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Abstract

Complex traits such as obesity are manifestations of intricate interactions of multiple genetic factors. However, such
relationships are difficult to identify. Thanks to the recent advance in high-throughput technology, a large amount of data
has been collected for various complex traits, including obesity. These data often measure different biological aspects of the
traits of interest, including genotypic variations at the DNA level and gene expression alterations at the RNA level.
Integration of such heterogeneous data provides promising opportunities to understand the genetic components and
possibly genetic architecture of complex traits. In this paper, we propose a machine learning based method, module-guided
Random Forests (mgRF), to integrate genotypic and gene expression data to investigate genetic factors and molecular
mechanism underlying complex traits. mgRF is an augmented Random Forests method enhanced by a network analysis for
identifying multiple correlated variables of different types. We applied mgRF to genetic markers and gene expression data
from a cohort of F2 female mouse intercross. mgRF outperformed several existing methods in our extensive comparison.
Our new approach has an improved performance when combining both genotypic and gene expression data compared to
using either one of the two types of data alone. The resulting predictive variables identified by mgRF provide information of
perturbed pathways that are related to body weight. More importantly, the results uncovered intricate interactions among
genetic markers and genes that have been overlooked if only one type of data was examined. Our results shed light on
genetic mechanisms of obesity and our approach provides a promising complementary framework to the ‘‘genetics of gene
expression’’ analysis for integrating genotypic and gene expression information for analyzing complex traits.
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Introduction

Most complex traits such as obesity involve a diverse set of

genes, intricate interplay among them and subtle interaction

between genetic and environment factors. One of the first steps

toward a systematic understanding of the genetic basis of a

complex trait is the identification of causal genetic elements, e.g.

genes, genetic markers and/or single nucleotide polymorphisms

(SNPs), whose variations are responsible for the traits. The

objective of this challenging task is two-fold: effectively identifying

a subset of genetic elements out of a large pool of candidates whose

patterns are characteristic of a trait of interest, and accurately

predicting the phenotype with a model that accommodate

interactions among selected genetic elements. Despite recent

advances in high-throughput technologies that have produced an

enormous amount of biological data, heterogeneous data types,

non-linear relationships among genes and complex phenotypes

have made this task difficult.

Although conventional linkage analyses and association studies

as well as the latest genome-wide association studies (GWAS) have

produced a fruitful collection of genomic susceptibility loci for a

variety of complex traits and diseases [1,2], they have mainly been

able to detect genetic elements of marginal effects while failed to

respect epistatic interactions [3,4]; as a result, they have a low

power for predicting phenotypes [5]. As an intermediate between

genotype and phenotype, gene expression has been proven to be a

rich and valuable source of information complementary to

genotype information for dissecting complex traits. On one

extreme using gene expression data alone, classifiers or regressors

have been built to predict disease types or stages with only a small

number of disease-related genes [6–8]. By integrating information

of genetics and gene expression, genetics of gene expression-based

approaches [9–11] and network-based approaches [12–14] have

been independently developed and applied to identify genes

related to complex traits. Recently a few machine learning based

methods have been proposed to integrate both genotype and gene

expression data to not only identify relevant genes, but also predict

phenotypes based on selected genes. Ruderfer et al. [15] adopted a

SVM classifier to predict drug responses (i.e., sensitivity or

resistance) in yeast. They showed that using both data of

transcripts and genetic markers can improve prediction accuracy

compared with using either transcripts or genetic markers alone.

Based on the elastic net regularized regression [16], Chen et al.

[17] developed Camelot to predict quantitative response (i.e.
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growth yield) of yeast to 94 drugs using genotype and gene

expression data collected from drug-free conditions from yeast

segregants. Compared with the work by Ruderfer et al. [15],

Camelot was able to make accurate quantitative prediction on

various drug treatments as opposed to dichotomic classes of drug

response. Camelot also emphasized greatly on causal inference by

incorporating a priori knowledge and adopting post statistic tests to

select only handful genetic makers and expression transcripts as

phenotype predictors. For example, for predicting the hydrogen

peroxide response, only a single gene, DHH1, passed their pre-

filtering criteria and was then used to construct the final prediction

model. Although appropriate for downstream experimental

validation as Camelot always make the most conservative choices,

it remains unknown whether its filtering steps could indeed help

improve prediction accuracy and whether it would otherwise

prevent further novel discovery besides the factors known to have

large marginal effects.

Random Forests (RF) [18], an ensemble of classification or

regression trees, has recently been successfully applied in various

biological studies [19–23]. RF has many desirable characteristics

that make it well suited for integrating both genotypic and gene

expression information. It is well adapted for variable selection for

high-dimensional data with competing prediction accuracy

compared to the state-of-the-art machine learning techniques.

RF is able to accommodate categorical (e.g. genotype) and

continuous (e.g. gene expression) data. It can be used when the

number of variables substantially exceeds the number of observa-

tions (e.g. thousands of SNP markers and probes of gene

expression versus a few hundred samples of subject) [19–23].

Moreover, RF supports possible interactions among variables [4],

which is critical for systems-biology studies where interplays

between genetic (e.g. epistatically interacting SNPs) and gene

expression (e.g. coactivator/corepressor) must be taken into

consideration. While promising, however, conventional RF

algorithms have several drawbacks that limit their success on

large biological problems. Firstly, even though RF allows possible

interactions among variables, it does not incorporate possible

correlation among variables; even worse, with correlated variables,

it suffers from biases introduced in measuring variable importance

(VI) [24,25], which can result in incorrect or misleading variable

rankings. Secondly, RF’s prediction accuracy may decline

significantly when the proportion of truly informative variables

among all variables is small [26].

