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Abstract

Wnt Planar Cell Polarity (PCP) signaling is a universal regulator of polarity in epithelial cells, but it regulates axon outgrowth
in neurons, suggesting the existence of axonal modulators of Wnt-PCP activity. The Amyloid precursor proteins (APPs) are
intensely investigated because of their link to Alzheimer’s disease (AD). APP’s in vivo function in the brain and the
mechanisms underlying it remain unclear and controversial. Drosophila possesses a single APP homologue called APP Like,
or APPL. APPL is expressed in all neurons throughout development, but has no established function in neuronal
development. We therefore investigated the role of Drosophila APPL during brain development. We find that APPL is
involved in the development of the Mushroom Body ab neurons and, in particular, is required cell-autonomously for the b-
axons and non-cell autonomously for the a-axons growth. Moreover, we find that APPL is a modulator of the Wnt-PCP
pathway required for axonal outgrowth, but not cell polarity. Molecularly, both human APP and fly APPL form complexes
with PCP receptors, thus suggesting that APPs are part of the membrane protein complex upstream of PCP signaling.
Moreover, we show that APPL regulates PCP pathway activation by modulating the phosphorylation of the Wnt adaptor
protein Dishevelled (Dsh) by Abelson kinase (Abl). Taken together our data suggest that APPL is the first example of a
modulator of the Wnt-PCP pathway specifically required for axon outgrowth.
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Introduction

The Wnt Planar Cell Polarity (PCP) pathway is a highly

conserved regulator of cellular orientation within the plane of an

epithelium [1,2]. Genetic and molecular studies in Drosophila

indicate Disheveled (Dsh), a cytoplasmic transducer of Wnt

signaling; Frizzled (Fz), a seven-transmembrane receptor for Wnt

ligands; and Van Gogh (Vang), a four-pass transmembrane

protein, as core Wnt-PCP proteins. Intriguingly, the Wnt-PCP

pathway regulates axon outgrowth rather than neuronal polarity

during brain development of both vertebrates and Drosophila [3–5].

The Amyloid Precursor Protein (APP) is a member of a highly

conserved family of type I transmembrane proteins that includes

APP, APLP1, and APLP2 [6] in mammals and APP-Like, or

APPL, in Drosophila melanogaster [7]. APP proteins show not only

structural but also functional conservation, as exemplified by the

ability of human APP to rescue behavioral phenotypes of APPL

null flies [8]. APP is the subject of intense research because of

genetic and biochemical links to Alzheimer’s disease (AD),

whereby the proteolytic processing of APP generates the Amyloid

Beta peptide whose accumulation in the brain is widely thought to

induce neurodegeneration [9–12]. Despite these efforts, the

normal physiological function of APP in vivo in the nervous

system remains elusive and highly controversial. This is due to the

lack of a consensus over the neuronal phenotypes in null mutant

animals and the mechanism of APP action in vivo. APP knock-out

mice are viable and show developmental neuronal deficits, namely

cortical migration and agenesis of the corpus callosum, at variable

penetrance depending on genetic background [13–15]. In

contrast, another in vivo report, based mainly on gain of function
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and RNA interference experiments, suggests that APP may be

required for developmental axonal degeneration [16], although it

is unclear whether APP knock-out mice show these phenotypes.

Finally, initial findings proposed an axonal transport function for

APP [17] but later studies strongly questioned the presence of

these defects in APP knock-out mice [18].

Mechanistically, there is also disagreement on whether APP acts

cell autonomously or non autonomously. For example, an

extensive network of molecular interactions has been described

for the intracellular domain of APP [19], yet a knock-in of APP

lacking the intracellular domain appears to rescue physiological

and learning deficits reported in APP knock-out mice, suggesting

that the intracellular domain is dispensable [20]. Because current

models based on Amyloid toxicity do not provide a complete

explanation for the onset of neuronal dysfunction in AD, it has

long been argued that greater attention needs to shift towards

understanding the normal physiological function of APP in order

to assess its potential contribution to AD pathology [21,22].

Therefore, a mechanistic understanding of the in vivo physiolog-

ical function of APP proteins is of paramount importance. To

elucidate the function and mechanism of action of APP proteins in

vivo, we first investigated Drosophila APPL, the APP homologue in

the fruit fly, as a model system. We show that APPL is a novel

neuronal-specific modulator of the PCP pathway required for the

robustness of axonal outgrowth during the development of the

Mushroom Bodies (MB), a Drosophila center for learning and

memory. APPL carries out this function through facilitating the

PCP-specific phosphorylation of the Wnt adaptor protein Dishev-

elled (Dsh/Dvl) by the Abelson kinase (Abl). Furthermore, we

show that APPL is part of the membrane complex formed by Wnt-

PCP core proteins. Finally, biochemical and cell biological

analyses show that human APP immunoprecipitates mammalian

PCP proteins and that APP proteins are necessary for Dvl

phosphorylation in response to the PCP ligand Wnt5a. Therefore,

the APP proteins represent a novel and conserved family of

neuronal modulators of Wnt-PCP signaling required for the

robustness of brain wiring during development.

Results

APPL Is a Robustness Factor Required Cell-Autonomously
for MB b-Lobe Development

Drosophila APPL is a neuronal-specific protein expressed in most,

if not all, neurons throughout development and adult life. In

particular, APPL is highly expressed in the developing Drosophila

MB, especially the so-called ab neurons (Figure 1A–D). Flies null

for Appl (henceforth Appl2/2) are viable, fertile, and reported to

show no gross structural defects in the brain [8]. While a

requirement for APPL in learning and memory specifically in

adult flies has been shown [23], the function of its pan-neuronal

expression throughout development remains unknown, as does the

in vivo mechanism of its action(s).

We began addressing the function of APPL in neuronal

development by carefully examining the development of the

Drosophila MB in Appl2/2 mutant flies. The MB derives from two

groups of four neuroblasts, one in each hemisphere, that

sequentially generate three subsets of neurons: the c-, a9b9 and

ab neurons, where APPL is highly expressed. Each ab neuron

projects an axon that branches into a dorsal ‘‘a branch’’ and a

medial ‘‘b branch.’’ The fascicles generated by each of these

branches are referred to as the a lobe and b lobe. The a and b
lobes can be easily visualized using the anti-FascilinII (FasII)

antibody. The lobes were present and morphologically normal in

97 adult control animals (Figure 1E) examined. In contrast, 26%

of Appl2/2 brains examined (n = 101) showed axonal defects

(Figure S1). Specifically, 14% of the brains show a-lobe loss

(Figure 1F), whereas 12% of the brains show b-lobe loss

(Figure 1G). These defects are developmental in origin as they

can be observed during ab lobe formation at 48 h of pupal

development (Figure 1H–J). To ascertain whether APPL acts cell

autonomously to regulate MB axonal outgrowth, we generated

GFP-marked single Appl2/2 cell clones using the MARCM

technique [24]. While none of the control clones showed any

defects (Figure 2A), 10% of the mutant clones showed lack of b-

lobe growth (Figures 2B and S2A), similar to the penetrance

observed in null mutant brains. However, none of the mutant

clones showed loss of a-lobe growth. Taken together, these data

indicate that APPL is required for normal MB axonal outgrowth

and that it is required cell-autonomously for the growth of the b-

lobe and non-cell autonomously for the growth of a lobe. To verify

the specificity of the Appl2/2 phenotype, we rescued the defects by

restoring APPL expression in ab neurons. Expression of full-length

membrane-bound APPL, but not a secreted form or a form

lacking the intracellular domain (ApplDC), strongly suppresses the

b-lobe loss phenotype (Figures 2C–H and S2B). These results

indicate that APPL is required as a full-length, membrane-tethered

protein and that the intracellular signaling downstream of APPL is

necessary for normal b-lobe outgrowth. Interestingly, secreted

APPL strongly reduces the loss of the a lobe (Figure S2C and

S2D), confirming that APPL acts non-autonomously in a-lobe

outgrowth. All together, the results suggest that APPL is a

robustness factor for an unknown axon growth signal whereby

Appl2/2 ab neurons are at a phenotypic threshold that causes

them to fail to grow in approximately 26% of the cases.

