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Abstract

Osteosarcoma (OS) is the most common primary malignancy of the bone that predominantly 

affects children and adolescents. Hippo pathway is a crucial regulator of organ size and 

tumorigenesis. However, how Hippo pathway regulates the occurrence of osteosarcoma is largely 

unknown. Here, we reported the regulator of G protein signaling protein 12 (RGS12) is a 

novel Hippo pathway regulator and tumor suppressor of osteosarcoma. Depletion of Rgs12 
promotes osteosarcoma progression and lung metastasis in an orthotopic xenograft mouse model. 

Our data showed that knockdown of RGS12 upregulates Ezrin expression through promoting 

the GNA12/13-RhoA-YAP pathway. Moreover, RGS12 negatively regulates the transcriptional 

activity of YAP/TEAD1 complex through its PDZ domain function to inhibit the expression and 

function of the osteosarcoma marker Ezrin. PDZ domain peptides of RGS12 can inhibit the 

development of intratibial tumor and lung metastases. Collectively, this study identifies the RGS12 

is a novel tumor suppressor in osteosarcoma through inhibiting YAP-TEAD1-Ezrin signaling 

pathway and provides a proof of principle that targeting RGS12 may be a therapeutic strategy for 

osteosarcoma.
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Introduction

Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents 

and is characterized by the production of osteoid, showing a high propensity for lung 

metastasis (90%) [1]. Up to now, traditional treatment for osteosarcoma has consisted of 

surgery and chemotherapy. Although the 5-year survival rate of non-metastatic osteosarcoma 

can reach ~70%, the metastatic osteosarcoma survival rate is only ~15% [1, 2]. Despite great 

advances in multi-agent chemotherapy and sophisticated surgery, the poor understanding of 

the molecular mechanisms of osteosarcoma pathogenesis and progression has restricted the 

improvement of patient survival rate over the past three decades. Therefore, elucidating the 

pathological mechanisms involved in osteosarcoma initiation, development and metastasis 

progression is crucial for its effective prevention, diagnosis and treatment.

Recent studies have reported that the Hippo pathway is crucial for cell fate determination, 

organ size control and tumorigenesis by regulating cell proliferation and apoptosis [3–

5]. Yes-associated protein (YAP), a transcription cofactor, is an essential downstream 

effector of the Hippo pathway and can be inactivated through its cytoplasmic retention and 

phosphorylation by its upstream serine/threonine kinases such as the mammalian Ste20-like 

kinases 1/2 (Mst1/2) and large tumor suppressor kinases 1/2 (Lats1/2) [6]. When the Hippo 

pathway is inhibited, hypophosphorylated YAP will enter into the nucleus and function as 

a transcription coactivator by directly interacting with its major partner, the TEA domain 

DNA-binding family of transcription factors (TEADs), thereby promoting cell survival and 

proliferation [4, 6, 7]. In osteosarcoma, the previous study reported that TEAD1 is the major 

downstream transcriptional factor of YAP signaling [7]. Additionally, YAP has recently 

emerged as a critical oncogene that is overexpressed in many types of tumors and is also 

considered a novel prognostic marker and therapeutic target in osteosarcoma [3].

Regulators of G-protein signaling (RGS) constitute a large family of proteins that accelerate 

Gα GTP hydrolysis and inhibit the heterotrimeric G protein-coupled receptor (GPCR) 

signaling pathway [8, 9]. RGS12 is the largest protein in the RGS protein family. It 

expresses in bone, lung, brain and many other tissues and contains six domains, including 

PDZ domain, which interacts with GPCR chemokine receptors and the PDZ binding motif 

containing proteins [10–12]. The GPCR activator lysophosphatidic acid (LPA) has been 

shown to act through G12/13-coupled receptors to inhibit the kinases Lats1/2, thereby 

activating YAP, a transcription coactivator and oncogene [13]. RGS proteins have been 

reported to be relevant to tumor including regulating tumor cell proliferation, migration, 

and invasion. In prostate cancer, RGS12 has a lower expression in comparison with normal 

prostate tissues [14]. In many tumor cell lines, such as human breast cancer cell lines 

MCF7 and MDA-MB-231, cervical cancer cell line C-33A, adrenal cancer cell line SW-13, 

and osteosarcoma cell lines SaOS2 and U-2 OS, RGS12 can repress cell proliferation by 

inhibiting DNA synthesis to repress the cell cycle [15]. Our previous studies showed that 

RGS12 regulates osteoclast and osteoblast differentiation, function and bone homeostasis 

and development in vivo and in vitro [12, 16–18]. These observations suggested that 

RGS12 may play a role in bone cancer, such as osteosarcoma. However, the function and 

mechanism of RGS12 in osteosarcoma is completely unknown.
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In this study, we explore for the first time about the role and molecular mechanisms 

by which RGS12 regulates osteosarcoma development and lung metastasis. Our findings 

present the first evidence that RGS12 is a novel tumor suppressor of osteosarcoma that 

inhibits YAP-TEAD1-Ezrin signaling, providing a proof of principle that targeting RGS12 

may be a promising therapeutic strategy for osteosarcoma.

Results

RGS12 is downregulated in both human and mouse osteosarcoma tissues

Previous studies revealed that OSX-Cre;P53f/f/Rb1f/f animals could be used as a 

representative mouse model of osteosarcoma [19, 20]. Therefore, to study the potential 

role of RGS12 in osteosarcoma, we first evaluated the mRNA and protein expression 

profiles of Rgs12 in the OSX-Cre;P53f/f/Rb1f/f osteosarcoma mouse model. We found 

that osteosarcoma region of the bone derived from an OSX-Cre;P53f/f/Rb1f/f osteosarcoma 

mouse model expressed lower levels of Rgs12 mRNA and protein relative to mouse normal 

bone by qPCR analysis (Fig. 1a) and western blot (Fig. 1b). Immunohistochemistry staining 

analysis further confirmed that Rgs12 had a higher expression level in normal mouse 

bone compared to osteosarcoma bone (Fig. 1c). We also found that the expression of 

RGS12 decreased in the human osteosarcoma cell lines (SaOS2 and UMR106) compared 

to that in human normal dental pulp stem cells (DPSC) (Fig. S1). Next, we examined the 

expression level of RGS12 in human osteosarcoma specimens. Interestingly, we also found 

that the RGS12 expression level decreased in human osteosarcoma (Fig. 1d), which was 

parallel to the progression level of the osteosarcoma (Fig. 1e). Taken together, these results 

indicated that RGS12 is consistently downregulated in both human and mouse osteosarcoma 

compared with normal bone tissues.