In this paper, we develop a new method, called module-guided

Random Forests (mgRF), to integrate genotypic and gene

expression information to understand and possibly dissect complex

relationships among different genetic elements underlying com-

plex traits. mgRF combines the method of conventional RF and a

network-based analysis to remedy the two aforementioned

drawbacks of conventional RF by exploiting structural relation-

ships, extracted from the network analysis, among different types

of variables. As a test and application, we applied mgRF to the

data of genetic markers and gene expression from a cohort of F2

female mouse intercross to examine its performance and

demonstrate its ability to identify genetic elements that contribute

to mouse weight, many of which were missed by the conventional

RF algorithm. mgRF outperformed the state-of-the-art methods

that combine information from multiple biological sources with

more accurate predictions. Furthermore, using mgRF we inves-

tigated the interactions among multiple genetic elements under-

lying mouse weight. Statistically significant interactions of SNP-to-

SNP, gene-to-gene, and SNP-to-gene identified by mgRF revealed

genetic elements and their significant association underlying

mouse weight. The results demonstrated a great expectation of

mgRF as a complementary framework to ‘‘genetics of gene

expression’’ analysis for dissecting genetic mechanism of complex

traits, such as obesity.

Results

Overview of the mgRF method
In mgRF our main objectives are to capture intrinsic structures

of variable (genetic element) correlation and/or interaction and to

incorporate such information in the RF framework to predict a

complex phenotype. The major steps of mgRF algorithm, outlined

in Figure 1, consist of the identification of variable modules from a

variable correlation network (Figures 1A and 1B) and an iterative

RFs construction process (Figure 1C). In the first step we construct

a correlation network and identify modules in the network to

group highly-correlated variables, which may be in different types,

using a network clustering method such as HQCut [27–29]. In the

second step of mgRF, we iteratively construct a series of RFs

guided by the previously identified network modules. Instead of

randomly sampling variables in each node of regression tree, we

adopt a two-stage candidate variable sampling procedure, where we first

select a subset of modules and then choose one representative

variable for each of the selected modules (right panels in Figure 1C)

to correct the bias of variable importance while incorporating the

variable association information. Except the first RF construction,

we use a modified weighted sampling to improve the prediction

accuracy by prioritizing informative variables among a large pool

of variables. A key element of mgRF is to correct possible bias of

variable importance measure and improve the performance of RF

for high-dimensional data. This is done in part by introducing a

module importance (MI) to each network module identified.

Initially all MI and variable importance (VI) are set to 0 so that in

the first iteration the sampling of modules and variables is un-

weighted. After each iteration of RF, new MIs and VIs are re-

estimated (not accumulated). The values of MIs and VIs can

typically converge within a small number of iterations, where little

change can be observed between the last and the second to the last

estimations. The final output of mgRF is an ensemble of trees as a

Author Summary

Obesity has become a perilous global epidemic that can
lead to complex diseases, such as diabetes and cardiovas-
cular diseases. Much effort has been devoted to the
studies of the genetic mechanisms that pillow the
manifestation of obesity. Although a large quantity of
experimental data has been accumulated lately using
high-throughput techniques, our understanding of genetic
mechanisms of obesity is still limited. The proposed
method is motivated to address three critical issues that
have impeded the existing methods. The first is the curse
of dimensionality in selecting a subset of genetic elements
related to the traits of interest from a large number of
candidates. The second is genetic multiplicity underlying
non-Mendelian traits, in which multiple genes are in
interplay. The third issue is the integration of data from
multiple sources in light of genetic multiplicity and curse
of dimensionality. Here, we propose a new method, which
augments the Random Forests method with a network-
based analysis, to integrate genotypic and gene expres-
sion information and identify correlated multiple genetic
elements underlying mouse weight. Our results shed light
on complex genetic interactions underlying obesity, which
can form viable hypotheses worthy of further investiga-
tion.

Integrative Analysis Using Module-Guided RF
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Figure 1. Flow chart of mgRF algorithm. (A) A subgraph of a constructed correlation network where a node indicates a variable and an edge
represents the correlation between two variables. (B) Identification of network modules using HQcut, where different colors encode different
modules. (C) Iterative construction of RFs. The panels on the left show multiple iterations of RFs and the panels on the right illustrate the sampling
scheme in each node during of tree construction. mtry (k) candidate variables are sampled using a two-stage candidate variable sampling procedure,

Integrative Analysis Using Module-Guided RF
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model for future analysis and its corrected VIs (cVIs) and MIs for

variable and module ranking. Details and parameter selections of

the mgRF algorithm are described in Materials and Methods.

Combining genotypic and expression data can better
predict mouse weight

To investigate the benefits of integrating genotypic and gene

expression data, we examined the performance of different models

on the genotypic and gene expression data of a cohort of F2 mouse

intercross in a three-way comparison: (1) using only data of genetic

markers (genotype-only), (2) using only data of gene expression

(expression-only), and (3) using both genotypic and expression data

(combined). We first compared mgRF with group lasso [30],

elastic net [16], SVR-RFE [8], and the conventional RF algorithm

(see Text S1) in terms of the weight regression error (Root-Mean-

Square Error or RMSE) in all three types of data using 10 trials of

10-fold cross-validation. The average cross-validation RMSEs of

the methods compared are shown in Figure 2. mgRF achieved the

smallest average error compared to all the other competing

methods in all types of data. Since we assessed each model using

the same training and test data in each fold of the cross-validation,

we can compute the paired t-test of RMSEs to evaluate the

significance of the results. As shown in Table S1, the RMSEs of all

the other methods are significantly larger (p,2.52610213) than

that of mgRF. Furthermore, the running time of mgRF is slightly

less than the conventional RF with better prediction accuracy

(Table S2). It is noteworthy to mention that SVR-RFE, RF and

mgRF outperformed the linear models, group lasso and elastic net,

suggesting the benefits of incorporating non-linearity between

variables and the mouse weight response.

