

Research Article

Individual and combined effects of *GSTM1* and *GSTT1* polymorphisms on colorectal cancer risk: an updated meta-analysis

Liang Song^{1,*}, Chen Yang^{2,*} and (1) Xiao-Feng He³

¹Endoscopy Room, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi, 046000, People's Republic of China; ²Teaching Reform Class of 2016, First Clinical College, Changzhi Medical College, Shanxi, Changzhi, 046000, People's Republic of China; ³Department of Science and Education, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi, 046000, People's Republic of China

Correspondence: Xiao-Feng He (393120823@qq.com)

Background. The presence or absence of glutathione S-transferase M1 gene (*GSTM1*) and glutathione S-transferase T1 gene (*GSTT1*) polymorphisms, and their combined effects have been suggested as a risk factor for colorectal cancer (CRC). However, the results are inconsistent.

Objectives. An updated meta-analysis was performed to solve the controversy.

Methods. Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines were used.

Results. Overall, the *GSTM1* null genotype was associated with an increased CRC risk in Caucasians (odds ratio (OR) = 1.14, 95% confidence interval (CI): 1.05–1.23), Asians (OR = 1.19, 95% CI: 1.08–1.32), high-quality studies (OR = 1.12, 95% CI: 1.06–1.18). Moreover, the *GSTM1* null genotype was also associated with an increased colon cancer risk (OR = 1.32, 95% CI: 1.16–1.51). The *GSTT1* null genotype was also associated with an increased CRC risk in Asians (OR = 1.08, 95% CI: 1.02–1.15) and Caucasians (OR = 1.24, 95% CI: 1.09–1.41). Moreover, The *GSTT1* null genotype was associated with an increased rectal cancer risk (OR = 1.13, 95% CI: 1.01–1.27, $I^2 = 8.3\%$) in subgroup analysis by tumor location. Last, the *GSTM1* null/*GSTT1* null genotype was associated with an increased CRC risk in Asians.

Conclusion. This meta-analysis indicates that the *GSTM1* and *GSTT1* null genotypes are associated with increased CRC risk in Asians and Caucasians, and the *GSTM1* null/*GSTT1* null genotype was associated with increased CRC risk in Asians.

Introduction

Colorectal cancer (CRC) is a common form of cancer, with more than 1.5 million new patients diagnosed every year worldwide [1]. It is a complex chronic disease whose development is affected by genetic and environmental factors [2,3]. CRC incidence rates differ between countries indicating that environmental factors may be associated with an increased cancer risk, although. A twin study indicated that the role of genetic factors is around 35% in CRC [4]. A previous genome-wide association study also indicated that single-nucleotide polymorphisms are important risk factors [5].

Glutathione S-transferases (*GSTs*) are a large family of enzymes that catalyze the conjugation of electrophiles to glutathione and the conversion of toxic compounds to hydrophilic metabolites [6,7]. *GSTM1* maps to chromosome 1p13.3 contains 10 exons, while *GSTT1* maps to chromosome 22q11.23 and contains six exons. *GSTM1* present/null and *GSTT1* present/null polymorphisms have been reported in human [8–11]. The null genotypes are the most common polymorphisms in *GSTM1* and *GSTT1*, and have been proven to be associated with the loss of enzyme activity [12,13].

*These authors contributed equally to this work and should be considered as co-first authors

Received: 04 June 2020 Revised: 28 July 2020 Accepted: 03 August 2020

Accepted Manuscript online: 10 August 2020 Version of Record published: 25 August 2020

1

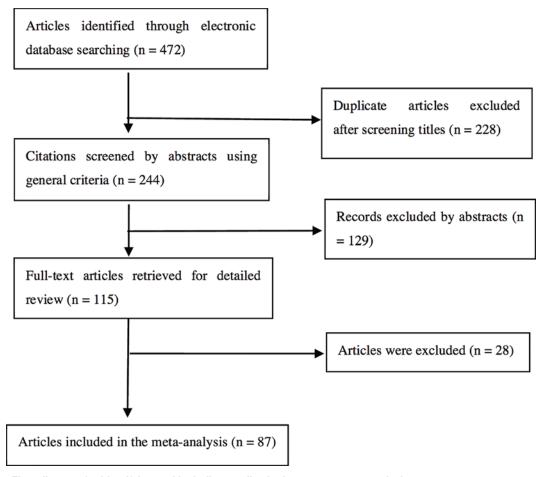


Figure 1. Flow diagram for identifying and including studies in the current meta-analysis

To date, many studies have evaluated the association between *GSTM1* present/null and *GSTT1* present/null polymorphisms, and their combined effects with CRC risk [14–107,108–114]. Additionally, 13 meta-analyses [115–125,126,127] have been conducted. However, a lot of studies have been published on these associations with CRC risk, therefore, an updated meta-analysis was performed to explore the association between *GSTM1* present/null, *GSTT1* present/null, and their combined effects on CRC risk in all populations.