RGS12 inhibits osteosarcoma cell migration, invasion and tumorsphere formation

To determine the role of RGS12 in osteosarcoma cell growth, we first established 

both RGS12 overexpression and knockdown stable cell lines in SaOS2 and UMR106, 

respectively (Fig. S2a, b). Our data showed that the ectopic expression of RGS12 

significantly inhibited the proliferation of SaOS2 and UMR106; however, knockdown of 

RGS12 increased cell proliferation (Fig. 2a, b; Fig. S3). Additionally, knockdown of RGS12 
promoted, while RGS12 overexpression inhibited anchorage-independent cell growth in soft 

agar (Fig. 2c, d). To further characterize the effect of RGS12 on the colony formation 

ability of osteosarcoma cells, colony-forming unit (CFU) assays were performed using bone 

marrow cells from Rgs12f/f (control) and CMV-Cre;Rgs12f/f mice. Of note, deletion of 

Rgs12 induced a severe increase in CFU compared to the control (Fig. S4a). These data 

demonstrated that RGS12 negatively regulates osteosarcoma cell proliferation and growth.

To explore the effect of RGS12 on cell migration and invasion in vitro, transwell assays 

with or without matrigel were performed in RGS12-overexpressed and -silenced SaOS2 

and UMR106 cells, respectively. As shown in Fig. 2e–h, knockdown of RGS12 displayed 

a significant increase in cell migration and invasion, whereas RGS12 overexpression 

significantly inhibited cell migration and invasion compared with the controls in both cell 

lines. These results were further confirmed by the wound healing assay (Fig. S4b). The 
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RGS12-silenced cells showed an advanced migration ability, while RGS12-overexpressing 

cells displayed a lower migration ability (Fig. S4b). To investigate the role of RGS12 

on tumor function, we performed tumorsphere culture, which has been widely used as a 

tumor functional assay in vitro [21, 22]. Interestingly, we found that knockdown of RGS12 
exhibited an increase in the formation and diameter of tumorspheres in both SaOS2 and 

UMR106, respectively; in contrast, RGS12 overexpression showed the opposite results (Fig. 

2i, j; Fig. S4c). Given that the epithelial-mesenchymal transition (EMT) plays a critical 

role in cancer cell progression and metastasis [23, 24], we then detected the EMT-related 

factors in osteosarcoma cells. As expected, both immunofluorescence staining and western 

blot results showed that knockdown of RGS12 increased the expression of vimentin and 

N-cadherin but decreased the expression of E-cadherin in SaOS2 cells compared with those 

in the controls (Fig. S4d, e). Hence, these results indicated that RGS12 is a tumor suppressor 

of osteosarcoma.

Knockdown of RGS12 in SaOS2 promotes intratibial primary tumor growth and lung 
metastasis in SCID mice

To address whether RGS12 plays a tumor suppressive role in vivo, we employed an 

intratibial xenograft osteosarcoma model in SCID mice [25]. shScramble or shRGS12 cells 

were respectively injected orthotopically into the medulla of the left tibia of the mice (Fig. 

S5a). X-ray analysis of the tibia showed more extensive osteosarcoma with sclerosis and 

cortical destruction in the tibia of shRGS12 cell-injected group compared to that in the 

control (Fig. 3a). Consistently, leg swelling was apparent in the shRGS12-injected group but 

not in the control mice after tumor cells injection (Fig. S5b). Accordingly, Kaplan-Meier 

survival curves plotted for the mice indicated a significantly shorter mean survival rate in the 

shRGS12-injected mice compared with the control groups (Fig. 3b). Moreover, the results 

form X-ray and micro-CT analysis showed that in the groups with the injection of shRGS12 

cells, more bone erosion were found compare to the group with the control cells (Fig. 3c, 

d). We also found that lung metastasis area in the shRGS12 cell-injected mice was much 

larger than that in the control mice (Fig. 3e, f). The immunofluorescence staining results 

showed a weaker RGS12+ signal in both human and mouse lung osteosarcoma metastasis 

regions compared to non-metastasis regions in the SCID mice (Fig. 3g, h). These findings 

demonstrated that knockdown of RGS12 promotes osteosarcoma growth and lung metastasis 

in SCID mice.

RGS12 inhibits transcriptional YAP/TEAD1 activity through its PDZ domain function

Immunohistochemistry studies in a cohort containing human 32 normal and 66 

osteosarcoma bones showed that 93.7% of osteosarcoma bones had higher nuclear 

expression of YAP, in contrast, only 58.2% of normal bones exhibited higher nuclear 

YAP expression (Fig. 4a). To further test the role of RGS12 in YAP activation, YAP 

phosphorylation was detected in shScramble and shRGS12 cells. As shown in Fig. 4b–

d, knockdown of RGS12 inhibited YAP phosphorylation at Ser 127 through inhibiting 

phosphorylation of Mst1 and Lats1, YAP upstream kinases in osteosarcoma cell lines 

(SaOS2 and UMR106). Emerging evidence has shown that TEADs and YAP have 

higher expression levels in many human cancers, including osteosarcoma [24, 26, 27]. 