In particular, we examined the RMSEs of mouse weight using

mgRF. The boxplot of prediction errors on the three data types

are shown in Figure 3A. The combined data have the smallest

error (RMSE = 3.80 and R2 = 0.604), followed by the expression-

only data (RMSE = 4.13, and R2 = 0.534), while the genotypic-

only data have the highest error rate (RMSE = 5.62 and

R2 = 0.137). Thus using either the genotypic or gene expression

data alone is less effective than using the combined data. Although

the standard error of RMSEs of different trials (quartile bar in

Figure 3A) is relatively large comparing to the difference of mean

RMSE between with and without genotypic data, there is a

substantial improvement in pairwise comparisons using the same

training samples (Figures 3B to 3D). The two-dimensional co-

ordinates of point in each of these plots indicate the RMSEs of

mgRF trained with the same set of samples but with different data

types. In Figures 3B and 3C, most of the points appear under the

reference diagonal line, which confirms that both expression-only

and combined data achieved better performance in a single fold

than the genotype-only data (paired one-tail t-test p-val-

ue#4.7446610228 and #1.7272610232, respectively). This was

probably because in general the linkage signal of genetic markers is

weak (LOD score ,4), while gene expression is more closely

related to the phenotype than genotypes. Furthermore, mgRF

using both genotypic and gene expression data outperforms using

expression-only data in more than 90% of the trials (Figure 3D,

paired one-tail t-test p-value#1.691610219), showing that com-

bining genotypic and gene expression data can indeed improve the

prediction power and suggesting that information of gene

expression plays a role in bridging the gap between genotype

variations and complex traits.

Genetic elements identified by mgRF reveal perturbed
pathways related to mouse weight

The mgRF method used corrected variable importance (cVI)

and module importance (MI) to identify variables and groups of

variables that influence the trait of body weight. MIs were

computed for network modules identified by the HQcut algorithm

[27,29,31]. To assess and illustrate mgRF’s ability for correcting

the bias of variable importance, we evaluated different regression

models regarding their abilities for recovering the true variable

importance associated with the known data-generating pattern in a

simulation study (see Text S2). mgRF was able to accurately

recover the known pattern of variables’ importance and the VI

measure of mgRF was more stable than the other methods in all

simulations, as discussed in Text S2.

When applied to the mouse weight data from a cohort of 132

samples and compared with modules identified by topological

overlap matrix based methods [12,32], HQcut produced much

smaller modules, allowing only highly-correlated variables to be

clustered in a module (Figure S1). HQcut identified 146, 1036 and

1187 network modules (see module structures in Table S3, S4, S5)

in the genotype-only, expression-only and combined data,

respectively. As expected, SNPs in one module were generally in

linkage disequilibrium. Genes in one module were co-expressed

and potentially functionally related. There were SNPs and genes

where a subset of modules (e.g. the blue, green, orange modules) is first sampled and then one representative variable from each module is selected.
In the first iteration (iteration 0), all modules and variables have the same weights. At the end of one iteration, module and variable importance are re-
estimated. In the figure, the importance of variables is encoded as the size of node. Then modules and variables are sampled by their corresponding
weights using modified weighted sampling. The best splitting variable and value at each node in the tree in the left panel are selected from mtry (k)
candidate variables.
doi:10.1371/journal.pcbi.1002956.g001

Figure 2. Performance comparison of Group lasso, Elastic net,
Support Vector Regressor (SVR), conventional RF, and mgRF.
Average RMSEs of these methods in a 10-fold cross-validation on the
mouse weight dataset. Even though the standard deviation (shown as
error bar) of RMSEs among 10 trials of 10-fold cross-validation is
relatively high due to the small number of samples, if we compare the
RMSEs of different methods using the same set of training samples, the
improvement is evident (mgRF vs conventional RF, one-tail paired t-test
p-value,3.83610216).
doi:10.1371/journal.pcbi.1002956.g002

Integrative Analysis Using Module-Guided RF

PLOS Computational Biology | www.ploscompbiol.org 4 March 2013 | Volume 9 | Issue 3 | e1002956



assigned to the same module in the combined data set due to the

large correlation values among those gene expression and SNPs.

The top-ranked genetic markers and genes in the combined data

largely overlapped with those identified by genotype-only and

expression-only data types indicating the stability of mgRF in

terms of variable ranking. Here we reported the top-ranked

modules of genetic markers and genes in Table 1 and 2. Among

these top-ranked SNPs (Table 1), rs3662726 (Chromosome 5,

123 Mb) is near Gofm2 (gonadal fat mass 2) QTL which has been

reported to confer increased fat mass in female mouse [33]. We

also examined the LOD scores of SNPs using the traditional QTL

mapping. Several ‘‘hotspot’’ QTLs on Chromosomes 1, 3, 5, 7, 10,

15 and 19 were partially overlapped with the top-ranked markers

by mgRF (Figure 4). Table S6 lists all the top-ranked SNPs. Note

that several markers with low LOD scores were assigned relative

high cVIs, suggesting that a SNP with low marginal effect can be

identified by mgRF because of their interaction with other SNPs,

which may contribute to the variation of body weight.