Materials and methods Search strategy

Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines were used [128]. PubMed, Chinese Biomedical Medical databases (CBM), China National Knowledge Infrastructure (CNKI), and WanFang databases (up to March 15, 2020) were searched to identify eligible studies that analyzed the *GSTM1* present/null, *GSTT1* present/null, and their combined effects with CRC risk. The following keywords were used: (*GSTT1* OR glutathione S-transferase T1 OR *GSTM1* OR glutathione S-transferase M1) AND (polymorphism OR variant OR mutation) AND (colorectal OR rectal OR rectum OR colon). The search strategy was designed to be sensitive and broad. We first carefully reviewed the title and abstract of the search results, and then downloaded full articles to identify possible articles. These were evaluated in detail to identify relevant articles. The reference lists of identified articles and reviews was also examined as appropriate. The corresponding author may be contacted by e-mail if only the abstract was available online or the data was incomplete.

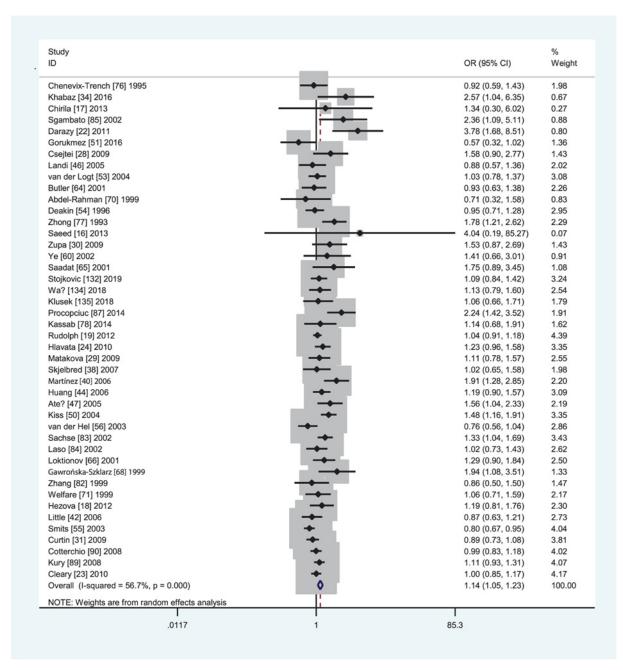


Figure 2. Forest plot of the association between GSTM1 present/null polymorphism and CRC risk in Caucasians

Inclusion and exclusion criteria

Inclusion criteria were as follows: (1) articles on the *GSTM1* present/null, *GSTT1* present/null, and their combined effects with CRC risk; (2) sufficient genotype data to calculate ORs and 95% CIs; and (3) case–control studies. Exclusion criteria were as follows: (1) no raw data; (2) no control; (3) review articles, case reports, editorials, or animal research; (4) duplicate and insufficient data.

Data extraction and quality score assessment

Two investigators independently extracted data using Excel. Any disagreement was solved by iteration, discussion, and consensus. The following data were extracted from eligible studies: (1) first author's name, (2) publication year, (3) country, (4) source of controls (hospital-based and population-based case-control studies), (5) sample size, (6) genotyping method, and (6) genotype distribution of the *GSTM1*, *GSTT1*, and their combined effects in cases and

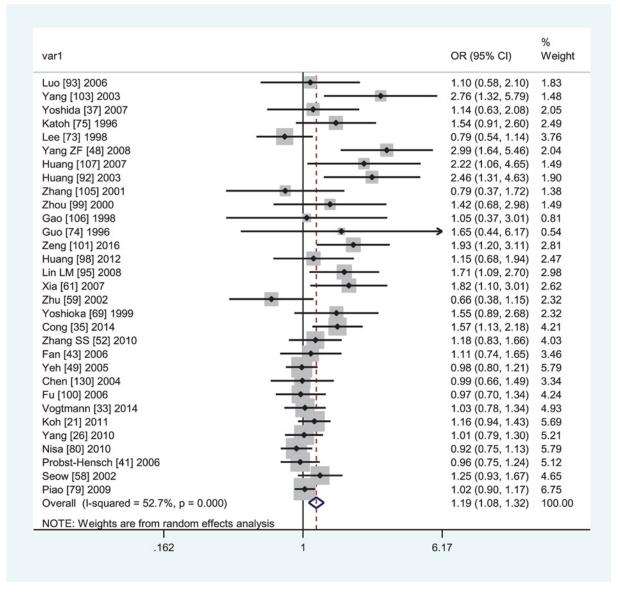


Figure 3. Forest plot of the association between GSTM1 present/null polymorphism and CRC risk in Asians