Moreover, TEAD1 is the major downstream transcriptional factor of Hippo-YAP signaling 
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in osteosarcoma [7]. Given that knockdown of RGS12 could promote osteosarcoma 

progression and lung metastasis, we next asked whether RGS12 could regulate the 

expression and transcriptional activity of YAP and TEAD1. To address this, we first 

examined the expression of YAP and TEAD1 in three shRGS12 stable cell lines and 

found that knockdown of RGS12 significantly upregulated the expression of both genes 

(Fig. S6). By analyzing the protein structure of RGS12 with bioinformatics, we found that 

there was a PDZ binding motif in YAP and a PDZ domain in RGS12 protein (Fig. 4e), 

suggesting a potential interaction between RGS12 and YAP. To further test the interaction 

and importance of the PDZ domain, we carried out Co-IP and GST pull-down experiments. 

Here, we used RGS12-overexpressed 293T cells rather than normal osteosarcoma cell 

due to the poor antibody quality of RGS12 and lower level of RGS12 in osteosarcoma 

cells. As expected, we found that RGS12 was associated with YAP and that deletion 

of RGS12 PDZ domain abolished the interaction between RGS12 and YAP (Fig. 4f, g). 

Additionally, immunofluorescence staining result showed that YAP and TEAD1 translocated 

and colocalized into the nucleus after knockdown of RGS12 (Fig. 4j). Some studies have 

proved that YAP is a cofactor of the transcriptional factor TEAD1, and cannot directly 

regulate target genes expression due to lack of DNA binding motif [28, 29]. YAP usually 

needs to interact with TEAD1 to regulate the expression and function of downstream target 

genes [28, 30, 31]. Therefore, we further test whether knockdown of RGS12 affects YAP/

TEAD1 transcriptional activity. By performing luciferase reporter assays as described [28, 

30, 31], we found that knockdown of RGS12 increased YAP/TEAD1 transcriptional activity 

(Fig. 4h). In contrast, overexpression of RGS12 inhibited YAP/TEAD1 transcriptional 

activity (Fig. 4i). However, deletion of PDZ domain (RGS12ΔPDZ) impaired the RGS12 
mediated inhibition of YAP/TEAD1 transcriptional activity (Fig. 4i). Furthermore, we also 

found that overexpression of YAP promotes TEAD1 transcriptional activity, which can be 

inhibited by overexpression of RGS12 rather than RGS12ΔPDZ, suggesting that RGS12 is 

associated with YAP through the PDZ domain to inhibit YAP and TEAD1 activation. To 

further determine the function of PDZ domain, we deleted the PDZ domain of RGS12 and 

test whether the RGS12-YAP association was required for tumor cell growth. Interestingly, 

as shown in Fig. 4k, deletion of PDZ domain significantly attenuated the tumor inhibitory 

function of RGS12. Thus, these findings suggested that RGS12 suppresses tumor cell 

growth through its PDZ domain binding with YAP to inhibit YAP activation.

Knockdown of RGS12 promotes YAP/TEAD1-dependent Ezrin expression

Ezrin is a member of the ERM (ezrin, radixin and moesin) protein family and 

plays a positive role in maintaining cell polarity and shape, as well as in regulating 

tumor progression and metastasis in several cancers including osteosarcoma and 

rhabdomyosarcoma [32]. Current studies show that Ezrin is necessary for osteosarcoma 

lung metastasis [32]. To further test whether RGS12 affects osteosarcoma progression and 

metastasis through regulating YAP mediated Ezrin expression, we knocked down either 

YAP or RGS12 genes or both in SaOS2. As expected, silencing of RGS12 evoked Ezrin 

expression, on the contrary, silencing of YAP inhibited Ezrin expression. Moreover, when 

both YAP and RGS12 were silenced, increase of Ezrin expression caused by RGS12 
silence was blocked by YAP silence (Fig. 5a). These data suggested that knockdown of 

RGS12 enhances Ezrin expression through YAP signaling (Fig. 4d; Fig. 5a). Because YAP 
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is transcriptional coactivator that lack DNA-binding activity, it must interact with DNA-

binding transcription factors to regulate target gene’s expression [5, 33]. In osteosarcoma, 

it’s reported that YAP/TEAD1 complex is a key upstream modulator [7]. To test whether 

YAP/TEAD1 binds with a specific region of Ezrin promoter to regulate Ezrin expression, 

we analyzed the YAP/TEAD1 binding motif in Ezrin promoter using Vector NTI software. 

Interestingly, we found 5 different YAP/TEAD1 DNA binding elements in Ezrin promoter 

(Fig. S7). By performing ChIP assay using YAP antibody and TEAD1 siRNA, we found 

that AATTCC, the DNA motif for TEAD1, is the most predominant hit (Fig. 5b–f; Fig. S8). 

Additionally, by subjecting immunoprecipitated chromosomal DNA to PCR using primers 

designed to amplify the Ezrin promoter region harboring the TEAD1 binding sites, we found 

a significant increase of AATTCC hit in Ezrin promoter region after knockdown of RGS12 
(Fig. 5g), suggesting that knockdown of RGS12 enhances the binding of YAP/TEAD1 to the 

Ezrin promoter. Additionally, we also found that the human lung osteosarcoma metastasis 

tissues have higher expression level of Ezrin compared to normal lung, and YAP expression 

is maintained in metastatic tumor (Fig. S9). Overall, these data indicated that knockdown 

of RGS12 promotes YAP activation and YAP/TEAD1 mediated transcriptional regulation of 

Ezrin expression.

RGS12 negatively regulates Ezrin expression via GNA12/13-RhoA-YAP pathway

LPAs have been shown to act through membrane receptors, GNA12/13, and Rho GTPases 

to inhibit Lats1/2 activity and thereby promote YAP activation [13]; additionally, RGS12 

couples to GNA12/13 [34] and activates RhoA to control tumor cell migration [35, 36]. 