It is important to note that there was little overlap among the

100 top-ranked genes from group lasso, elastic net, SVR-RFE, the

conventional RF algorithm, and mgRF (Figure S2A). The lack of

consensus indicated that these algorithms identified their own top-

ranked genes based on different (unspecified) assumptions on the

given data and target models to be learned. Introduction of such

assumptions seemed to be inevitable because of the lack of

sufficient knowledge of the problem at hand and different

objectives that these methods were devised to achieve. Neverthe-

less, all these methods strived to select predictive variables (genetic

factors). On top of finding individual predictive genetic factors,

mgRF was particularly designed to identify such predictive genetic

factors whose association might contribute more significantly than

individual variables at the module level because it propagated the

Figure 3. Summary of prediction errors of mgRF using three types of data. (A) Boxplot of prediction errors in root-mean-square error
(RMSE) in 10 trials of 10-folds cross-validation. Scatter plots of (B) genotype-only (x-axis) vs. expression-only (y-axis), (C) genotype-only vs. combined,
and (D) expression-only vs. combined. The dashed diagonal lines (x = y) indicate points of equal RMSE. Given two vectors, the p-value of one-tail
paired t-test evaluate if the distribution of one vector (100 RMSE values for 10 trials of 10-fold cross validation) is statistically smaller than the other
one.
doi:10.1371/journal.pcbi.1002956.g003

Integrative Analysis Using Module-Guided RF
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contribution of individual variables to highly correlated neighbors,

rather than fully focusing on individual genes. Table S7 lists the

top-ranked genes related to mouse weight from mgRF. Among

these top-ranked genes (Table 2), monoacylglycerol O-acyltrasfer-

ase 1 (Mogat1, cVI = 11.84) in module 189 has been previously

identified to be located within Chromosome 1 obesity QTL

interval near D1Mit215. Within this QTL interval on Chromo-

some 1, insulin-like growth factor binding protein 2 (Igfbp2,

cVI = 10.94) has expression levels in liver negatively correlated

with mesenteric fat pad weights [34]. Igfbp2 (appeared in module

32) has also been shown to prevent diet-induced obesity and

insulin resistance in mice on overexpression [35]. In particular,

module 32 contained Cyp2c37 (cVI = 9.65), C7orf24 (cVI = 7.43)

and Gpld1 (cVI = 6.54), which were not among the top 100 ranked

genes from any of the other methods compared, probably due to

their correlation with Igfbp2. Raet1d (cVI = 9.38) in module 189 was

also not identified by the competing methods (Table S8) probably

due to its correlation with Mogat1. Remarkably, Cyp2c37 has been

previously recognized as being associated with fat mass [10] and

Gpld1 had been shown to be associated with the level of

adiponectin, a hormone secreted from adipose tissue which is

negatively correlated with obesity [36]. It is viable to hypothesize

that other genes identified by mgRF, which were neglected by the

other methods, may potentially contribute to mouse weight

variation. To further assess the biological significance of the genes

identified by mgRF, we conducted a Gene Ontology (GO)

Table 1. Representative significant SNPs in the top 10 modules identified by mgRF in the combined dataset.

Marker ID UCSC ID SNP Physical Location mgRF cVI QTL LOD Candidate eQTL Genes

p46143 rs3677464 Chr 1, 142 Mb 0.519253 3.03 Ugt1a9, Mogat1, Igfbp2

p45505 rs3659655 Chr 1, 177 Mb 0.520485 2.01 Grpel2, Copa, Cd244

p45693 rs3714147 Chr 3, 159 Mb 0.598267 1.62 Cnn3, A430056A10Rik

p45975 rs3672859 Chr 5, 47 Mb 0.624049 1.63 Bmp2k, Tgfbr2, Slc2a9

p45558 rs3662726 Chr 5, 123 Mb 1.560222 3.4 Bmp1k, Spp1, Mtf2, Tslpr, Gpr109b

p44866 rs3714636 Chr 7, 137 Mb 0.710581 1 Asc

p44776 rs3680872 Chr 10, 117 Mb 0.552147 0.84 Lzp-s, Kitl

p44593 rs3667621 Chr 15, 80 Mb 1.057362 3.58 Dlgap2, Rac2, Ang2, Ncf4, Ccl4

p45916 mCV23069037 Chr 19, 52 Mb 0.934463 3.95 Atad1, Lzts2, Cyp2c40, Tjp2

p44699 rs3663566 Chr 19, 56 Mb 1.248977 2.88 Lzts, Cyp2c40

doi:10.1371/journal.pcbi.1002956.t001

Table 2. Representative significant genes in the top 10 modules identified by mgRF in the combined dataset.*

Module ID Symbol cVI (%) Description

32 Igfbp2 10.94238 insulin-like growth factor binding protein 2

Cyp2c37 9.654316 cytochrome P450, family 2. subfamily c, polypeptide 37

Fmo3 9.41088 flavin containing monooxygenase 3

Reep5 8.20887 receptor accessory protein 5

C7orf24 7.4338 chromosome 7 open reading frame 24

Gpld1 6.813601 glycosylphosphatidylinositol specific phospholipase D1

189 Mogat1 11.84315 monoacylglycerol O-acyltransferase 1

MGC137458 11.67155 hypothetical LOC541113

Raet1d 9.386647 retinoic acid early transcript delta

244 Pdia5 6.81388 protein disulfide isomerase associated 5

1300018K11Rik 5.812176 -

Heatr1_predicted 5.385251 HEAT repeat containing 1 (predicted)