Abelson Kinase Is a Downstream Effector of APPL
Required for MB Axon Outgrowth

To unravel the mechanism by which APPL supports MB axon

outgrowth, we chose to focus on the cell-autonomous function of

APPL in the b lobe. A previous study using APPL gain of function

indicates that APPL overexpression induces axonal outgrowth that

is dependent on Abl kinase activity [25]. We asked whether Abl

Author Summary

Wnt Planar Cell Polarity (PCP) signaling is a universal
regulator of polarity in epithelial cells, but in neurons it
regulates axon outgrowth, suggesting the existence of
axonal modulators of Wnt-PCP activity. The Amyloid
Precursor Proteins (APPs) are intensely investigated
because of their link to Alzheimer’s disease (AD). APP’s in
vivo function in the brain and the mechanisms underlying
it remain unclear and controversial. In the present work we
investigate the role of the Drosophila neuron-specific APP
homologue, called APPL, during brain development. We
find that APPL is required for the development of ab
neurons in the mushroom body, a structure critical for
learning and memory. We find that APPL is a modulator of
the Wnt-PCP pathway required for axonal outgrowth, but
not for cell polarity. Molecularly, both human APP and fly
APPL are found in membrane complexes with PCP
receptors. Moreover, we show that APPL regulates PCP
pathway activation through its downstream effector
Abelson kinase (Abl), which modulates the phosphoryla-
tion of the Wnt adaptor protein Dishevelled (Dsh) and the
subsequent activation of Wnt-PCP signaling. Taken to-
gether our data suggest that APPL is the first example of a
neuron-specific modulator of the Wnt-PCP pathway.
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kinase also acts downstream of APPL during MB b-lobe growth.

First, we tested if APPL genetically interacts with Abl. To this end

we analyzed the adult MB morphology of Appl2/2; Abl2/+ flies.

Loss of one copy of Abelson causes a dramatic increase (up to

51%) in complete (41%) or partial (10%) b-lobe loss, compared to

Appl2/2 alone (Figure 3A, 3B and 3E, 3F). As controls we

analyzed the siblings heterozygous for both Appl and Abl (Appl2/+;

Abl2/+) and observed no phenotypes (Figure 3F). Similarly to

Appl2/2 mutants alone, the phenotypes arise at early develop-

mental stages (Figure S3A). To further confirm that Abl is the

downstream mediator of APPL signaling during b-lobe growth, we

tested if overexpression of Abl specifically in MB ab neurons

rescues the Appl null phenotype. We find that wild-type Abl, but

not a Kinase Dead (Abl-KD) form of Abl, rescues the Appl null

phenotype (Figure 3C–F) to the same extent as MB ab expression

of APPL itself (Figure S2B). Taken together these data indicate

that Abl is the effector of APPL required for the b-lobe growth.

Next, we further characterized the downstream pathway involved.

APPL Is a Novel Neuronal-Specific Modulator of PCP
Signaling

It has been recently shown that Abl phosphorylates Disheveled

(Dsh), a core intracellular component of the Wnt pathway, on the

Tyrosine 473. This modification is required for the efficient

activation of the PCP signaling pathway in epithelial cells [26].

Interestingly, in the nervous system the Wnt-PCP pathway is

required for robust axonal outgrowth both in Drosophila [27] and

mouse [28,29]. More recently, several PCP pathway components,

like the Wnt receptor Frizzled (Fz), Flamingo (Fmi), Strabismus

(Stbm or Vang), and Dsh, have been shown to play a role in the

correct targeting and bifurcation of MB axons [4,30,31]. Indeed,

we observe that flies harboring a PCP-specific mutation in Dsh

(dsh1) [32] show the same MB developmental defects observed in

Appl2/2 flies (Figure 4A).

Together, these observations prompted us to speculate that

APPL acts to facilitate Wnt-PCP pathway activation during MB

development by mediating Dsh phosphorylation by Abl. To verify

this hypothesis we tested if the phosphorylation of Dsh on Y473 is

required for MB development. We analyzed dsh1 flies harboring

one of two genomic rescue constructs: a wild-type construct (dsh-

DshGFP-wt) or a Tyrosine 473 phospho-mutant construct (dsh-

DshGFP-Y473F). Whereas the restoration of wild-type Dsh fully

rescues the dsh1 MB phenotype (Figures 4B and S4A), DshY473F

completely fails to do so (Figures 4C and S4A). To exclude that

DshY473F failure to rescue the phenotype is due to a perturbation

in the expression pattern resulting from the point mutation, we

performed anti-GFP staining on adult brains of both transgenic

lines. As shown in Figure 4D and 4E, both wild type and mutant

Dsh are expressed in the MB lobes. These results clearly indicate

that Abl phosphorylation of Dsh on Tyrosine 473 and the

subsequent activation of Wnt-PCP signaling are required for the

b-lobe growth.

Collectively, the data suggest the exciting possibility that APPL

may be a neuronal-specific component of the Wnt-PCP pathway.

To address this issue, we first asked if APPL interacts genetically

with core members of the Wnt-PCP pathway like the classical

Wnt-PCP receptor Fz and the canonical Wnt-PCP protein Van

Gogh/Strabismus (Vang/Stbm). We first analyzed the b-lobe of

Appl2/2; Fz2/+ flies. Reduction of Fz in the APPL null

background increases the frequency of the b lobe loss up to

21%, whereas no phenotype is observed in control siblings

(Figures 5B, E and S5A). This interaction is specific to the MB

because expression of a dominant negative form of Fz (Fz-DN) in

Appl2/2 ab neurons yields similar results (Figures 5C, 5E and

S5A). In both experiments described, the increase in b-lobe loss is

relatively mild compared to the dramatic increase in b-lobe loss

due to APPL-Abl epistasis for example, suggesting that APPL and

Fz may act together for Wnt-PCP activation. To clarify this, we

tested if inhibition of Fz alone is sufficient to induce the b
phenotype. Overexpression of Fz-DN in ab neurons of wild-type

flies did not cause any morphological defects (Figure S5A and

S5B). These data were further confirmed by the analysis of Fz

mutant ab clones of different sizes. None of the analyzed MB

clones showed morphologically aberrant axons (Figure S5C). To

rule out compensation by Fz2, we examined Fz2 expression in the

brain and found that it is not detectable in MB (unpublished data).

Furthermore, MARCM clones null for Fz2 alone or Fz and Fz2

together show no aberrant morphology (Figure S5D and S5E).