Given that YAP activation promotes Ezrin expression, we test whether RGS12 modulates 

Ezrin expression through the GNA12/13-RhoA-YAP pathway in vivo and in vitro. Our data 

showed that loss of RGS12 upregulated the expression of GNA12/13, RhoA and Ezrin, 

and downregulated the phosphorylation of YAP in the bones of CMV-Cre;Rgs12f/f mice 

compared to those of Rgs12f/f mice (Fig. 6a). Consistent to the results in vivo, silencing 

RGS12 upregulated the expression of GNA12, GNA13, RhoA (Fig. 6b) and downstream 

Ezrin in SaOS2 cells (Fig. 6c), which was inhibited by C3 (Rho GTPases inhibitor), 

ki6425 (GPCR inhibitor) and Y27632 (Rock inhibitor) (Fig. 6c; Fig. S10). These results 

demonstrated that RGS12 negatively regulates Ezrin through the GPCR signaling pathway. 

To further investigate the role of RGS12 in the GNA12/13-RhoA-YAP pathway, we assessed 

the activity of RhoA. The results showed that knockdown of RGS12 significantly increased 

RhoA activity (Fig. 6d). Additionally, overexpression of RhoA promoted YAP and Ezrin 

expression in SaOS2 cells compared with the control group (Fig. 6e, f). Taken together, 

these results demonstrated that RGS12 negatively regulates Ezrin expression through 

inhibiting GNA12/13-RhoA-YAP pathway.

RGS12 PDZ domain peptides inhibit osteosarcoma formation and lung metastasis

PDZ domain is an abundant protein interaction module that often recognizes short amino 

acid motifs at the C-termini of target protein. Previous studies also showed that PDZ domain 

has a single binding site in a groove between the αB and βB structural elements and 

the amino acid residues “GYGF” of PDZ domain plays a key role in the ligand binding 

[37]. Based on our findings that the PDZ domain of RGS12 is important for inhibiting 

YAP activity, we synthesized the PDZ domain peptides of RGS12, termed “PDZ”. To 
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test whether PDZ can bind with YAP to promote YAP phosphorylation, we used PDZ 

to treat SaOS2 cells. As expected, PDZ inhibited cell colony formation, as well as the 

tumorsphere and proliferation of SaOS2 cells (Fig. 7a, b), whereas PDZ peptides have no 

effect on osteosarcoma formation when the GYGF was mutated (Fig. 7a). Moreover, we also 

found that PDZ could repress YAP nuclear translocation (Fig. 7c), but RGS12 PDZ-GYGF-

mutated control peptide didn’t inhibit its nuclear translocation (Fig. 7c). Further results 

showed that PDZ increased YAP phosphorylation, but did not affect the phosphorylation of 

Mob and Lats1 of the YAP upstream kinase (Fig. 7d). Next, to further test PDZ function 

in vivo, shRGS12 transfected cells with or without 100 nM of PDZ peptides were injected 

into the left tibia of 6-week-old SCID mice and then tumor formation ability was analyzed. 

As shown in Fig. 7e, PDZ peptides could significantly inhibit tumor formation. Accordingly, 

Kaplan-Meier survival curves plotted for the mice showed a significantly longer mean 

survival rate when having the PDZ peptide-injection compared with the control animals 

(Fig. 7f). Notably, the mice injected with shRGS12 cells mixed with the PDZ peptides 

exhibited less tumor formation and lung metastasis compared to the control mice (Fig. 

7g, h; Fig. S11). Doxorubicin (DOX) and methotrexate (MTX) have been reported to be 

the most commonly used drugs for the treatment of osteosarcoma. Resistance to these 

drugs substantially decreases patient survival rates [3, 38]. Hence, we further investigated 

whether knockdown of RGS12 can affect osteosarcoma chemoresistance in SaOS2 cells. 

Our data showed that knockdown of RGS12 increased the chemoresistance of osteosarcoma 

cells (Fig. S11). Thus, these data suggested that RGS12 PDZ domain may be a promising 

therapeutic drug target for osteosarcoma.

Discussion

Abnormal expression of RGS proteins has been observed in different kinds of cancers [39]. 

For example, RGS1, RGS5, RGS6 and RGS19 are upregulated while RGS2 and RGS4 are 

downregulated in ovarian cancer [39]. The effect of RGS protein in promotion or inhibition 

of cancer progression are mainly depend on the type of cancer [39]. However, how RGS 

proteins regulate cancer formation, progression and metastasis are largely unknown.

RGS12 is the largest protein in RGS superfamily. Our previous studies showed that RGS12 

regulates the differentiation and function of osteoclast and osteoblast, bone homeostasis 

and development in vivo and in vitro [12, 16, 17], and other studies reported that RGS12 

plays key roles in neuronal function and behavior [40]; however, the role of RGS12 

in cancer development, especially osteosarcoma, remains undefined. Our results showed 

that RGS12 expression markedly decreases in both human and mouse osteosarcoma 

specimens. Moreover, the expression of RGS12 is correlated with tumor severity. These 

findings are consistent with the recent finding that RGS12 is significantly downregulated 

in African American prostate cancer (AA PCa) accompanying with a higher propensity for 

tumorigenicity [14]. Moreover, RGS12 is also identified as one of the cell cycle inhibitors in 

some tumor cell lines (MCF7, SaOS2 and U-2 OS) due to the inhibition of DNA synthesis 

[15]. RGS14, a RGS12 homologous gene, has been also reported to be a p53 target gene 

that causes growth arrest in the G1 phase of the cell cycle [41]. Consistent to these findings, 

we found that knockdown of RGS12 increases osteosarcoma cell proliferation, migration, 

invasion and EMT in vitro and in vivo. We further found the RGS12 is a novel tumor 
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suppressor in osteosarcoma through the regulation of RhoA/YAP/TEAD1/Ezrin pathway. 

Thus, our new findings demonstrate that targeting RGS12 may be an efficient therapeutic 

strategy for osteosarcoma.