307 Slc43a1 6.548385 solute carrier family 43, member 1

Acsm1 4.96683 acyl-CoA synthetase medium-chain family member 1

BC029214 3.816577 cDNA sequence BC029214

150 Angpt2 6.038289 angiopoietin 2

Zfp521 5.677051 zinc finger protein 521

68 Avpr1a 5.682891 arginine vasopressin receptor 1A

Cd93 3.815527 CD93 antigen

468 Serpinf2 4.113287 serine (or cysteine) peptidase inhibitor, clade F, member 2

(*Note: Top genes ranked by mgRF in the expression-only data were the same as the one above with slightly different cVIs).
doi:10.1371/journal.pcbi.1002956.t002
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PLOS Computational Biology | www.ploscompbiol.org 6 March 2013 | Volume 9 | Issue 3 | e1002956



enrichment analysis (see Materials and Methods) on the top-

ranked genes from the methods that were compared. mgRF

identified more enriched biological processes than the other

methods (Table S9). In particular, genes identified by mgRF were

enriched with many obesity-related processes, such as regulation of

lipid storage (p = 7.17610206), positive regulation of cholesterol

storage (p = 1.07610205), regulation of growth (p = 0.000575), and

cellular response to cholesterol (p = 0.00396). In contrast, the

enriched biological processes provided by the other methods were

less significant and less biologically meaningful (Tables S5B to

S5E).

As an example, Figure 5 shows a sub-network of some top-

ranked genes from mgRF to compare the variable importance

measures in mgRF and the conventional RF. The size of nodes

represents relative cVIs from mgRF in Figure 5A and represents

relative VIs from conventional RF in Figure 5B. In the

conventional RF algorithm, one variable, Igfbp2, has a larger

importance than others. As a result, the importance of Igfbp2

overshadows several other correlated variables such as Fmo3,

Cyp2c37, and Raet1d, which may in fact be equally important as

Igfbp2. In mgRF, several genes with the highest cVI, such as

Mogat1, MGC137458, and Igfbp2, which are known to be critical to

body weight, were also hub nodes in the network with many edges.

It was consistent with our previous studies on the importance of

hub genes in the co-expression network [37].

Significant interactions among multiple genetic elements
revealed by mgRF

Although the corrected variable importance (cVI) from mgRF

quantifies the contribution of a genetic factor to the prediction

power, it does not indicate whether the contribution is from the

genetic factor alone or from its interaction between or association

with other factors. One advantage of the RF method is its ability to

incorporate variable interactions, which mgRF inherited. We

devised a systematic statistical test (see Materials and Methods) to

assess the significance of gene-to-gene, SNP-to-SNP, and SNP-to-

gene interactions revealed by mgRF. To examine the biological

relevance of genes identified in gene-to-gene interactions in the

mouse weight data, we first tested the functional enrichment

among 160 unique genes from the top 100 most significant pairs of

interactions (Table S10). Interestingly, these genes were enriched

with metabolic processes such as isoprenoid metabolic process

(p = 0.00675), drug metabolic process (p = 0.00841), and terpenoid

metabolic process (p = 0.00117), indicating obesity-related interac-

tion among the identified genes. In particular, the pair of Avpr1a

and Igfbp2 is one of the most significant interactions

(p = 4.15610207), both of which are also among the most

predictive genes. However, only 11 (,7%) of the 160 unique

genes from the significant gene-to-gene interactions were over-

lapped with the top 100 most predictive genes identified by cVI

(Figure S2B). This suggested that our interaction test could indeed

identify genes that were less significant when examined individ-

ually. For example, macrophage receptor with collagenous

structure (Marco) was observed to interact with many other

phenotype-related genes (e.g. Dhrs4, Cyp2d22, and Pdia5), even

though its own cVI was relatively low. Among the top-ranked

SNP-to-SNP interactions, we found significant interactions

between SNPs on Chromosome 5 (123 Mb) and Chromosome

19 (51 Mb) (p = 3.34610211), on Chromosome 2 (96 Mb) and

Chromosome 9 (61 Mb) (p = 8.9761027), and on Chromosome 1

Figure 4. LOD scores from QTL mapping versus VI scores from mgRF. The black curves represent the LOD scores of a single marker genome
scan in conventional QTL analysis. The blue bars represent the cVI scores of genetic markers output by mgRF.
doi:10.1371/journal.pcbi.1002956.g004
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(41 Mb) and Chromosome 15 (62 Mb) (p = 2.94610206, Table

S11). The most significant interaction was between p45558

(Chromosome 5, 123 Mb) and p44890 (Chromosome 19,

51 Mb). Cis-eQTLs analysis [12] indicated that Bmp2, a key

regulator of adipogenesis, was a candidate gene of p45558, and

Cyp2c40, known to be presented in Fatty acid metabolism, was a

candidate gene of p44890. For SNP-to-gene interactions (Table

S12), there was little overlapping between genes involved in SNP-

to-gene interactions and genes involved in gene-to-gene interac-

tions (Figure S2B). Of particular interest was the interaction

between SNP p45334 (Chromosome 1, 77 Mb) and gene Ehhadh,

where Mogat1 is one of the candidate eQTL genes of p45334 and

Ehhadh is annotated in the fatty acid metabolism pathway. We

compared the top 50 unique SNPs involved in SNP-to-gene

interactions with top SNPs ranked by cVIs. More than 20 of them

were among the top-50 most predictive SNPs. On the other hand,

only two genes involved in top 100 SNP-to-gene interactions were

among the top 100 most predictive genes. We hypothesized that

the most predictive SNPs did not interact with the most predictive

genes because the information contained in these SNPs was

redundant to these predictive genes, which usually were the

expression traits of the corresponding predictive SNPs. In turn, by

combining less predictive gene and marker profiles introduced

extra information into the system and indeed improved the

prediction accuracy. Genes involved in such interactions might

reveal additional perturbed pathways underlying the trait of body

weight.