Therefore, APPL function is a critical determinant of the role of

PCP in the outgrowth of MB b axons. To further ascertain the

interaction with the Wnt-PCP pathway, we analyzed if APPL

interacts with the Wnt-PCP four-pass transmembrane protein

Vang/Stbm. Reduction of Van Gogh in the Appl null background

(Appl2/2;vang2/+) increases the frequency of the b-lobe loss

phenotype to 33% (Figures 5D,E and S5A), whereas no phenotype

is observed in control siblings. APPL is also expressed in the

developing fly retina (Figure S5F), where the PCP pathway

regulates the polarity of photoreceptor cells. However, we did not

observe defects in photoreceptor polarity (Figure S5G–I), suggest-

ing that the role of APPL in Wnt-PCP signaling is specific to

axonal outgrowth. Together, the data above identify APPL as the

first neuronal-specific modulator of the Wnt-PCP pathway’s role

in axonal outgrowth. Next, we analyzed if the expression pattern

of Vang and APPL overlaps during MB development. For this

purpose, we used a line that expresses a YFP tagged form of Vang

under the control of the Actin promoter. As shown in Figure 5F,

during the development of the b lobe both APPL and Vang are

expressed at a high level in the growing axons. Interestingly, in

adult stage, APPL expression is reduced in the rest of the brain and

enriched in the ab neurons while Vang levels are strongly reduced

Figure 1. APPL is a robustness factor required for Mushroom Bodies development. (A–D) Developmental APPL expression in MB. Immuno-
fluorescence analysis using anti-APP-Cterm (A–D in magenta) and anti-FasII (A9–D9 in green) antibodies. The A-–D- panels show the merge of the
FasII and GFP channel for the indicated samples. APPL is expressed at high levels in the developing brain and is enriched along MB axons both during
development and in adult stages. (A, B) 48 h APF MB lobes. The images are single confocal stacks; zoom shows 636magnification of the boxed area
(scale bar, 50 mm in A, 25 mm in B). (C) Adult MB axons. The images are single confocal stacks (scale bar, 50 mm). (D) Zoom shows 636magnification
of the boxed area in panel C. The images are z-projections of two confocal image stacks (step size, 0.6 mm; scale bar, 25 mm). (E–G) Adult MB lobes
labeled with FascilinII antibody (FasII). All images are z-projections of confocal image stacks (scale bar, 50 mm). (E) Morphologically normal a/b
neurons in control adult brain. (F–G) Structure of a/b neurons in Appldw* null mutant adult brains. In the absence of APPL, MB lobes show an aberrant
pattern of growth in 26% of the analyzed sample (n = 101). In particular, in 14% of the cases (F), the a lobe fails to project towards the dorsal side of
the brains (as indicated by the arrow), whereas in 12% of the cases (G), the b lobe fails to project towards the midline (as indicated by the arrow). (H)
Morphologically normal a/b neurons of a 48APF Canton S brain. (I–J) Morphologically aberrant a/b neurons of an Appld w*48APF brain. The a- (I) and
b-lobe (J) loss observed in the adult brain is already present at 48 APF, thus suggesting that is not due to degeneration but rather to failure in axon
growth.
doi:10.1371/journal.pbio.1001562.g001

APPL Regulates Wnt-Dependent Axon Growth

PLOS Biology | www.plosbiology.org 4 May 2013 | Volume 11 | Issue 5 | e1001562



Figure 2. APPL is cell-autonomously required for b-lobe development. (A–B) Z-projections of confocal image stacks of GFP-labeled clones.
Recombination was induced at 0–24 h APF. Immunofluorescence analysis of adult MBs using anti-GFP (green) and anti-FasII (A9, B9 in magenta)
antibodies (scale bar, 50 mm). The A0 and B0 panels show the merge of the FasII and GFP channel for the indicated samples. (A) Morphologically
normal a/b neurons in single-cell control clones obtained by crossing FRT19A; ry506 flies with FRT19A,tub-Gal80,hsFLP/FM7;UAS-CD8-GFP/CyO;OK107
(n = 41 clones). (B) Appld single-cell clones. Clones were obtained by crossing Appld FRT19A/FM7 with FRT19A, tub-Gal80, hsFLP/FM7; UAS-CD8-GFP/
CyO; OK107. The cell-autonomous loss of APPL leads to b-lobe loss in 10% of the clones analyzed as indicated by the arrow (n = 44 clones). (C–G)
Adult MB lobes labeled with FasII antibody. All the images are z-projections of confocal image stacks (scale bar, 50 mm). (C) Morphologically normal a/
b neurons in a control adult brain. (D) Morphologically aberrant ab neurons in Appldw*/Y;L/+;P247Gal4 analyzed as a control for the rescue
experiment (n = 47). In 13% of the brains the b axons failed to grow towards the midline. (E) Morphologically normal ab neurons in Appldw*/Y;UAS-
Appl/+;P247Gal4 adult brains. The re-introduction of full-length APPL in MBs during development is sufficient to rescue the b-lobe defect. Only 2% of
the samples show a phenotype; p value = 0.03467 calculated with G-test (n = 50). (F) Morphologically aberrant ab neurons in Appldw*/Y;UAS-sAppl/
+;P247Gal4. The re-introduction of a secreted form of APPL fails to rescue the b-lobe defect, where 12% of the analyzed brains showed phenotype. p
value = 0.9831 calculated with G-test (n = 50). (G) Morphologically aberrant ab neurons in Appldw*/Y;UAS-ApplDC/+;P247Gal4. The re-introduction of a
form of APPL lacking the C-terminal domain fails to rescue the b-lobe defect, where 11% of the analyzed brains showed phenotype (n = 54); p
value = 0.8863 calculated with G-test. (H) The graph shows the penetrance of the b-lobe loss in the rescue flies normalized against the penetrance of
the phenotype in the Appldw* background. * Indicates a p value,0.05 calculated with G-test.
doi:10.1371/journal.pbio.1001562.g002
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in these axons (Figure 5G). Moreover, in the developing fly retina,

APPL and Vang do not colocalize and are found in juxtaposed

domains (Figure S5L). Taken together these results suggest that

both APPL and Vang are present in developing ab axons where

their genetic interaction is required for the correct development of

the b axons. On the contrary, the two proteins are expressed in

different compartments in the fly retina where APPL function is

not required for PCP activity.

Finally, to confirm that PCP signaling is indeed positively

modulated by APPL and that the activation of the signaling is

required for the b-lobe growth, we performed rescue experiments

with Dsh. As shown in Figure 5F, overexpression of Dsh in the

Appl2/2 background strongly reduces (7%) the b-lobe loss but does

not fully rescue the phenotype. This result indicates that the

phosphorylation of Dsh by Abelson is the limiting step in the

activation of PCP signaling; increasing the amount of Dsh present

in the neurons improves the phenotype, but probably the

endogenous Abelson is not sufficient to phosphorylate the whole

pool of Dsh. To overcome this problem we decided to enhance the

activation of PCP signaling by overexpressing Wnt5 in the Appl2/

2 background. Interestingly, overexpression of Wnt5 significantly

rescues the b-lobe loss (Figure 5H), indicating that the PCP

signaling activation is required for the development of the b lobe

and is reduced in absence of APPL.

APP Is Required for Dvl2 Phosphorylation in Response to
Wnt5 and Forms Complexes with PCP Core Proteins

The previously described results raise two important questions.

First, is the interaction between APPL and the Wnt-PCP pathway

conserved in mammalian APP proteins? Second, if so, do the

genetic interactions observed in Drosophila reflect a biochemical

association of APPL/APP with the Wnt-PCP receptors? To

address these issues, we first investigated if mouse APP proteins

mediate the phosphorylation of mouse Disheveled (Dvl) in

response to the Wnt-PCP ligand Wnt5a. To this end, we analyzed

Dvl phosphorylation in response to Wnt5a treatment in wild-type

versus APP/APLP2 double knock-out mouse embryonic fibroblast

(dKO MEFs). In WT MEFs, Dvl2 phosphorylation increases

dramatically upon treatment with Wnt5a. In contrast, Dvl2 in

dKO MEFs completely fails to respond to Wnt5a treatment

(Figure 6A). The effect on the activation of Dvl2 is a direct

consequence of APP loss because upon reintroduction of APP

cDNA Dvl2 phosphorylation is restored (Figure 6A). Next, we

tested if APPL and APP interacts with core Wnt-PCP receptor

proteins. In particular, we performed co-immunoprecipitation

(Co-IP) analyses of tagged proteins expressed in HEK-293T cells.