controls. Different ethnicities included "Caucasians", "Asians", "Indians", and "Africans". If ethnicity was not stated or if the sample size could not be separated, the term "Mixed populations" was used. Two investigators independently assessed the quality of each individual study. The quality assessment criteria (Table 1) were obtained from two previous meta-analyses [129,130]. The highest value is obtained from the quality assessment was nine; studies of quality scoring ≥ 6 were considered as high quality.

Statistical analysis

We used crude odds ratios (ORs) and 95% confidence intervals (CIs) to estimate the association on the above issues. The genetic model of the individual GSTM1 and GSTT1 polymorphisms was null vs. present. Their combined effects used the following five genetic models: - vs. +, - vs. +, - vs. +, - vs. +, - vs. (+) + (- +), and - vs. (+) + (- +) + (+ +). - referred to the GSTM1 null/GSTT1 null genotype, + referred to the GSTM1 present/GSTT1 null genotype, - referred to the GSTM1 present genotype, and + referred to the GSTM1 present/GSTT1 present genotype. Heterogeneity among studies was tested using the I^2 value [131]. A fixed-effects model (Mantel-Haenszel method) was used when $I^2 \le 50\%$ [132]; otherwise, a random-effects model (DerSimonian and Laird method) was considered [133] if $I^2 > 50\%$. However, these studies cannot be pooled into

Table 1 Scale for quality assessment

Criteria	Score
Representativeness of cases	
Selected from cancer registry or multiple cancer center sites	2
Selected from oncology department or cancer institute	1
Selected without clearly defined sampling frame or with extensive inclusion/exclusion criteria	0
Source of controls	
Population or community based	2
Both population-based and hospital-based/healthy volunteers/blood donors	1.5
Hospital-based controls without colorectal cancer	1
Cancer-free controls without total description	0.5
Not described	0
Ascertainment of colorectal cancer	
Histological or pathological confirmation	2
Diagnosis of colorectal cancer by patient medical record	1
Not described	0
Sample size	
>1000	2
200–1000	1
<200	0
Quality control of genotyping methods	
Clearly described a different genotyping assay to confirm the data	1
Not described	0

together when I^2 value > 75%. Subgroup analyses were performed by ethnicity, source of controls, tumor location, smoking history, gender, quality score, and tumor site. Then, a sensitivity analysis was carried out to assess the stability, a single study was excluded one at a time. Publication bias was tested by using Begg's funnel and Egger's test (significant publication bias was considered if P < 0.05). A nonparametric "trim and fill" method was applied to accredit missing studies if publication bias was detected. Finally, a meta-regression analysis was applied to assess the heterogeneity source. All results were calculated using Stata version 9.0 (Stata Corporation, College Station, TX, U.S.A.).

Results Study characteristics

A flowchart of study selection is shown in Figure 1. Overall, 472 articles were identified by electronic database searching. Of these, 115 full-text articles were selected after carefully screening titles and abstracts. Fourteen articles were excluded because they were not case-control studies, while the data of fourteen articles [18,25,37,43,61,65,79,84,86,92,94,95,100,110] overlapped with those of another nine articles [26,41,47,48,93,105,107,108,114]. Hence, a total of 87 articles were included in the present meta-analysis.