Hippo pathway plays a critical role in human cancers, including osteosarcoma; and 

aberrant Hippo pathway eventually triggers the transcriptional activation of the YAP/TEAD1 

complex and initiates the downstream target genes expression [5, 6, 42]. Consistent with 

the previous study [7], we also found YAP/TEAD1 complex plays a critical role in 

osteosarcoma. Recent studies also showed that YAP is highly expressed and predicts a poor 

prognosis in osteosarcoma [43]. Knockdown of YAP inhibits the proliferation, migration and 

invasion of osteosarcoma cells [3, 44]. Interestingly, we found that knockdown of RGS12 
in osteosarcoma cells markedly upregulates YAP expression and activation. Additionally, 

our data showed that RGS12 associates with YAP through its PDZ domain to inhibit 

YAP nuclear translocation in osteosarcoma model. These findings are supported by the 

reports showing that PDZ domain can interact with GPCR chemokine receptors and the 

PDZ binding motif containing protein [11, 45] and that YAP activity can be modulated by 

the protein-protein interaction and cytosol retention [26]. Furthermore, we found that the 

PDZ domain of RGS12 inhibits osteosarcoma cell proliferation and colony formation; and 

increases the phosphorylation level of endogenous YAP at Ser 127 by binding with YAP. 

This is supported by the finding that YAP phosphorylation at Ser 127 shows higher level in 

the resting cells and normal tissues compared to tumor tissues by promoting 14-3-3 binding 

and subsequent cytoplasmic sequestration and inactivation [46]. Most importantly, in the 

in vivo animal model study, we found that the RGS12 PDZ domain peptides inhibit the 

development of intratibial tumors and lung metastasis, indicating RGS12 PDZ domain is 

critical for negatively regulating YAP activation, and RGS12 is a negative tumor suppressor 

for osteosarcoma.

The Rho GTPase family is a member of the Ras superfamily, which is critical for the 

invasion and metastasis of various cancers, including bone cancer. RhoA is one of the 

well-characterized Rho GTPases [47]. A recent study reported that RhoA is involved in the 

Hippo signaling pathway [48] and RhoA inactivation inhibits the invasion and migration 

of LM8 murine osteosarcoma cells [49]. Consistently, we found that RGS12 negatively 

regulates the transcriptional activity of YAP/TEAD1 complex in osteosarcoma through 

altering RhoA activity. This result is further supported by the findings that GPCRs transmit 

the extracellular signals by coupling to the heterotrimeric Gα12/13 proteins (encoded by 

GNA12 and GNA13, respectively) to activate RhoA, which results in YAP activation [50, 

51]. Accumulating evidence indicates that a higher level of Ezrin expression is associated 

with poor clinical outcome and metastatic behavior of various solid tumors, including 

osteosarcoma lung metastasis [52]. Additionally, one study showed that Ezrin expression 

is regulated by YAP/TEAD complex to promote metastasis in pancreatic cancer cells 

[53]. Our results clearly demonstrated that knockdown of Rgs12 significantly enhances 

Ezrin expression via the activation of GNA12/13-RhoA-YAP pathway, which results in 

osteosarcoma growth and progression, as well as lung metastasis (Fig. 8).
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In conclusion, this study reveals that RGS12 is a novel tumor suppressor in osteosarcoma via 

negatively regulating YAP/TEAD1-dependent Ezrin expression. This study highlights that 

RGS12 and its PDZ domain may be a promising drug target for osteosarcoma treatment.

Materials and Methods

Antibodies and reagents

Antibodies against p127YAP (D9W2I), YAP (D8H1X), MST1, pMST (E7UD1), LATS1 

(C66B5), pLATS1, Lamin B1 (D9V6H) and GAPDH were from CST. Antibodies of Ezrin, 

GNA12, GNA13, RhoA, flag, TEAD1, GST and GFP were from Santa Cruz Biotechnology. 

RGS12 antibody (ab1) was from Sigma. The secondary fluorescent antibodies were from 

Abcam. PDZ domain peptides of RGS12 were purchased from GenScript. GPCR activator 

LPA, GPCR inhibitor Ki6425, Rho GTPases inhibitor C3 and Rock inhibitor Y2763 

were obtained from Sigma. Doxorubicin hydrochloride (DOX), methotrexate 4-Amino-10-

methylfolic acid hydrate (MTX) and EDTA-free cocktail inhibitor tablets were all obtained 

from Fisher Scientific™. TEAD1 siRNA and controls were from Santa Cruz Biotechnology. 

FuGENE® HD Transfection Reagent was purchased from Promega Corporation. The 

primers used for the quantification are listed in Supplementary Table 1.

The following plasmids: pRL-TK was generously provided by Dr. Zhen Zhang (University 

of Pennsylvania, Philadelphia, PA, USA); pcDNA3.1, shYAP1/2, pcDNA3.1-GFP-YAP, 

PET-GST-YAP and pcDNA3.1-RhoA were obtained from Addgene. Three human shRGS12 

lentivectors (shRGS12–1, shRGS12–2 and shRGS12–3; Catalog # i019000) were ordered 

from ABM. pcDNA3.1-flag-RGS12 (flag-RGS12) and the pcDNA3.1-flag-RGS12 mutant 

with the deletion of the PDZ domain vectors (flag-RGS12ΔPDZ) were constructed in our 

lab.

Animals and human specimens

Rgs12f/f mice were created by our lab as previously reported [17]. P53f/f/Rb1f/f mice were 

kindly provided by Dr. David M. Feldser (University of Pennsylvania, USA). OSX-Cre, 

CMV-Cre and SCID mice were purchased from The Jackson Laboratory (Bar Harbor, 

USA). All the human osteosarcoma, normal bone, osteosarcoma lung metastasis and normal 

lung specimens were obtained from US Biomax (USA). All protocols were approved by 

the Institutional Animal Care and Use Committees at the University of Pennsylvania and 

complied with the National Research Council’s Guide for the Care and Use of Laboratory 

Animals.