As shown in Figures 6B and S6B, APPL immunoprecipitates Vang

when the two proteins are co-expressed in the same cells. Drosophila

APPL immunoprecipitates human Van Gogh 2 (Vangl2)

Figure 3. Abelson kinase is a downstream effector of APPL required for MB axons outgrowth. (A–B) Loss of b lobes in Appldw*/Y;Abl4/+
adult brains. (A) In 40% of the flies that have lost one copy of Abl in the Appl2/2 background, no axons grow toward the midline (indicated by the
arrow), whereas in 10% of the cases (B) only few axons project normally (n = 29); p value = 1.29E-02 calculated with G-test. (C) Morphologically normal
ab neurons in Appldw*/Y;UAS-Abl/+;P247Gal4 adult brains. Overexpression of Abl in the MB rescues the b-lobe loss in the Appl2/2 background. Only
2% of the analyzed samples show b-lobe loss (n = 46); p value = 0.03192 calculated with G-test. (D) Morphologically aberrant ab neurons in Appldw*/
Y;UAS-Abl-KD/+;P247Gal4 adult brains. Overexpression of a Kinase dead form of Abl fails to rescue the b-lobe loss in the Appl2/2 background. Thirteen
percent of the analyzed brains showed b-lobe loss as indicated by the arrow (n = 31). (E) The graph shows the penetrance of b-lobe loss in the Abl
rescue flies and in the flies heterozygous for Abl, normalized against the penetrance observed in the Appldw* background. (F) The table lists the
number of brains analyzed in the rescue experiments. * Indicates a p value,0.05 calculated with G-test; ** indicates a p value,0.001 calculated with
G-test.
doi:10.1371/journal.pbio.1001562.g003

APPL Regulates Wnt-Dependent Axon Growth

PLOS Biology | www.plosbiology.org 6 May 2013 | Volume 11 | Issue 5 | e1001562



(Figures 6C and S6C). Importantly, this multiprotein complex can

only be detected when the proteins are expressed in the same cells,

but not when lysates from separately expressing cells are mixed

(Figure S6E). This observation also accounts for the absence of

rescue observed when a form of APPL lacking the C terminal is

expressed in the Appl2/2 animals (Figure 2H). Similarly, the

membrane tethered C-terminus of human APP (APP-C99)

immunoprecipitates Vangl2 (Figures 6D and S6D). Moreover,

we tested if APPL also immunoprecipitates other PCP receptors

like Fz. As shown in Figures 6E and S6F, APPL immunoprecip-

itates Fz, suggesting that the core PCP proteins and APPL might

form a multiprotein complex on the membrane, responsible for

the efficient activation of the pathway. Similarly, the membrane-

tethered C-terminus of human APP (APP-C99) immunoprecipi-

tates human Fzd5 (Figure 6F).

Discussion

AD is a neurodegenerative disorder characterized by progres-

sive loss of neurons in specific regions of the brain that correlates

with progressive impairment of higher cognitive functions. A

growing body of evidence identifies the APP and its metabolite the

Ab peptide as main players in the pathogenesis of AD. In

particular, the accumulation of Ab peptides in the brain seems to

be the trigger of the pathological cascade that eventually results in

neuronal loss and degeneration [33]. Despite efforts to character-

ize the molecular mechanisms underlying Ab’s toxic function, it is

Figure 4. Dsh phosphorylation is required for MB b-lobe development. Structure of ab neurons labeled with FasII antibody. All the images
are z-projections of confocal image stacks (scale bar, 50 mm). (A) Morphologically aberrant ab neurons in dsh1 adult brains. Flies homozygous for a
PCP specific allele of dsh (dsh1) show a phenotype comparable to Appl2/2 mutants but with increased penetrance of b-lobe loss as indicated by the
arrow (30%; n = 36). (B) Morphologically normal ab neurons in dsh1/Y;dsh-DshGFP-wt/+ adult brains. Reintroduction of wild-type Dsh in the dsh1

mutant background completely rescues b-lobe loss with no brains showing defects (n = 31). (C) Morphologically aberrant ab neurons in dsh1/Y;;dsh-
DshGFP-Y473F/+ adult brains. Reintroduction of a Tyrosine 473 phospho-mutant form of Dsh in a dsh1 mutant background fails to rescue the b-lobe
loss as indicated by the arrow (n = 41). (D–E) Expression pattern of Dsh-GFP in ;dsh-DshGFP-wt/TM6b and of Dsh-Y473F-GFP in ;dsh-DshGFP-Y473F/+.
Immuno-fluorescence analysis of adult brains using anti-GFP (green) and anti-FasII (D9, E9 in magenta) antibodies (scale bar, 50 mm). All images are z-
projections of two confocal sections (0.9 mm steps). The D0 and E0 panels show the merge of the FasII and GFP channel for the indicated samples.
doi:10.1371/journal.pbio.1001562.g004
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Figure 5. APPL interacts with PCP signaling during MB development. (A–D) Structure of ab neurons labeled with the FasII antibody. All the
images are z-projections of confocal image stacks (scale bar, 50 mm). (A) Morphologically normal ab neurons in a control adult brain. (B)
Morphologically aberrant ab neurons in Appldw*/Y;;FzKD/+ adult brains. Loss of one copy of Fz in the Appl2/2 background increases moderately, but
not significantly, the penetrance of b-lobe loss (indicated by the arrow) to 21% (n = 28); p value = 0.2166 calculated with G-test. (C) Morphologically
aberrant a/b neurons in Appld w*/Y;UAS-Fz-DN/+;P247Gal4/+ adult brains. Overexpression of a dominant negative form of Fz in the Appl2/2

background increases moderately, but not significantly, the penetrance of the phenotype to 18% (n = 28); p value = 0.4226 calculated with G-test. (D)
Morphologically aberrant ab neurons in Appld w*/Y;Vangstbm-6/+ adult brains. Loss of one copy of Vang in the Appl2/2 background increases the
penetrance of the b-lobe loss up to 33% (n = 21); p value = 0.02304 calculated with G-test. (E) The graph shows the penetrance of b-lobe loss in
genetic interaction experiments, normalized against the penetrance in the Appldw* background. (F, G) APPL and Vang localization during
development in brain of flies Act-Stbm-EYFP expressing an EYPF tagged form of Vang under the control of the Actin promoter. Immuno-fluorescence
analysis using anti-APP-Cterm (F, G in blue), anti-GFP (F9, G9 in green), and anti-FasII (F0, G0 in red) antibodies. The images are single confocal stacks
(scale bar, 25 mm). The F- and G- panels show the merge of the FasII and GFP channel for the indicated samples. (F) At 48 h APF, Vang is broadly
expressed along the MB b axons, where also APPL is expressed as indicated by the arrow. (G) At adult stage, the level of Vang detectable in the b
axons is strongly reduced compared to the previously analyzed time point, while APPL is enriched in the MB neurons (as indicated by the arrow). (H)
The graph shows the penetrance of the b-lobe loss in the Appldw* flies overexpressing Dsh or Wnt5 (p value equal to 0.1287 and 0.0006692,
respectively). Activation of Wnt-PCP signaling upon Wnt5 signaling rescues the b-lobe phenotype. ** Indicates a p value,0.001 calculated with G-
test.
doi:10.1371/journal.pbio.1001562.g005