Discussion

A systems biology approach is necessary to dissect complex

traits, such as obesity, and understand relationships among various

genetic factors. Combing heterogeneous data from multiple

sources will become increasingly important to model a large

quantity of data and interpret results. In this paper, we proposed a

novel approach that integrates the method of Random Forests and

a network analysis to incorporate genotypic and gene expression

data for revealing genetic factors and their interaction or

association that are characteristic of complex traits. To overcome

the curse of dimensionality, mgRF enhanced conventional RF

with the module structure of a correlation network and the

weighted sampling procedure. As a result, it successfully identified

a small subset of both predictive and biological meaningful genes

and genetic markers out of thousands of candidates. Meanwhile,

mgRF was able to model the complex associations and possibly

interactions between heterogeneous variables, which lead to

interesting findings that can shed some lights on solving the

genetic multiplicity problem underlying complex traits.

To rectify the bias in ranking correlated variables in conven-

tional RF, simple but effective strategies such as grouping

correlated variables prior to model fitting [38,39] can be applied,

where cluster centroids obtained from a hierarchical clustering

could be used as supergenes to fit classification/regression models.

Compared with Tolosi and Lengaue’s work [39], the major

differences and novelty of mgRF are three folds. (1) We

maintained the original feature space in RF models so that the

importance of individual variables can be estimated. (2) Instead of

using a simple hierarchical clustering, we adopted the network

modeling method HQCut, which is able to automatically and

accurately determine the number of modules (clusters) in the

network. (3) We further utilized the learnt MI and VI to guide a

weighted sampling of variables. Compared with other regression

models, such as elastic net and support vector regressor (SVR),

mgRF naturally handles different types of variables in that the

splitting points of continuous (or ordinal) variables preserve the

order information, which, however, is disregarded in categorical

variables. On the contrary, elastic net and SVR treat categorical

variables as continuous ones, consequently imposing ordered

information, which is related to how the categories should be

encoded. There is a popular variable importance measure,

permutation VI [18], which measures the increase of out-of-bag

prediction error with the variable to be measured being

permutated. However, the permutation VI suffers from several

shortcomings for large problems. It requires an excessive

computation time, since each variable needs to be permuted

dozens of times to ensure statistical stability. In addition, when the

baseline prediction error is large, there is little chance for

permutation to make a prediction worse, which leads to an

uniformly low VI [25]. More critically, it is still subject to the bias

of correlated variables [40,41]. Even though this problem can be

corrected [24,42,43], the incurred computation time of additional

permutation for a solution will make the excessive computation

cost prohibitive for large application.

Using a BxH F2 mouse intercross data set, we showed that the

proposed algorithm was effective on not only reducing prediction

error, but also identifying a subset of genetic markers and genes

that are associated with the trait of body weight. By integrating

genotypic and gene expression data, mgRF achieved a lower

prediction error compared to using either type of data alone.

These results support the idea that gene expression plays an

Figure 5. Network structure of 30 top ranked genes from mgRF. (A) The size of nodes represents the relative cVIs from mgRF. (B) The size of
nodes represents the relative VIs from the conventional RF algorithm.
doi:10.1371/journal.pcbi.1002956.g005

Integrative Analysis Using Module-Guided RF

PLOS Computational Biology | www.ploscompbiol.org 8 March 2013 | Volume 9 | Issue 3 | e1002956



intermediate bridging role between genotypic variations and a

phenotype. Genotypic data alone are insufficient for accurately

predicting the body weight due to their relative weak effects, while

gene expression data bridge the gap between genotypic variants

and a phenotype as gene expression can be intermediate traits of

multiple genetic markers. Besides the annotated body weight

relevant genetic elements, such as QTL rs3662726, genes Mogat1,

Igfbp2, and Cyp2c37, mgRF provided valuable hypotheses on

putative, novel genetic elements and their interactions that are

potentially important for body weight and obesity. In particular,

the top-ranked SNPs and genes, which have similar levels of

importance but are lack of known annotations, are excellent

candidates for further validations.

A key feature of mgRF is that it exploited splitting variables to

incorporate non-linear interactions of variables into the model and

to identify intriguing associations within and across two types of

data. The proposed statistical test for variable associations aimed

at extracting biological relevant markers and genes that might

have been overlooked by individual variable importance ranking.

The results of mgRF showed that several known obesity-related

genes and loci were associate or even interacted with each other

and genes that were strongly associated were indeed related to the

traits of obesity and/or body weight, as these genes were enriched

with biological processes on metabolisms. More importantly, the

results revealed that many genetic elements, which have not been

indicated previously to be associated with the traits, interacted

with obesity-related genes and their associations may contribute

more significantly to the traits than associations between genes that

were known to be related to obesity. In addition, the results also

included significant pairs of genes even though the predictive

scores of individual genes whose predictive scores were insignif-

icant. These results suggested that more obesity related genetic

factors remain to be discovered and mgRF is potentially an

enabling method for identifying genetic factors whose significance

would not be appreciated unless their associations or interactions

were taken into consideration.