Intratibial human osteosarcoma xenograft mouse model

We established the stable cell lines with different expression levels of RGS12 in SaOS2 

and UMR106. They were named Control (transfected empty vector pcDNA3.1 in SaOS2 

or UMR106), shScramble (transfected scramble shRNA lentivirus in SaOS2 or UMR106), 

RGS12 OE (pcDNA3.1-RGS12-overexpressing cells) and shRGS12 (RGS12-silenced cells), 

respectively. A total of 5×105 shScramble or shRGS12 cells mixed with 0 or 100 nM of 

PDZ peptides in 10 μL PBS were injected intramedullary with a Hamilton syringe into 

the left tibia of 6-week-old SCID mice, respectively. The healthy condition of the SCID 
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mice was monitored 4 times per week, and the primary tumor growth was examined by 

X-ray and by calculating the osteosarcoma volume with the equation length × (width)2/2 

of the osteosarcoma-bearing tibia minus the length × (width)2/2 of the control tibia after 

measurements of the respective widths and the lengths with a caliper every week [54, 55].

Cell culture, transfection and luciferase reporter assay

Human osteosarcoma cell lines SaOS2 or UMR106 were cultured in McCoy’s 5A Medium 

Modified (Gibco, USA) or DMEM (Gibco, USA) supplemented with Pen-Strep and 10% 

FBS (Gibco, USA), respectively. 293T and DPSC were cultured in DMEM supplemented 

with Pen-Strep and 10% FBS (Gibco, USA). The cells with shScramble or shRGS12 stable 

transfection were seeded in the 12-well plate and then co-transfected with luciferase reporter 

and the indicated plasmids. Luciferase activities were measured after 48 hrs of transfection 

using a Dual-Luciferase Assay Kit according to the manufacturer’s instructions.

Cellular functional assay

For the proliferation assay, logarithmically growing cells were trypsinized and were seeded 

in triplicates in 96-well plates (5×103 cells/well). The WST-1 assay was performed using 

the WST-1 Cell Proliferation Assay Kit (Cayman Chemical, USA) according to the 

manufacturer’s instructions after 24, 48, 72 and 96 hrs in culture.

For the adhesion assay, briefly, a 96-well plate was coated with fibronectin (Sigma, USA) 

overnight and was then blocked for 30 min with 0.5% BSA. The cells were suspended at 

a final concentration of 5×103 cells/mL in serum-free medium for seeding into the 96-well 

plate. The WST-1 assay (Cayman Chemical, USA) was used to determine the number of 

remaining cells (adherent cells).

The wound-healing assays were performed using a sterile 200 μL pipette tip to scratch 

the cells to form a wound when the cells were cultured to 100% confluence. Migration of 

wounded cells was evaluated at 0, 24 and 48 hr with a light microscope.

The migration assay was conducted using Transwell plates according to the manufacturer’s 

instructions. The top chambers of the transwells received 0.2 mL of cells (5×103 cells/mL) 

in serum-free medium, and the bottom chambers received 0.25 mL of McCoy’s 5A Medium 

Modified containing 10% FBS. The cells were incubated in the transwells at 37 °C in 

5% CO2 for 24 hrs. Migrated cells were fixed and stained with 0.05% crystal violet. The 

migrated cells in each well were counted in three different fields per experiment under the 

microscope.

The cell invasion assay was performed using an EZCell™ Cell Invasion Assay Kit 

(BioVision, Inc, USA) according to the manufacturer’s instructions.

For the soft agar colony formation assay, cells were seeded with 0.2% agar and layered onto 

1% agar beds in 6-well plates. The cells were fed with 1 mL of medium every five days. The 

colonies were stained with 0.05% crystal violet and counted after 3 weeks.
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The 3D tumorsphere formation assay was performed using a MammoCult Human Medium 

Kit (Stemcell Technologies, USA) according to the manufacturer’s instructions [56]. Briefly, 

the Control, RGS12 OE, shScramble and shRGS12 cells were respectively seeded on low-

attachment plates in a defined, serum-free culture medium at a density of 3 × 102 cells/well. 

Tumorspheres were cultured for 7 days. The tumorsphere diameter was measured by a Leica 

microanalysis system.

For the colony-forming assay, bone marrow cells from Rgs12f/f and CMV-Cre;Rgs12f/f were 

cultured at 37 °C in 5% CO2 for 2 weeks and then fixed in 4% PFA for 5 min and stained 

with 0.05% crystal violet.

Radiographic procedures and bone micro-computed tomography (CT) analysis

Radiographic procedures were performed in the Siemens X-ray equipment (Madison, 

WI, USA). The bone morphology and microarchitecture was carried out and analyzed 

using a micro-CT system as described previously [12] (School of Medicine, University of 

Pennsylvania, USA).

Immunofluorescence and immunohistochemistry

For immunofluorescence, briefly, cells cultured on coverslips were fixed with 4% PFA and 

permeabilized with TBST (0.3% Triton X-100 in TBS). Non-specific binding of antibodies 

to cells was blocked by 1% BSA and incubated with the corresponding primary antibody 

overnight at 4°C. Subsequently, the cells were washed 3 times with TBST and incubated 

with Alexa Fluor 488, 594 or 647 conjugated secondary antibodies for 1 hr at RT. Nuclei 

were counterstained with DAPI and washed 3 times with TBST. Then, the cells were 

mounted and visualized using a fluorescence microscope.

For immunohistochemistry, tissues previously fixed in 4% PFA were dehydrated through 

serial incubations in 75%, 95%, and 100% ethanol and xylene and then embedded in 

paraffin. The sections were mounted onto slides and deparaffinized. Endogenous peroxidase 

was inactivated by 3% H2O2 at RT for 10 min. The tissue sections were blocked at RT 

for 1 hr in goat serum. Subsequently, the primary antibody was added and incubated with 

sections at RT for 1 hr. After washing 3 times with TBST, the sections were incubated 

with corresponding secondary antibody at RT for 1 hr. After washing with TBST, the 

sections were incubated with the DAB (Dako, USA) for staining. Finally, the sections were 

counterstained with hematoxylin and visualized using a microscope.