Figure 6. APP is required for the proper response to Wnt5 and forms complexes with PCP core proteins. (A) Analysis of the
responsiveness of wt MEFs and MEFs lacking all the APP isoforms to Wnt5 treatment. MEFs were treated for 2 h with rmWnt5a and subsequently
analyzed by Western blot. After the Wnt5 treatment, Dvl2 is phosphorylated and this modification is indicated by a shift of the band detected by Dvl2
Ab. KO MEFs respond less efficiently to Wnt5. Re-introduction of hAPP rescues the responsiveness to Wnt5. The graph shows a quantification of the
ratio between phospho-Dvl2 and Dvl2 in the analyzed samples. * Indicates a p value,0.05 calculated with one-way ANOVA plus Tukey’s multiple
comparison test. (B) Co-immunoprecipitation (Co-IP) of Appl-FLAG and Vang-Myc. The tagged proteins were co-expressed in HEK293T cells and
immunoprecipitated with anti-FLAG antibody. Vang-Myc can be precipitated upon IP of Appl-FLAG. (C) Co-IP of Appl-FLAG and human Vangl2-HA.
Human Vangl2-HA can be precipitated upon IP of Appl-FLAG. (D) Co-IP of human APP (C99)-FLAG and human Vangl2-HA. Human Vangl2-HA can be
precipitated upon IP of APP (C99)-FLAG, indicating that interaction with PCP proteins is a conserved feature of APP proteins. (E) Co-IP of Appl-FLAG
and dFz-GFP. Drosophila Fz can be precipitated upon IP of Appl-FLAG. (F) Co-IP of human APP (C99)-FLAG and human V5-Fzd5. V5-Fzd5 can be
precipitated upon IP of APP (C99)-FLAG.
doi:10.1371/journal.pbio.1001562.g006
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still not clear what triggers the accumulation of the peptide and how

this is correlated with the pathogenesis of the disease and the

dementia. In fact, most of the work done to unveil the pathogenesis

of the disease has focused on the analysis of Ab-peptide and the

search for its receptors and downstream effectors. Even though the

numerous in vitro studies performed in cell culture identified several

molecules that interact with Ab peptide, the in vivo biological

relevance of these interactions remains to be clarified. The amyloid

cascade hypothesis has also dominated the search for AD treatments,

but the promising molecular candidates developed to modulate the

Ab peptide and reached clinical trials failed [34,35]. Finally, over the

last few years many studies indicated that there is no linear

correlation between the accumulation of the peptide and the

cognitive decline, leading to a revision of the amyloidogenic

hypothesis. Taken together, these observations suggest that the

accumulation of the peptide is not the only cause of the pathology

and that other factors are involved. Interestingly, under physiological

conditions APP is mainly found in its uncleaved or a-cleaved form,

suggesting that the shift towards amyloidogenic processing not only

increases the production of Ab peptide but also depletes the pool of

APP that undergoes non-amyloidogenic processing, with hitherto

unknown consequences. It is therefore of paramount importance to

understand the physiological role of APP and how perturbing this

role could contribute to the pathogenesis of the disease. An

important contribution to the study of the function of a protein

comes from the analysis of the knock-out (KO) animals. In the case of

APP, several KO models have been generated and analyzed in detail

both from the morphological and behavioral point of view [13,36–

38]. Despite these efforts, the normal physiological function of APP

in vivo in the nervous system remains largely elusive and highly

controversial. This is due to the lack of consensus over the neuronal

phenotypes in null mutant animals and the mechanism of action in

vivo. The data collected by different labs confirmed the involvement

of APPs in development and function of the nervous system, but

these studies do not provide an in-depth analysis of the development

of the brain during the pre-natal stages or the molecular mechanism

underlying APPs’ putative functions. We therefore took advantage of

Drosophila melanogaster to further analyze the consequence of loss of

APP Like (APPL) during brain development.

In the present study we demonstrate that APPL is involved in

brain development of Drosophila melanogaster, particularly in the

Mushroom Body (MB) neurons. We show that APPL is required

for the development of ab neurons. In Appl2/2 flies, MB neurons

fail to project the a lobe in 14% of the cases and the b-lobe in 12%

of the cases (Figure 1). Further analysis of the phenotype reveals

that APPL is required cell-autonomously for the development of

the b lobe and non-cell autonomously for the development of the a
lobe. In fact, single cell Appl2/2 clones display only b-lobe loss and

no a loss. The re-introduction of a full-length, membrane-tethered

form of APPL, but not a soluble form, rescues b-lobe loss

(Figure 2). This is of particular interest because it confirms that,

similar to mammalian APPs, the physiological role of APPL is

mediated both by its full-length form, required in the neurons to

achieve the correct b-lobe pattern, and by its soluble form (sAPPL)

that regulates the extension of the a lobe. Moreover, the rescue

data indicate that, at least in this context, the function of sAPPL is

mediated not by homo-dimerization with the full-length form but

by some other receptor, hitherto unknown. Further experiments

are required to clarify the sAPPL non-cell autonomous effect, but

we hypothesize that it might be involved in modulating signaling

mediated by the cells that surround the MB axons. Taken

together, the analysis of the Appl2/2 animals confirmed the

important role of APPs during brain development but reinforced

the idea that the phenotypes are present with incomplete

penetrance and might be subtle. It would therefore be of interest

to analyze the phenotype of the KO mice in greater detail and, in

particular, to better characterize the APP’s downstream pathway

leading to these defects.

Moreover, the results described clearly support a model of

APPL as a novel, neuronal-specific positive modulator of the Wnt-

PCP pathway (Figure 4). The PCP pathway was initially described

because of its role in tissue polarity establishment and, in

particular, of its regulation of cell orientation in plane of an

epithelium. Among the different processes regulated by PCP

signaling, we are interested in axon growth and guidance. It has

been described that mice null for Fzd3/Ceslr32/2 genes show

severe defects in several major axon tracts like thalamocortical,

corticothalamic, and nigrostriatal tracts, defects of the anterior

commissure, and similarly to APP KO mice, the variable loss of

the corpus callosum [5,39].

The molecular mechanism underlying the function of PCP-

signaling in regulating tissue polarity has been broadly studied.

The current model suggests that, upon polarized expression of the

different core proteins, Dsh is recruited to the membrane via Fz

and leads to the activation of a cascade of small GTPases finally

resulting in cytoskeleton rearrangements. In the case of regulation

of axon growth and guidance, it is less clear how the signaling is

regulated and transmitted to the cytoskeleton. A recent publication

suggested that during axon growth the transmembrane PCP

receptor-like Vang and Fzd are localized at the growth cone area

on the tip of the fillopodia, thus suggesting that in this context the

asymmetric localization is not needed [28].

Furthermore, Dsh needs to relocalize from the cytoplasm to

the membrane to ensure the proper activation of PCP signaling,

and this is dependent on its phosphorylation status. Singh and

colleagues showed that Abelson is one kinase responsible for this

modification, but the receptor upstream of the kinase was not

identified [26]. Based on the evidence we generated, we propose

that APPL is a novel regulator of Wnt-PCP pathway involved in

axon growth and guidance (Figure 7). This is of interest because

while the PCP core proteins are ubiquitously expressed, APPL is

restricted to the nervous system, suggesting that it could be the

first described tissue-specific modulator of the pathway.

Mechanistically, we propose that APPL-Abl complex modulates

Dsh via dual protein-protein interactions. First, Abl might have an

intrinsic affinity for its substrate Dsh [26]. Secondly, this interaction

is strengthened or stabilized by the inclusion of APPL in a PCP

receptor complex. This dual affinity complex leads to increased PCP

signaling efficiency at the developing growth cone. Both biochemical

and physiological data show that this function is highly conserved in

mammalian APP, suggesting that it may play a similar role in the

mammalian brain. The canonical-Wnt signaling pathway has

already been connected to AD pathogenesis because of its link to

the tau-kinase GSK-3b. Interestingly, no clear link between the Wnt-

PCP pathway and this neurodegenerative disorder has been made.

