of MDS. 
MDS and chronic myelomonocytic leukemia 
(CMML) are frequently associated with auto
immune disorders (ADs) and inflammatory 
responses of the immune system.71 The develop-
ment of AD in the context of cytopenia should be 
considered in association with MDS, especially in 
elderly patients. In addition, cytopenias appear 
to be the result of complex autoreactive immune 
activity in some patients with MDS and may 
respond to IST. The increased release of 
inflammatory cytokines, such as TNF-α and 
interferons, triggers apoptosis of BM precursor 
cells, leading to cytopenia.72 Impaired function 
of immune cells, including cytotoxic Treg, 
Th17, and NK cells, is also predictive of the 
IST response, and AD outcome and occur-
rence. Vacuolated, E1 enzyme, X-linked 
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autoinflammatory, somatic mutation of UBA1 
(VEXAS) syndrome is a newly described episodic 
inflammatory syndrome in adults that overlaps 
with MDS and AD.73 Mutations result in the loss 
of the canonical cytoplasmic isoform of UBA1, 
reduced ubiquitination, and activation of innate 
immune pathways and systemic inflammation. A 
previous study demonstrated that anti-inflamma-
tory drugs did not improve VEXAS syndrome in 
any of the study subjects; however, all subjects 
were high-dose glucocorticoid dependent.74 
Recently, a study involving 11 MDS patients with 
confirmed VEXAS syndrome reported a 46% 
response rate to azacitidine treatment.75 Of note, 
clonal T-cell large granular lymphocyte (T-LGL) 
proliferation associated with MDS was not 
uncommon. In a larger study, Huh et al.76 
described nine patients who had both MDS and 
T-LGL, and proposed an etiologic relationship 
between the two, rather than simple coincidence. 
A study comparing MDS patients with and with-
out T-LGL proliferation found that T-LGL pro-
liferation in patients with MDS may be associated 
with BM cytopenia and lineage hypoplasia. 
Moreover, autoreactive T-cells may inhibit 
hematopoietic function and lead to cytopenia in 
T-LGL and some MDS patients, which may lead 
to the occurrence of T-LGL/MDS.77 IST may be 
beneficial for the elimination of T-LGL cells in 
MDS patients with T-LGL proliferation.78

Therapeutic targeting of the immune system 
in MDS
MDS is highly heterogeneous, which presents 
unique challenges in developing novel treatments. 
Correcting the immune microenvironment alone 
is not enough to treat MDS, thus immunotherapy 
in combination with other drugs may be neces-
sary to ultimately halt disease progression. Since 
the immune characteristics of different stages of 
MDS are not the same, several trials have investi-
gated the potential effects of immune regulation 
in low- and high-risk MDS patients, which will be 
briefly reviewed in Table 1.

Immunosuppressive treatment
Therapies targeting T-cells, anti-thymocyte glob-
ulin (ATG), and cyclosporine (CSA) have been 
found to be effective in some MDS patients, espe-
cially those with dysplasia.79–81 Studies have 
shown that response rates vary widely between 

the two treatments and that combination therapy 
is not superior to monotherapy.82,83 In a phase II 
study, 25 patients with transfusion-dependent 
MDS were treated with a single course of ATG, 
which resulted in hematopoietic recovery in some 
of the patients, especially those with refractory 
anemia, and was well-tolerated.84 In addition, the 
results of a single-center study of immunosup-
pressive treatment with ATG and CSA demon-
strated similar response rates to other standard 
treatments in early MDS, but poor responses to 
IST in patients with late MDS.85 A large, multi-
center international cohort retrospectively exam-
ined 207 patients with MDS receiving IST, and 
reported an overall response rate (ORR) of 48.8% 
and suggested that the preferred IST regimen to 
be used in patients’ hypocellular BMs was horse 
ATG in combination with CSA.5 An open-label 
randomized phase III trial also demonstrated that 
ATG and CSA treatment was associated with a 
hematologic response and had no apparent 
impact on TFS and OS, where dysplastic MDS 
had a higher ORR of 50%.86 Several studies have 
also demonstrated that treatment with IST sig-
nificantly favored survival,87 with conflicting 
results reported. Immunosuppressive drugs are 
still controversial in MDS. The relevance of IST 
for MDS depends on whether the BM failure of a 
particular subtype has an autoimmune compo-
nent. Some studies have indicated that it may 
benefit certain MDS patients with specific char-
acteristics: dysplasia, HLA-DR15, trisomy 8 syn-
drome, young (<60 years), absence of somatic 
mutations, and low transfusion burden.5,88