Another key advantage of RF is that at each splitting point, it

only considers mtry (k) candidate variables for splitting, usually

k,,m, where m is the number of variables. The time complexity

of mgRF is the same as the conventional RF, in the order of

O(kn log n). In practice, mgRF is usually more efficient than the

conventional RF, thanks to the two-stage candidate variable sampling

and the modified weighted sampling. In particular, the mtry (k) of mgRF

is proportional to the number of modules instead of the actual

number of variables. In our experiments, the average training time

for mgRF was below 3 minutes for our C++ implementation on a

desktop machine with an Intel Duo core 2.53 GHz CPU and 4 G

memory (see Table S2 for running time comparison). The most

time consuming part of the mgRF framework is the network

construction and module finding using HQCut, which took

around 20 minutes on the same machine. For larger gene

expression data, a common practice is to pre-filtering low variance

genes to ,10,000 most varying genes. For large SNPs data, to

reduce the time of network construction and clustering, LD-

pruning can be utilized to approximate the SNPs’ module

structure.

Compared with conventional ‘‘genetics of gene expression’’

analysis, mgRF provided a complementary means to incorporate

the knowledge of inherent structure of genetic elements. mgRF

can also readily be applied to more than two types of data and can

be efficient on large-scale applications as it can be easily

parallelized to utilize the growing cloud computing environments.

While mgRF includes statistical tests to identify significant pair-

wise interactions among variables, there is amble room for

identifying higher order interactions within the framework of

variable importance.

Materials and Methods

Data preparation and preprocessing
The BxH mouse weight dataset consists of both categorical and

continuous variables: gene expressions of 7,441 most varying genes

and genotypes of 1,065 genetic markers that exhibit variation

between two parental strains. The problem can be formulated as a

regression problem of predicting the body weights of 132 F2

intercrossed female mice using these two types of variables. The

detailed information regarding the experiment and data collection

is in Ghazalpour et al. [12].

Correlation network construction and identification of
network modules

Given a high-dimensional dataset with multiple types of

variables, we adopted a previously developed network construction

and clustering method HQCut [27–29] to identify the intrinsic

structures of variables. HQCut is able to group variables into

clusters, i.e. network modules, using a parameter-free spectral

clustering-based method to optimize a network modularity

function [44]. HQCut has been applied to analyze complex

human disease such as Alzheimer’s disease [28,37]. Pearson’s

correlation was used to compute the correlation between two

continuous variables (e.g. gene expression). The correlation

between two categorical variables (e.g. genetic markers) was

defined as their normalized Mutual Information. For the

correlation between a categorical variable and a continuous

variable, we first discretized continuous variable X into three

categories, given by

xdiscretized~

0, xvmX {dX

1, mX {dX ƒxvmX zdX

2, x§mX zdX

8><
>:

,

where mX is the mean and dX is the standard deviation of X. We

then calculated the correlation of the discretized variable with the

categorical variable using Mutual Information. Given the corre-

lations of all pairs of variables, we constructed the correlation

network using the same method described in [27–29]. For two

variables to be connected in the network, their correlation needs to

satisfy at least one of the following criteria: (1) the correlation is

greater than 0.5 and one of the variable is ranked among the top 5

most correlated variables of the other variable; (2) the correlation is

greater than 0.8 and one of the variables is ranked among the top

50 most correlated variables of the other. These two criteria ensure

a sparse weighted network structure while maintaining both local

(via rank-based threshold) and global (via value-based threshold)

properties [29]. Since different types of variables might have

correlation values in different scale, the ranking threshold is

independent of each pair of data types. For example, if genotypic

and gene expression data are provided, above criteria will be

separately applied on SNP-to-SNP, gene-to-gene, and SNP-to-

gene (or the other direction) respectively. HQcut is then applied to

identify the optimal partitioning that cluster genes into non-

overlapping modules and automatically determine the number of

modules based on the modularity function [44].

Module-guided Random Forests
The basic building blocks of RF for regression problems are the

regression trees [45], which recursively partitioning the dataset
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into two subsets based on a specific variable among all variables to

minimize the squared loss. RF is an ensemble of regression trees,

where each tree is built using a set of bootstrap samples, which is a

subset of the original sample. At each splitting (or internal) node of

a tree only mtry (k) small randomly selected variables (or attributes)

are evaluated. The overall prediction of a forest is the majority

vote or the average over the predictions from all individual trees.

In a bagging iteration, approximately one third of the observations

are not used. These unused observations, the so-called out-of-bag

(OOB) sample, can be used to estimate the generalization error. In

general, three parameters are needed to be determined in the

conventional RF algorithm and mgRF: ntrees (n), the number of

trees in the forest, mtry (k), the number of candidate variables that

each node considers to find the best split, and nodesize (s), the

minimum size of sample in a node where no further splitting is

needed. Since a large ntrees usually stabilizes variable importance

measures, we set it to a large number (ntrees = 1000) in our

experiments. We set mtry = m/3, one third of the number of

variables as recommended for regression problems. We set nodesize

to 3 as opposed to the recommended 5 because the sample size of

our datasets is usually small (,200). Our preliminary experiments

have shown that the RF and mgRF are insensitive to parameter

choices.

To reduce previously mentioned bias on the variable impor-

tance and to incorporate priori knowledge of variables’ structure,

we adopted a two-stage candidate variable sampling procedure: we first

selected a subset of modules, each of which captured a set of

correlated variables, and then chose one representative variable

from each module to form the candidate splitting variables for

each node in RF. Given the module structure of a correlation

network, we sampled a subset of modules as candidate modules,

from which candidate splitting variables are selected in the second

stage. By using the two-stage candidate variable sampling, we could

significantly reduce the number of variables to be evaluated in

each split as the number of modules was typically much smaller

than the best mtry parameter in the original RF. We further

defined the module importance (MI) of a module mi to be the sum

of VIs of its member variables, MI(mi)~
P

vj[mi
VI(vj). MI of a

particular module summarized the contribution of all its member

variables. We further defined the corrected variable importance

(cVI) to estimate the importance of individual variables. The cVI

was defined as a weighted sum of VIs of all its connected neighbors

within the same module.

cVI(vi)~
X

vj[M(vi )

cijVI(vj),

where M(vi) is the module that vi belongs to and cij is the measure of

correlation between variables vi and vj.