Previous reports [27,28] show that, in flies and mice, Jun N-terminal

Kinase (JNK) is the final effector of PCP in axon outgrowth and JNK

was shown to be required for the effect of APP overexpression in the

fly [25,40]. Interestingly, JNK signaling has also been linked to the

neuronal loss observed in AD [41]. It is therefore worth investigating

whether the physiological function of APP as a neuronal PCP

modulator explains the JNK-AD connection.

Materials and Methods

Fly Stocks
Drosophila stocks used include Appld w*, Appld,FRT19A w*,

elavC155,hsFLP,w*;UAS-mCD8::GFP.,UAS-lacZ/CyO;tubP-GAL80,
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FRT2A/TM6,Tb,Hu, hsFlp,UAS-CD8-GFP;;FRT2A,tubGal80/

TM3;OK107, hsFlp, UAS-CD8-GFP; FRT2A, tubGal80/

TM3;OK107, Flp122; sp/CyO;Fz p21,ri,FRT2A/TM2,

fz2C1ri,FRT2A/TM3,Sb, yw,hsflip;Fz1H51Fz2C1riFRT2A/TM2,

UAS-Fz-DN/CyO;P247Gal4/TM6c, UAS-Abl-KD/CyO;P247-

Gal. Abl4 kar1 red1 e1/TM6B, Tb1, w*;UAS-Abl/CyO;P247, w;

fz [KD]/TM3,Sb, Vangstbm-6, w;201Y,UAS-GFP, FRT19A;ry50,

FRT19A,tub-Gal80,hsFLP/FM7;UAS-CD8-GFP/CyO;OK107,

UAS-Appl/CyO;P247Gal4, UAS-sAppl/Cyo;P247Gal4, w1,

dsh:1, dsh.Dsh-GFP (J7)/TM6. dshV26,dsh.Dsh-GFP;

dsh.Dsh-GFP Y473F, and Act-stbm-EYFP/TM3.

Accession Numbers/ID Numbers
APPL (FBgn0000108), fz (FBgn0001085), fz2 (FBgn0016797),

Fzd5 (NP_003459.2), dsh (FBgn0000499), dvl1 (AAB65242.1),

dvl2 (AAB65243.1), Vang (FBgn0015838), Vagl2 (NP_065068.1),

and Abl (FBgn0000017).

Immunochemistry
Larval, pupal, or adult brains were dissected in phosphate

buffered saline (PBS) and fixed in 3.7% formaldehyde in PBT

(PBS+ Triton 6100 0.1%) for 15 min. The samples were

subsequently rinsed three times in PBT and blocked in PAX-

DG for 1 h. Following these steps, the brains were incubated with

the primary antibody diluted in PAX-DG overnight at 4uC. This

incubation was followed by three washes with PBT and a

subsequent incubation with the appropriate fluorescent secondary

antibodies for 2 h at RT. After three rinses in PBT, the brains

were put in 50% Glycerol diluted in PBS and then mounted in

Vectashield (Vector Labs) mounting medium. The following

antibodies were used: rabbit anti-GFP (Invitrogen, 1:1,000),

mouse anti-FasII (Hybridoma Bank, 1:50), rabbit anti-APP-C-

term (kind gift of Bart de Strooper lab, 1:5,000), and anti-

Phalloidin TRITC (1:1,000).

Microscopy and Image Analysis
The mounted brains were imaged either on a LEICA DM 6000

CS microscope coupled to a LEICA CTR 6500 confocal system or

on a Nikon A1-R confocal (Nikon) mounted on a Nikon Ti-2000

inverted microscope (Nikon) and equipped with 405, 488, 561,

and 639 nm lasers from Melles Griot. The pictures were then

processed using ImageJ and Adobe Photoshop.

MARCM Procedure
Crosses were set up at 25uC and transferred every day. We

transferred 0 to 24 pupae in a fresh vial, and they were heath

shocked for 459 at 37uC and shifted back at 25uC until eclosion.

The morphology of the MB clones was analyzed in flies 0–7 d old.

Cell Culture and Treatments
WT MEFs, APP/APLP2 double KO MEFs, APP/APLP2

double KO+hAPP, and HEK-293T cells were propagated in

DMEM, 10% FCS, 2 mM L-glutamine, 50 units/ml penicillin, 50

units/ml streptomycin. MEFs (200,000 cells per well) were seeded

in 24-well plates for biochemical analyses. MEFs were treated 2 d

after seeding with rmWnt5a (R&D Systems) for 2 h. Cells were

harvested for immunoblotting by direct lysis in 16Laemmli buffer

followed by boiling at 95uC for 5 min. Control stimulations were

done with 0.1% BSA in PBS.

Gel Electrophoresis and Western Blots
Protein from total cell lysates/samples was resolved in 10%

polyacrylamide gels (SDS-PAGE) under denaturing conditions

and then transferred to nitrocellulose membranes. The blots were

probed using polyclonal anti-FLAG M2 (F1804, Sigma-Aldrich

1:1,000), monoclonal anti-Myc (M4439,Sigma-Aldrich 1:1,000),

anti-Dvl1 (sc-8025, Santa Cruz Biotechnologies, 1:1,000), anti-

Dvl2 (#3224, Cell Signaling Technologies, 1:1,000), anti-V5

(R960-25, Invitrogen, 1:1,000), anti-HA (HA.11, MMS-101R,

Covance, 1:2,000), and anti-beta-actin (sc-1615, Santa Cruz

Biotechnology, 1:2,000). Bands were visualized using anti-IgG

HRP-conjugated secondary antibodies, and the ECL Western

Blotting Detection System (GE Healthcare, UK).

Co-Immunoprecipitation
For the Co-IP of Drosophila proteins, pCDNA3-APPL-FLAG

and pCDNA3-Vang-Myc were transiently transfected in

HEK293T cells (4.56106 cells per 10 cm dish) using Fugene

HD (Roche). After 3 d, cells were collected in Lysis Buffer

(150 mM NaCl, 50 mM Tris/HCl pH 7.5, 10% glycerol, 0.4%

Nonidet P-40) and cleared with Dynabeads M-270 epoxy

(Invitrogen) for 459 at 4uC. After the clearing, lysates (half volume)

were incubated with anti-FLAG covalently conjugated to

Dynabeads M-270 (pre-saturated with BSA) for 1 h at 4uC. Beads

were then washed, and bound proteins were resuspended in 66
Laemmli and subjected to SDS-PAGE followed by Western blot

analysis. For the Co-IP of Drosophila and human proteins,

HEK293 cells grown at 50% confluency on 10-cm plates were

transfected with 6 mg of each plasmid. After 2 d, cells were lysed

for 15 min in 1 ml of lysis buffer ([0 mM Tris buffer pH 7.4,

150 mM NaCl, 1 mM EDTA, 0.5% NP40 supplemented with

1 mM DTT and protease inhibitor cocktail (Roche, cat.

no. 11836145001)]. Lysates were centrifuged at 13,2006 g for

20 min at 4uC, supernatants were collected, and 0.4 ml of the

supernatant was incubated with 1 mg of indicated immunoprecip-

itating antibody for 1 h at 4uC. Immunoprecipitates were collected

on Protein G sepharose beads by overnight rotation, washed four

times with lysis buffer, resuspended in 26Laemmli sample buffer,

Figure 7. APPL is a novel modulator of Wnt-PCP signaling
required for axon guidance. Schematic representation of the
proposed model. APPL is a novel regulator of Wnt-PCP pathway. In
the presence of Wnt signaling, Fz binds Dsh, which needs to be
phosphorylated by Abelson kinase to correctly relocalize to the
membrane. We propose that Appl is part of the membrane complex
formed by the core PCP proteins Fz1 and Vang. In turn, Appl recruits
Abelson kinase to the complex and positively modulates Dsh
phosphorylation. The subsequent activation of the signaling is required
for MB b-axon growth.
doi:10.1371/journal.pbio.1001562.g007
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and subjected to SDS-PAGE followed by Western blot analysis.