Direct inhibition of inflammatory cytokines
Anti-TNF-α therapy is one of the main strategies 
used in early MDS to target abnormal cytokine 
levels.89 Some studies on etanercept and inflixi-
mab demonstrated early activity; however, a 
phase II trial also demonstrated low activity and 
low response.89,90 Studies on combinations with 
other medicines have also been underwhelming. 
Etanercept in combination with azacitidine, 
which is a DNA methyltransferase inhibitor 
(DNMTi), resulted in an overall response rate of 
72% after 3 months; however, the criteria used to 
assess the response in this study were critical to 
those of azacytidine alone.91 Unfortunately, 
TNF-α inhibitors have not been as successful as 
expected and are not currently used as a standard 
treatment for MDS. As an important cytokine 

https://journals.sagepub.com/home/tah


X Zhang, X Yang et al.

journals.sagepub.com/home/tah	 7

Table 1.  Selected ongoing trials of immune therapeutic in myelodysplastic syndrome.

Therapy Impact on MDS 
development and 
progression

Therapy NCT Phase Condition or disease Study
Population

Outcomes

Inhibition of
NLRP3

Improves 
hematopoietic 
failure, suppresses 
pyroptosis

Ibrutinib and 
Azacitidine

NCT02553941 I CML/de novo MDS;
previously treated 
MDS/refractory 
anemia with 
excess blasts in 
transformation/
secondary MDS/

21 43% ORR

CG-806 NCT04477291 I AML/MDS 80 NA

Antibody 
against IL-8

Promotes the 
differentiation of 
CD34+ erythrocytes 
in MDS bone marrow

BMS-986253 NCT05148234 I/II MDS NA NA

TLR2 
inhibitory 
antibody

Suppresses 
pyroptosis

OPN-305 NCT02363491 I/II Low and 
intermediate-1 risk 
MDS

22 50% ORR

Monoclonal 
antibody to 
PD-1

Inhibits the 
production of growth 
factors and cell 
proliferation, and 
restores the immune 
killing function of T 
cells

Pembrolizumab 
and entinostat

NCT02936752 I Patients with 
MDS who are not 
responding to 
hypomethylating 
agents

27 NA

Pembrolizumab NCT01953692 I R/R hematologic 
malignancies

28 4% ORR;
The mOS was 23 weeks

Nivolumab and 
Ipilimumab 
with or without 
Azacitidine

NCT02530463 II MDS 26 36% ORR in HMA-
failure cohort;
67% ORR in frontline 
cohort;
In HMA-failure cohort, 
mOS was 11.4 months;
In frontline cohort, mOS 
was 12 months

Azacitidine and 
Pembrolizumab

NCT03094637 II High-risk MDS/
Intermediate-1 MDS

37 76% ORR and 18% CR 
(in the 17 previously 
untreated patients, 
cohort 1);
25% ORR and 5% CR 
(in the 20 HMA-failure 
patients, cohort 2);
mOS not reached 
(cohort 1), and mOS was 
5.8 months (cohort 2)