Western blot, Co-IP and GST pull-down assay

Cells were lysed in modified RIPA lysis buffer (50 mM Tris–HCl, 150 mM NaCl, 5 mM 

EDTA, 0.5% NP-40 and 0.1% SDS) supplemented with a protease cocktail inhibitor (Fisher 

Scientific™, USA). The protein concentration was determined using the Pierce BCA Protein 

Assay Kit (Thermo Fisher, USA). 20 μg protein were subjected by SDS–PAGE, transferred 

to a polyvinylidene fluoride (PVDF) membrane (Millipore, USA), and immunoblotted with 

various antibodies. Following overnight incubation at 4°C, the membranes were washed 3 

times by TBST (0.1% Tween-20 in TBS) and then incubated with corresponding secondary 
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antibodies for 1 hr at RT. After washing 3 times by TBST, HRP-conjugated secondary 

antibodies were detected by chemiluminescence with ECL (Thermo Fisher, USA).

Regarding Co-IP, 293T cells were transfected with various expression vectors as indicated 

by FuGENE® HD transfection reagent (Promega, USA). After transfection of 48 hrs, the 

293T cells were first lysed with IP buffer for 10 min at 4°C, and its supernatants were 

collected and incubated with anti-GFP antibody, anti-flag antibody and protein A/G agarose 

(Sigma, USA). After washing 3 times with TBST, the immune complexes were subjected to 

SDS-PAGE, and then analyzed by western blot.

For GST pull-down assay, 293T cells were transfected with the indicated plasmids using 

FuGENE® HD transfection reagent. After transfection of 48 hrs, the cells were lysed in 

GST lysis buffer including protein inhibitor. The cell lysis was pulled down by Glutathione 

Sepharose 4B (Thermo Fisher, USA) for 4 hrs at 4 °C and then analyzed by western blot.

Chromatin immunoprecipitation (ChIP)

The ChIP assay was conducted using the Imprint Chromatin Immunoprecipitation Kit 

(Sigma, USA). Briefly, shRGS12 cells or controls were fixed with 1% formaldehyde 

and nuclear extracts were isolated [57, 58]. The sonicated nuclear lysates were 

immunoprecipitated with anti-YAP antibody or rabbit IgG. Precipitated DNA fragments 

were amplified by qPCR using primers specific for the Ezrin promoter region. The primers’ 

sequences used for the quantification are listed in Supplementary Table 1.

RhoA activation assay

RhoA activation assays were respectively carried out using the Active Rho Pull-Down and 

Detection Kit (Thermo Fisher, USA) according to the manufacturer’s instructions. Briefly, 

shScramble or shRGS12 cells were seeded in 100 mm dishes; after culture of 48 hrs, the 

cells were lysed in Lysis/Binding/Wash Buffer on ice for 5 min and the cell supernatant was 

collected by centrifugation at 4 °C. Activated RhoA and total RhoA were purified using the 

kits mentioned above, and then analyzed by western blot.

Statistical analysis

All statistical analyses were carried out using the SPSS21 statistical software package, and 

data were analyzed by Student’s t-test. P < 0.05 was considered to be significant. Error bars 

represent the standard error of the mean.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. RGS12 is downregulated in both human and mouse osteosarcoma tissues.
a Real-time PCR quantification of Rgs12 mRNA levels in the bones of OSX-Cre;P53f/f/

Rb1f/f and P53f/f/Rb1f/f mice. b A representative image of western blot. Whole bone lysates 

from OSX-Cre;P53f/f/Rb1f/f and P53f/f/Rb1f/f mice were immunoblotted with antibodies 

against Rgs12 and GAPDH, respectively. N=3. The Rgs12 expression is quantified by 

ImageJ software in the corresponding column at right. c A representative image of 

immunohistochemical staining of Rgs12 on mouse osteosarcoma and normal bones. 

Scale bar, 75 μm. N=5. The Rgs12 expression is quantified by ImageJ software in the 

corresponding column at right. d A representative image of immunohistochemical staining 

of RGS12 on different grades of human osteosarcoma (tumor grades 1 to 4) and normal 

bones. Scale bar, 100 μm. OS, osteosarcoma. e, Quantification of RGS12 expression by 

ImageJ software based on IHC staining in human osteosarcoma (tumor grades 1 to 4; Grade 

1, N=27; Grade 2, N=21; Grade 3, N=6; Grade 4, N=12) and normal bones (N=32). Error 

bars were the means ± standard error of the mean (SEM) of triplicates from a representative 

experiment. *P < 0.05, **P < 0.01 and ***P < 0.001.
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Fig. 2. RGS12 inhibits osteosarcoma cell migration, invasion and tumorsphere formation in vitro.
a-b The cell proliferation rates of indicated cells were detected by WST-1 assay. vs. 

shScramble or normal control cells. c, d The analyses of colony formation abilities in 

the indicated cells. Cell numbers are quantified in the corresponding column at right. 

e, g Cell invasion. Cell numbers are quantified in the corresponding column at right. f, 
h Cell migration. Cell numbers are quantified in the corresponding column at right. i-j 
Tumorspheres. Error bars were the means ± standard error of the mean (SEM) of triplicates 

from a representative experiment. *P < 0.05, **P < 0.01 and ***P < 0.001.
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Fig. 3. Knockdown of RGS12 in SaOS2 promotes intratibial primary tumor growth and lung 
metastasis in SCID mice.
a Primary intratibial tumor growth over time in individual mice injected with shScramble 

or shRGS12 cells. b Kaplan-Meier survival analysis indicating the overall survival of mice 

injected with shScramble or shRGS12 cells. c, d Representative X-ray and micro-CT images 

of tumor-bearing legs after intratibial injection with shScramble or with shRGS12 cells 

at Day 28. The white arrow indicates the tumor in the bone. e Representative images 

of osteosarcoma lung metastasis of mice injected with shScramble or shRGS12 cells. 