We further enhanced mgRF by recursively building a series of

RFs, where the selection of candidate splitting variables was not

only guided by the module structure as in the two-stage candidate

variable sampling procedure, but also guided by MIs and VIs that

generated from previous RF. Except the first RF, where both

modules and variables were uniformly chosen, the construction of

successive RFs follows a modified weighted sampling scheme, which

combined both uniform and weighted sampling, to favor

informative variables. Take the sampling of modules as an

example, given a set S of weighted modules, a subset S1 of size

N1 was randomly chosen from S without replacement, where the

probability of selecting S1 was proportional to the weights. We

then uniformly selected N2 modules from S1 to form a smaller set

S2, which was the set of final candidate modules. The same

procedure was applied to selecting variables from each module.

The choices of N1 and N2 depended on the data analyzed. In

principle, N1 should be large enough to cover truly relevant objects

(i.e. informative variables) and N2 should be small enough to allow

diversity of splitting variables. In the current study we set N1 = N/

3, where N is the size of modules (or variables in one module) and

performed weighted sampling based on MIs (or VIs) for module

(or variable) sampling. In module sampling, we set N2~
ffiffiffiffiffiffiffiffi
DM D
p

,

where |M| was the number of modules, because we assumed that

there should be multiple latent factors contributing to the trait

variable. In variable sampling we let N2 = 1 as previously discussed

to ensure the unbiased property of MI. Note that the variable

sampling was weighted on VIs instead of cVIs during each run of

RFs. In other words, we only corrected VIs generated in the last

iteration because VIs of variables within a module are good

estimation of their relative importance, which is sufficient for

sampling a representative variable from a given module.

Gene Ontology enrichment analysis
We downloaded the latest MGI mouse Gene Ontology

annotations from Gene Ontology consortium [46]. Given the

7,441 most varying genes as the background, and a list of genes to

be test, each GO biological processes term was assigned a p-value

to quantify the significance of gene-term enrichment using the

Fisher’s exact test.

Statistical analysis of variable interactions
Regression trees are well suited for modeling non-linear effects

such as epistatic interactions because of its conditional splitting

method used. We expect that some variables in a regression tree

are more likely to be split on when the tree has already been split

on a corresponding interacting variable. We derived a simple but

effective statistical test to assess the significance of such interactions

based on the Fisher’s exact test. In particular, given two variables u

and v, we counted the number of times they appeared in an

ensemble of N trees as n and m, respectively. Under the null

hypothesis of u and v being independent, the number of times, k,

that they both appears in the same tree should follow the

hypergeometric distribution,

P(X~k)~
C(m,k)C(N{m,n{k)

C(N,n)

where C(x,y) is a binomial coefficient that choosing y from x. The p-

value from the test is computed by summing over the probability

of right-tail extremes, where k is set to (k, min(m, n)). Note that our

definition is slightly different from the one implemented in the

conventional RF [18] for classification, where a test based on the

Gini importance is applied. In our test, we used the counts of

variables being chosen to cope with continuous traits. In our

experiment, we used N = 6000 to achieve a stable ranking of

interactions.

Supporting Information

Figure S1 Distribution of the sizes of modules produced by

HQCut on mouse weight data. HQcut produced relatively small

modules that cluster variables with high degrees of correlation. In

particular more than 80% of modules contain less than 20

variables.

(TIFF)

Figure S2 (A) Venn diagram of the 100 top-ranked genes

identified by Group lasso (blue), Elastic net (yellow), SVR-RFE

(orange), Conventional RF (green), and mgRF (purple). (B) Venn
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diagram of top ranked genes from gene ranking and genetic

element interaction analysis from mgRF. In (B), blue circle

represents the top 100 most predictive genes ranked by cVIs.

Orange circle represents 160 unique genes ranked in the top 100

most significant gene-to-gene interactions. Green circle represents

100 genes in the top-ranked SNP-to-gene interactions. Most of the

genes involved in significant interactions are not individually

predictive of mouse weight.

(TIFF)

Figure S3 The regression errors of RF and mgRF with different

clustering methods and number of clusters. The average RMSEs

of mgRF and RF are shown as straight lines because their

performance is invariant to the number of clusters. The average

RMSEs of other method with respect to a specific number of

clusters are shown as (1) Random clustering: dash-dotted line with

square markers, (2) K-means: dash line with star markers and (3)

Hierarchical clustering: dash-dotted line with cross marker.

(TIFF)

Figure S4 The regression errors of RF and mgRF with respect

to different mtry (k) values. The average RMSEs of conventional

RF in genotype-only, expression-only, and combined dataset are

plotted with dash line and star markers. The average RMSEs of

mgRF in genotype-only, expression-only, and combined dataset

are plotted with solid line and square markers.

(TIFF)

Figure S5 Variable importance identified by various methods

with different cardinality of G1 in the simulation dataset. The

importance values are normalized to percentage in (A) Group

lasso, (B) Elastic net, (C) SVR-RFE, (D) conventional RF, and (E)

mgRF. In mgRF, importance values are shown in cVI. The gray

dotted lines indicate the grouping of variables. The first 110

variables are relevant variables from construction. For G1 and G2,

the importance values of 10 uniformly distributed variables are

plotted from each group.

(TIFF)

Table S1 p-values of paired t-test when comparing RMSE of

mgRF with RMSE of other methods (Group lasso, Elastic Net,
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