Monoclonal 
antibody to 
CD33

Induces MDS cell 
death

GO and 
liposome-
encapsulated 
Daunorubicin–
Cytarabine

NCT03672539 II R/R AML and 
post-HMA failure 
HR-MDS

24 55% ORR;
The mOS was 5 months

Macrophag-e 
immune 
checkpoint 
inhibitor that 
targets CD47

Phagocytosis and 
elimination of tumor 
cells

Magrolimab 
with or without 
Azacitidine

NCT04313881 III Higher-risk MDS 520 NA

Magrolimab 
with Azacitidine

NCT03248479 I AML/MDS 43 The objective response 
rate was 74.7%

AML, acute myeloid leukemia; CML, chronic myeloid leukemia; CR, complete response; GO, gemtuzumab ozogamicin; HMA, hypomethylating agent; IL, interleukin; 
mCR, marrow complete response; MDS, myelodysplastic syndromes; MDS-RS, MDS with ring-sideroblastic; mOS, median overall survival; NLRP3, nod-like receptor 
protein 3; ORR, overall response rate; PD-1, programmed death 1; TLR, toll-like receptor.
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involved in the pathogenesis of MDS, IL-6 has 
also been used in the treatment of MDS, but the 
results have also been poor. A double-blind, 
phase II study assessed siltuximab, a chimeric 
anti-IL-6 monoclonal antibody, but this was ter-
minated early due to a lack of efficacy in reducing 
red blood cell (RBC) transfusions.92 However, 
newer strategies to target cytokine signaling still 
have some therapeutic potential. Luspatercept, a 
recombinant fusion protein that exhibited prom-
ising results in a phase II study, is able to bind 
transforming growth factor beta superfamily 
ligands to reduce SMAD2 and SMAD3 signaling 
and improves erythropoiesis. A placebo-con-
trolled, double-blind, phase III trial on luspater-
cept in MDS demonstrated a transfusion 
independence in 38% patients over 8 weeks or 
longer.

Repurposing cytotoxic cells
The role of the cytotoxic immune response to 
target transformed cells in myeloid malignancies, 
including stimulating the endogenous system 
and reengineering lymphoid-derived cells to tar-
get the mutant cells, is currently unclear. With 
the successful use of immune checkpoint inhibi-
tors in the clinical treatment of solid tumors,93,94 
the concept of immune checkpoint blockade 
therapy has been applied to hematological 
tumors.95,96 Blocking immune checkpoints may 
be an effective and reasonable strategy in treat-
ing late MDS, including inhibiting the role of 
the PD-1/PD-L1 pathway in immune escape 
and cytotoxic T-cell failure in MDS.97,98 
Pembrolizumab (MK-3475) is a humanized 
monoclonal antibody that can block the interac-
tion between PD-1 and its PD-L1 ligand. In 28 
MDS patients who exhibited failed responses to 
HMA, the ORR of pembrolizumab monotherapy 
was only 4% and the OS rate was 49% after 24 
weeks.99 The reason for the contradiction 
between preclinical studies and clinical trials is 
still unclear; however, the dynamic changes in 
the BM immune microenvironment may be the 
key. Another phase II trial assessed the synergis-
tic effects of pembrolizumab and AZA in 37 
MDS patients with IPSS intermediate-1 or 
higher-risk disease. The ORRs were 76% in the 
HMA-untreated cohort (n = 17) and 25% in the 
HMA-failure cohort (n = 20), with a CR of 18% 
and 5%, respectively. Furthermore, the median 
overall survival (mOS) was not reached after a 
median follow-up of 12.8 months in the 

HMA-untreated cohort and 5.8 months in the 
HMA-failure cohort.100 These results show that 
HMAs and PD-1/PD-L1 inhibitors have a poten-
tially synergistic effect, but there are still obvious 
challenges in the treatment of MDS based on 
PD-1/PD-L1 inhibitors.

Adoptive cell therapy
Engineered NK cell cytotoxicity for the treatment 
of dysplastic clones is a new therapeutic approach 
and has exhibited some positive effects in AML 
and late MDS.101,102 A trial on NK-cell therapy 
demonstrated that high-risk MDS patients 
responded to treatment, which supports the use 
of haploidentical NK-cell infusions as a bridge 
therapy for HSCT in refractory patients.102 A 
phase II randomized trial in high-risk AML and 
MDS patients after haploidentical HCT also 
demonstrated the benefits of NK-cell therapy 
after haploidentical HCT in reducing disease pro-
gression.103 Following the successful treatment of 
lymphoma, several trials have evaluated the role 
of chimeric CAR (chimeric antigen receptor)-T 
cells in MDS and other advanced myeloid neo-
plasms. CAR-T cells need to have a certain degree 
of specificity for malignant cells to ensure that 
there are healthy progenitors to repopulate the 
BM in time to avoid complications. Several CAR 
products have been developed and target CD123, 
which delineates high-risk MDS stem cells 
derived from normal progenitor cells.104 A first-
in-human phase I study (NCT02159495), which 
included 40 participants, examined the anti-
tumor activity and safety of MB-102 (CD123-
targeted CAR-T cell) and demonstrated complete 
responses in people with AML and BPDCN 
without dose-limiting toxicities. Treatment with 
CD33-targeted CAR-T cell therapy demon-
strated that the CAR-T cell infusion caused 
severe toxic side effects in one patient, including 
aggravation of pancytopenia and an increase in 
serum cytokine levels. The patient’s BM blasts 
were significantly reduced after 2 weeks of CAR-T 
cell therapy. However, 9 weeks later, significant 
disease progression resumed.105 There have also 
been evaluations of combinatorial targets such as 
CD123–CD33 cCAR-T cells (NCT04156256), 
CLL1–CD33 (NCT03795779), or CD33–IL15 
constructs (NCT03927261). Another study on 
CAR-T cells that had been engineered to recog-
nize NKG2D-ligands did not yield significant 
clinical activity in AML and MM.106 In addition, 
a phase I trial on anti-NKG2D CAR–T cells, 
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which are commonly found on MDS clones, is 
currently underway (NCT04167696). One of the 
major challenges associated with current CAR-T 
cell therapies is the lack of a specific antigen. 
Many tumor-associated antigens are expressed on 
normal myeloid cells, which exert myeloablative 
effects on non-MDS target cells. We briefly 
reported some CAR-NK/T cells therapies that 
are currently under investigation in Table 2.