The antibodies used for immunoprecipitation include FLAG M2

(F1804 Sigma-Aldrich), anti-HA (ab9110; Abcam), anti-Myc

(M4439, Sigma-Aldrich), and anti-V5 (R960-25, Invitrogen).

Supporting Information

Figure S1 Appl is required during the development of

Mushroom Bodies for a- and b-lobe growth. (A) The table shows

the number of brains analyzed to characterize the Appl loss of

function phenotype.

(PDF)

Figure S2 APPL is required cell-autonomously for the b-lobe

outgrowth. (A)The table lists the number of brains analyzed in the

MARCM experiments. (B, C) The table lists the number of brains

analyzed in the rescue experiments. (D) Adult MB lobes labeled

with FascilinII II antibody (FasII). The image is a z-projection of

confocal image stacks (scale bar, 50 mm). Morphologically normal

ab neurons in Appldw*/Y;UAS-sAppl/+;P247Gal4 adult brains.

The reintroduction of soluble APPL in MBs during development

strongly reduces the loss of the a lobe.

(PDF)

Figure S3 Abelson kinase is the downstream effector of APPL in

MB development. (A) Structure of a/b neurons of a Appld;;Abl4

48APF brain. The image is a z-projection of confocal image stacks

(scale bar, 50 mm). The MBs are labeled with anti-FasII antibody.

b-lobe loss is detectable already at 48 APF, similarly to what is

observed in the Appl2/2 background.

(PDF)

Figure S4 Dsh phosphorylation is required for MB develop-

ment. (A) The table lists the number of brains analyzed in the dsh

rescue experiments.

(PDF)

Figure S5 Appl interacts with the PCP signaling during MB

development. (A) The table lists the number of brains analyzed in the

PCP genetic interaction experiments. (B) Structure of a/b neurons

labeled with anti-FasII antibody. The image is a z-projection of

confocal image stacks (scale bar, 50 mm). Morphologically normal a/

b neurons in UAS-FzDN/+;P247Gal4/+ adult brains. Expression of

a dominant negative form of fz in the MB is not sufficient to induce

defects. (C–E) Z-projections of confocal image stacks of GFP-labeled

MARCM clones. Immuno-fluorescence analysis of adult MB, using

anti-GFP (green) and anti-FasII (magenta) antibodies. (C) fzp21

mutant clones obtained by crossing elavC155,hsFLP,w*;UAS-

mCD8::GFP,UAS-lacZ/CyO;tubP-GAL80,FRT2A/TM6,Tb,Hu

or hsFlp, UAS-CD8-GFP;; FRT2A, tubGal80/TM3; OK107

with yw Flp122; sp/CyO;fz p21,ri,FRT2A/TM2. fz mutant cells

show normal axon projections, similar to their wild-type

counterparts. (D) fz2C1 mutant clones obtained by crossing

virgins elavC155,hsFLP,w*;UAS-mCD8::GFP.,UAS-lacZ./CyO;

tubP-GAL80,FRT2A/TM6,Tb,Hu or hsFlp, UAS-CD8-GFP;

FRT2A, tubGal80/TM3; OK107 with males fz2C1 ri, FRT2A/

TM3, Sb. Single-cell clones do not show any difference in their

projection pattern compared to wild-type cells. (E) fzH51, fz2C1

double mutant clones obtained by crossing elavC155,hsFLP,

w*;UAS-mCD8::GFP.,UAS-lacZ./CyO;tubP-GAL80,FRT2A/

TM6,Tb,Hu with yw,hsflip; ;fz H51fz2 C1ri FRT2A/TM2. Loss of

both fz and fz2 does not influence b-lobe growth, thus excluding

possible compensatory effects. (F) Appl expression in third instar

larvae eye disc. (G–I) Tangential adult eye sections in areas around

the equator. The colored bars indicate the orientation of the

ommatidia. (H) dsh1 mutant flies show PCP defects and reduction of

symmetric ommatidia. (I) Appl2/2 adult flies show ommatidia

orientation comparable to wild-type flies (G). (J) APPL and Vang

localization during development in brain of flies expressing a EYPF

tagged form of Vang under the control of Actin promoter. Immuno-

fluorescence analysis using anti-APP-Cterm (blue), anti-GFP

(green), and anti-FasII (red) antibodies. The images are single

confocal stacks (scale bar, 15 mm). APPL and Vang are expressed in

mutually exclusive compartments in the developing retina.

(PDF)

Figure S6 APP proteins are found in core PCP complexes. (A)

APP expression levels in wild-type MEFs, KO MEFs, or KO

MEFs stably transfected with APP. Two clones of rescue MEFs

were analyzed. Clone B shows detectable APP levels and was used

for the Wnt5 stimulation assay. (B) Co-immunoprecipitation (Co-

IP) of Appl-FLAG and Vang-Myc. The tagged proteins were co-

expressed in HEK293T cells and immunoprecipitated with anti-

Myc antibody. Appl-FLAG can be precipitated upon IP of Vang.

The Co-IP in this direction is weaker than after pull-down of Appl-

Flag. (C) Co-IP of Appl-FLAG and human Vangl2-HA. Appl-

FLAG can be precipitated upon IP of human Vangl2-HA. (D) Co-

IP of APP (C99)-FLAG and Vangl2-HA. The tagged proteins

were immunoprecipitated from whole cells with anti-HA antibody.

APP (C99)-FLAG can be precipitated upon IP of human Vangl2-

HA. (E) Control co-immunoprecipitation of overexpressed Appl-

FLAG and Vangl2-HA. The proteins were separately expressed in

different cells plated in two different dishes and pooled during the

Co-IP procedure. The IP was performed with anti-FLAG and

anti-HA antibody and followed by Western blot analysis. The

proteins do not co-immunoprecipitate when expressed in different

populations of cells. (F) Co-immunoprecipitation (Co-IP) of Appl-

FLAG and Fz-GFP. Appl-FLAG can be precipitated upon IP of

Fz.

(PDF)

Acknowledgments

We thank Gary Struhl for providing Flp122; sp/CyO;Fz p21,ri,FRT2A/TM2

stock, David Strutt for providing the Act-stbm-EYFP/TM3, Marek Mlodzik

for sharing with us the ;dsh.Dsh-GFP (J7)/TM6 and the dshV26,dsh.Dsh-

GFP; dsh.Dsh-GFP Y473F stocks, Ulrike Müller for providing APP/APLP2

KO fibroblasts, Patrick Callaerts for sharing the hsFlp,UAS-CD8-

GFP;;FRT2A,tubGal80/TM3;OK107 stock, and the lab of Stein Aerts for

the support on the statistical analysis of the data. We thank Ariane

Ramaekers and Luca Tiberi for critical discussion.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: AS J-MD VB

BAH. Performed the experiments: AS ZO PJ KT ER AC JY JMD.

Analyzed the data: AS ZKA J-MD VB BAH. Contributed reagents/

materials/analysis tools: BDS. Wrote the paper: AS BAH.

References

1. Bayly R, Axelrod JD Pointing in the right direction: new developments in the

field of planar cell polarity. Nat Rev Genet 12: 385–391.

2. Seifert JR, Mlodzik M (2007) Frizzled/PCP signalling: a conserved

mechanism regulating cell polarity and directed motility. Nat Rev Genet 8:

126–138.

3. Lyuksyutova AI, Lu CC, Milanesio N, King LA, Guo N, et al. (2003) Anterior-

posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302:

1984–1988.

4. Ng J (2012) Wnt/PCP proteins regulate stereotyped axon branch extension in

Drosophila. Development 139: 165–177.