Osteosarcoma lung metastasis is quantified in the corresponding column at right. The 

black arrow indicates the tumor in the lung. f Representative images of HE-stained lung 

sections of mice injected with shScramble or shRGS12 cells at Day 28. Scale bar, 100 

μm. g Representative images of immunofluorescent staining of RGS12 in osteosarcoma 
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lung metastasis sections of mice injected with shScramble or shRGS12 cells. The white 

arrow indicates the tumor in the lung. RGS12+ signaling is quantified in the corresponding 

column at lower panel. MNL, mouse normal lung tissues; MOSL, mouse osteosarcoma lung 

metastasis tissues. h Representative images of immunofluorescence staining for RGS12 in 

human osteosarcoma lung metastasis sections and controls. RGS12+ signaling is quantified 

in the corresponding column at lower panel. HNL, human normal lung tissues; HOSL, 

human osteosarcoma lung metastasis tissues. Error bars are the means ± standard error of the 

mean (SEM) of triplicates from a representative experiment. *P < 0.05 and ***P < 0.001.

Li et al. Page 19

Oncogene. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. RGS12 inhibits transcriptional YAP/TEAD1 activity through its PDZ domain function.
a Statistical analysis of nuclear YAP expression in human osteosarcoma and normal 

bone specimens. b, c Whole protein lysates of shScramble and shRGS12 cells were 

immunoblotted with the indicated antibodies. d Representative immunofluorescence-stained 

images of shScramble and shRGS12 cells for YAP expression, DAPI staining for nuclear. 

e Structures of YAP and RGS12. f Co-IP experiments of GFP-YAP, flag-RGS12 or 

flag-RGS12ΔPDZ in 293T cells. g 293T cells were transfected with flag-RGS12 or flag-

RGS12ΔPDZ, respectively. Cells were lysed after 48 hr, and cell lysates were incubated with 

GST or GST-YAP protein on glutathione beads. The precipitated complexes were analyzed 

by western blot. h Scramble and shRGS12 cells were respectively seeded in 12-well plates. 

Luciferase reporter and pRL-TK vector (internal control) were co-transfected. Luciferase 

activities were measured after transfection of 48 hr. i Luciferase activity was measured 

in SaOS2 cells following co-transfection with flag-YAP, flag-RGS12 or flag-RGS12ΔPDZ, 

respectively. j Immunofluorescent staining of YAP and TEAD1 in shScramble and shRGS12 

cells. k The proliferation of the indicated cells was detected by WST-1 assay. Error bars 

were the means ± standard error of the mean (SEM) of triplicates from a representative 

experiment. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 5. Knockdown of RGS12 induces YAP-dependent Ezrin expression.
a Immunoblots of the whole protein lysates, which were isolated from the cells after co-

transfection with shRGS12 or/both shYAP1/2 lentivirus for 48 hrs. b-f ChIP. Co-occupation 

of YAP/TEAD1 using YAP antibody in the Ezrin promoter. c ChIP. Co-occupation of YAP/

TEAD1 using YAP antibody in the Ezrin promoter after silence of RGS12. Error bars were 

the means ± standard error of the mean (SEM). *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 6. RGS12 negatively regulates Ezrin expression via GNA12/13-RhoA-YAP pathway
a Bone tissues from CMV-Cre;Rgs12f/f and control mice were analyzed by immunoblotting 

with the indicated antibodies. b Western blot for analyzing GNA12, GNA13 and RhoA 

expression in the lysates from shScramble and shRGS12 cells. c SaOS2 cells were starved 

for 12 hr and then treated with 2 mg/mL C3 (RhoA inhibitor) or 1 mM LPA (GPCR 

activator) for 48 hr. The whole protein lysates of the treated cells were analyzed by western 

blot. d RhoA activity. e Western blot analysis of the whole protein lysates isolated from 

the SaOS2 cells that were transfected with empty vector (Control) and pcDNA3.1-RhoA 

plasmid, respectively. f Immunofluorescent staining of RhoA, Ezrin and YAP in SaOS2 

cells that were transfected with empty vector (Control) and pcDNA3.1-RhoA plasmid, 

respectively.
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Fig. 7. RGS12 PDZ peptides inhibit osteosarcoma formation and lung metastasis.
a Soft agar. Colony formation ability analysis after PDZ or PDZ mutated peptide treatment 

for 3 weeks in SaOS2 cells. b Immunofluorescent staining of RGS12 and Ezrin in 

shScramble and shRGS12 cells after co-culture of PDZ peptides and matrigel for 7 days. c, 
d PDZ peptides inhibited YAP nuclear translocation by increasing the phosphorylation level 

of YAP in SaOS2 cells. e Representative X-ray images of tumor-bearing legs after intratibial 

injection with shRGS12 cells mixed with 0 or 100 nm PDZ peptides. f Kaplan-Meier 

survival analysis indicating overall survival of mice injected with shRGS12 cells mixed with 

0 or 100 nM of PDZ peptides. g Representative micro-CT images of tumor-bearing legs after 

intratibial injection with shRGS12 cells mixed with 0 or 100 nM of PDZ peptides at Day 

35. The white arrow indicates the tumor in the bone. h Representative images of HE-stained 
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lung sections of mice injected with shRGS12 cells mixed with 0 or 100 nM of PDZ peptides 

at Day 35. Scale bar, 100 μm. Error bars were the means ± standard error of the mean (SEM) 

of triplicates from a representative experiment. **P < 0.01.
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Fig. 8. A proposed model to illustrate the regulatory mechanism of RGS12 on Ezrin expression 
in osteosarcoma.
In normal bone, RGS12 promotes the growth arrest of osteosarcoma through inhibiting YAP 

nuclear translocation. In osteosarcoma bone, RGS12 has a lower expression and knockdown 

of RGS12 enhances RhoA activity and the transcriptional activity of YAP/TEAD1 to induce 

Ezrin expression.
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