Conclusion and future prospective
Immune cells, inflammatory signals producing 
abnormal cytokines, and the stromal microenvi-
ronment are important contributors to the dis-
ease phenotype and clinical manifestations of 
myelodysplastic syndrome. Figure 2 depicts the 
possible mechanisms of these factors. As the use 
of multi-omics approaches in the BM microenvi-
ronment, further the mechanisms for MDS 
pathogenesis will be elucidated in more detailed. 

The mutation and clinical heterogeneity of MDS 
is a challenge when it comes to successfully treat-
ing MDS. Improving the hematopoietic micro-
environment may promote the recovery of 
hematopoiesis and inhibit disease progression in 
some patients. Therefore, it is necessary to 
understand the changes in inflammation and 
microenvironment in the different disease stages 
in order to construct targeted therapy, combat 
the pro-inflammatory environment of the dis-
ease, and ultimately stop disease progression. 
Concurrently, given the complexity of the dis-
ease, a combination of treatments may be 
needed. Significant efforts have been made to 
find ways for the therapeutic to immune system, 
both the activation of quiescent immune effector 
cells and the amelioration of an aberrant inflam-
matory microenvironment. Additional work on 
predictive indicators that can be used to evalu-
ate the response to immunotherapy, including 
CAR-T, is also greatly warranted.

Table 2.  Selected clinical trials of CAR-NK/T cells in myelodysplastic syndrome.

Therapy Target Condition or disease Phase Status NCT

CAR-NK cell CAR.70/IL15-
transduced 
CB-NK cells

B-cell lymphoma/MDS/AML I Recruiting NCT05092451

CAR-T cell CD123 BPDCN; I/II Recruiting NCT04109482

AML/ALL/BPDCN/MDS I Recruiting NCT04318678

AML/MDS I Recruiting NCT05457010

CD33 Myeloid leukemia/AML I Unknown NCT01864902

Myeloid malignancies I/II Unknown NCT02958397

CD33-IL15 
constructs

AML/MDS I Completed NCT03927261

NKG2D-ligand AML/MDS; I Recruiting NCT04167696

AML/MDS/MM I Completed NCT02203825

CD123-CD33 Hematologic malignancy/
AML/MDS/
MPN/CML;

Early phase I Unknown NCT04156256

CLL1-CD33 Hematologic malignancy/
AML/MDS/
MPN/CML

Early phase I Recruiting NCT03795779

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BPDCN, blastic plasmacytoid dendritic cell neoplasm; 
CAR-NK, chimeric antigen receptor-natural killer; CAR-T, chimeric antigen receptor-T; CML, chronic myeloid leukemia; 
IL, interleukin; MDS, myelodysplastic syndromes; MPN, myeloproliferative neoplasm.
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Figure 2.  Overview of immune dysregulation in MDS.
Immune dysregulation in MDS proceeds as a vicious cycle, disrupts immune function, and alters the BM microenvironment, 
thus contributing to disease initiation and progression. Chronic or unresolved inflammation, which is mediated in large part 
by secreted factors, induces cell death and activate innate immune signaling. Furthermore, the s100A9-mediated nod-like 
Receptor protein 3 (NLRP3) inflammasome is also activated, resulting in pyroptosis. The release of the NLRP3 pathway 
and other associated danger-associated molecular patterns extend MDSCs. Extended MDSCs cooperate with Tregs, which 
subsequently release suppressive cytokines and inhibit the NK and CTL killing effect, inhibiting the anti-leukemia effect, and 
leading to MDS blast and leukemic evolution.
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