APPL Regulates Wnt-Dependent Axon Growth

PLOS Biology | www.plosbiology.org 12 May 2013 | Volume 11 | Issue 5 | e1001562



5. Tissir F, Bar I, Jossin Y, De Backer O, Goffinet AM (2005) Protocadherin Celsr3

is crucial in axonal tract development. Nat Neurosci 8: 451–457.

6. Jacobsen KT, Iverfeldt K (2009) Amyloid precursor protein and its homologues:

a family of proteolysis-dependent receptors. Cell Mol Life Sci 66: 2299–2318.

7. Luo LQ, Martin-Morris LE, White K (1990) Identification, secretion, and neural

expression of APPL, a Drosophila protein similar to human amyloid protein

precursor. J Neurosci 10: 3849–3861.

8. Luo L, Tully T, White K (1992) Human amyloid precursor protein ameliorates

behavioral deficit of flies deleted for Appl gene. Neuron 9: 595–605.

9. Bayer TA, Wirths O (2008) Review on the APP/PS1KI mouse model:

intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working

memory impairment. Genes Brain Behav 7 Suppl 1: 6–11.

10. Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, et al. (2004) Dissecting

the pathological effects of human Abeta40 and Abeta42 in Drosophila: a

potential model for Alzheimer’s disease. Proc Natl Acad Sci U S A 101: 6623–

6628.

11. Ling D, Song HJ, Garza D, Neufeld TP, Salvaterra PM (2009) Abeta42-induced

neurodegeneration via an age-dependent autophagic-lysosomal injury in

Drosophila. PLoS One 4: e4201.

12. Pereira C, Ferreiro E, Cardoso SM, de Oliveira CR (2004) Cell degeneration

induced by amyloid-beta peptides: implications for Alzheimer’s disease. J Mol

Neurosci 23: 97–104.

13. Muller U, Cristina N, Li ZW, Wolfer DP, Lipp HP, et al. (1994) Behavioral and

anatomical deficits in mice homozygous for a modified beta-amyloid precursor

protein gene. Cell 79: 755–765.

14. Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, et al. (2004) Cortical

dysplasia resembling human type 2 lissencephaly in mice lacking all three APP

family members. EMBO J 23: 4106–4115.

15. Young-Pearse TL, Suth S, Luth ES, Sawa A, Selkoe DJ Biochemical and

functional interaction of disrupted-in-schizophrenia 1 and amyloid precursor

protein regulates neuronal migration during mammalian cortical development.

J Neurosci 30: 10431–10440.

16. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds

DR6 to trigger axon pruning and neuron death via distinct caspases. Nature

457: 981–989.

17. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (2001)

Kinesin-mediated axonal transport of a membrane compartment containing

beta-secretase and presenilin-1 requires APP. Nature 414: 643–648.

18. Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, et al. (2005) Axonal

transport, amyloid precursor protein, kinesin-1, and the processing apparatus:

revisited. J Neurosci 25: 2386–2395.

19. Russo C, Venezia V, Repetto E, Nizzari M, Violani E, et al. (2005) The amyloid

precursor protein and its network of interacting proteins: physiological and

pathological implications. Brain Res Brain Res Rev 48: 257–264.

20. Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, et al. (2007) The

secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to

rescue the anatomical, behavioral, and electrophysiological abnormalities of

APP-deficient mice. J Neurosci 27: 7817–7826.

21. Neve RL, McPhie DL, Chen Y (2000) Alzheimer’s disease: a dysfunction of the

amyloid precursor protein(1). Brain Res 886: 54–66.

22. Selkoe DJ, Yamazaki T, Citron M, Podlisny MB, Koo EH, et al. (1996) The role

of APP processing and trafficking pathways in the formation of amyloid beta-

protein. Ann N Y Acad Sci 777: 57–64.

23. Goguel V, Belair AL, Ayaz D, Lampin-Saint-Amaux A, Scaplehorn N, et al.

(2011) Drosophila amyloid precursor protein-like is required for long-term
memory. J Neurosci 31: 1032–1037.

24. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of

gene function in neuronal morphogenesis. Neuron 22: 451–461.
25. Leyssen M, Ayaz D, Hebert SS, Reeve S, De Strooper B, et al. (2005) Amyloid

precursor protein promotes post-developmental neurite arborization in the
Drosophila brain. EMBO J 24: 2944–2955.

26. Singh J, Yanfeng WA, Grumolato L, Aaronson SA, Mlodzik M (2010) Abelson

family kinases regulate Frizzled planar cell polarity signaling via Dsh
phosphorylation. Genes Dev 24: 2157–2168.

27. Srahna M, Leyssen M, Choi CM, Fradkin LG, Noordermeer JN, et al. (2006) A
signaling network for patterning of neuronal connectivity in the Drosophila

brain. PLoS Biol 4: e348.
28. Shafer B, Onishi K, Lo C, Colakoglu G, Zou Y (2011) Vangl2 promotes Wnt/

planar cell polarity-like signaling by antagonizing Dvl1-mediated feedback

inhibition in growth cone guidance. Dev Cell 20: 177–191.
29. Zhou L, Bar I, Achouri Y, Campbell K, De Backer O, et al. (2008) Early

forebrain wiring: genetic dissection using conditional Celsr3 mutant mice.
Science 320: 946–949.

30. Shimizu K, Sato M, Tabata T (2011) The Wnt5/planar cell polarity pathway

regulates axonal development of the Drosophila mushroom body neuron.
J Neurosci 31: 4944–4954.

31. Grillenzoni N, Flandre A, Lasbleiz C, Dura JM (2007) Respective roles of the
DRL receptor and its ligand WNT5 in Drosophila mushroom body

development. Development 134: 3089–3097.
32. Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N (1998) Differential

recruitment of Dishevelled provides signaling specificity in the planar cell

polarity and Wingless signaling pathways. Genes Dev 12: 2610–2622.
33. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid

hypothesis: a genetic perspective. Cell 120: 545–555.
34. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease:

progress and problems on the road to therapeutics. Science 297: 353–356.

35. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis
for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat

Rev Drug Discov 10: 698–712.
36. Li ZW, Stark G, Gotz J, Rulicke T, Gschwind M, et al. (1996) Generation of

mice with a 200-kb amyloid precursor protein gene deletion by Cre
recombinase-mediated site-specific recombination in embryonic stem cells. Proc

Natl Acad Sci U S A 93: 6158–6162.

37. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins R, et al. (1995)
beta-Amyloid precursor protein-deficient mice show reactive gliosis and

decreased locomotor activity. Cell 81: 525–531.
38. Heber S, Herms J, Gajic V, Hainfellner J, Aguzzi A, et al. (2000) Mice with

combined gene knock-outs reveal essential and partially redundant functions of

amyloid precursor protein family members. J Neurosci 20: 7951–7963.
39. Wang Y, Thekdi N, Smallwood PM, Macke JP, Nathans J (2002) Frizzled-3 is

required for the development of major fiber tracts in the rostral CNS. J Neurosci
22: 8563–8573.

40. Taru H, Iijima K, Hase M, Kirino Y, Yagi Y, et al. (2002) Interaction of
Alzheimer’s beta -amyloid precursor family proteins with scaffold proteins of the

JNK signaling cascade. J Biol Chem 277: 20070–20078.

41. Kihiko ME, Tucker HM, Rydel RE, Estus S (1999) c-Jun contributes to amyloid
beta-induced neuronal apoptosis but is not necessary for amyloid beta-induced c-

jun induction. J Neurochem 73: 2609–2612.

APPL Regulates Wnt-Dependent Axon Growth

PLOS Biology | www.plosbiology.org 13 May 2013 | Volume 11 | Issue 5 | e1001562