The main study characteristics are listed in Tables 2 and 3. Eighty-five publications involving eighty-six case-co studies 109,111-114] were included on the GSTM1 present/null polymorphism (24,931 nd 36,537 controls; 44 studies on Caucasians, 31 on Asians, one on Africans, one on I on mixed populations) with CRC risk. Sixty-three articles of sixy-fou ndians, and nine case-control studies [15-17,19,21-24,26,27,30,31,33,34,36,38-42,45,47,48-52,54-58,62-64,r 67-70,73,74,76-78,80-82,87-90,93,96-99,102,105,109,111-114] were eligible concerning the GSTT1 present/null polymorphism (19,725 cases and 28,725 controls; 34 studies on Caucasians, 23 on Asians, one on Indians, one on Africans, and five on mixed populations) with CRC risk. Thirty-two publications of thirty-three case-control studies [15,19,22-24,27,31,33,38,39,41,42,45,49,52,55-57,63,67,68,70,76-78,90,96,97,99,105,109,112] were included regarding their combined effects (8270 cases and 14,381 controls; 11 studies on Caucasians, 17 on Asians, one on Indians, one on Africans, and three on mixed populations) with CRC risk. Fifty-five studies had a quality score ≥ 6 and the remaining 31 had a quality score < 6 regarding the GSTM1 present/null polymorphism; 48 high-quality studies were examined and the remaining 16 were low-quality concerning the GSTT1 present/null polymorphism; a total of 25 high-quality and eight low-quality studies were included on their combined effects with CRC risk.

PORTLAN PRESS

Table 2 The data between the GSTM1 and GSTT1 polymorphisms and colorectal cancer risk

First author/Year	Country	Ethnicity	sc	Sample size (case/ control)	Genotyping methods	GSTM10	genotyp	e distributio	on	GSTT1 o	genotyp	e distributio	on	Quality scores
	,					Case		Control		Case	, , j	Control		
						Present	Null	Present	Null	Present	Null	Present	Null	_
Stojkovic [111] 2019	Serbia	Caucasian	НВ	509/399	Multiplex PCR	249	260	204	195	145	364	91	308	6
Rodrigues-Fleming [112] 2018	Brazil	Mixed	HB	232/738	Multiplex PCR and PCR-RFLP	100	132	385	353	192	40	573	165	6.5
Waś [113] 2018	Poland	Caucasian	HB	279/233	PCR	151	128	133	100	220	59	189	44	6
Klusek [114] 2018	Poland	Caucasian	HB	197/104	TaqMan	105	92	57	47	166	31	83	21	6
Gorukmez [49] 2016	Turkey	Caucasian	HB	92/116	Multiplex PCR	65	27	67	49	58	34	91	25	4
Khabaz [32] 2016	Saudi Arabia	Caucasian	HB	83/35	PCR	14	69	12	23	NA	NA	NA	NA	3
Zeng [99] 2016	China	Asian	HB	108/215	PCR	38	70	110	105	48	60	117	98	6
Djansugurova [34] 2015	Kazakhstan	Mixed	HB	249/245	Site-specific PCR	124	125	158	87	171	78	164	81	4.5
Cong [33] 2014	China	Asian	PB	264/317	Multiplex PCR	122	142	182	135	125	139	190	127	6
Procopciuc [85] 2014	Romania	Caucasian	HB	150/162	PCR-RFLP	60	90	97	65	NA	NA	NA	NA	6
Vogtmann [31] 2014	China	Asian	PB	340/673	Real-time PCR	134	201	259	379	164	173	350	318	8
Kassab [76] 2014	Tunisia	Caucasian	HB	147/128	Multiplex PCR	43	104	41	87	90	57	65	63	6
Saeed [14] 2013	Saudi Arabia	Caucasian	HB	100/79	PCR	98	2	79	0	NA	NA	NA	NA	5
Chirila [15] 2013	Romania	Caucasian	HB	19/19	Multiple PCR	14	5	15	4	15	4	16	3	3
Hezova [16] 2012	Czech	Caucasian	HB	197/218	Duplex PCR	97	100	117	101	157	40	179	39	6.5
Rudolph [17] 2012	German	Caucasian	PB	1796/1806	Multiplex PCR	822	932	844	923	1433	313	1459	308	6
Huang [96] 2012	China	Asian	HB	130/100	PCR	71	59	58	42	63	67	52	48	6
Darazy [20] 2011	Lebanese	Caucasian	HB	67/70	PCR	32	25	58	12	NA	NA	NA	NA	3.5
Wang [23] 2011	India	Indian	HB	302/291	Multiplex PCR	202	100	215	76	245	57	247	44	6
Koh [19] 2011	China	Asian	PB	480/1167	TaqMan	246	234	641	526	294	186	691	476	8
Cleary [21] 2010	Canada	Caucasian	PB	1174/1293	Multiplex PCR	550	616	608	684	953	213	1,067	223	9
Yang [24] 2010	China	Asian	PB	322/1251	Real-time PCR	133	189	521	730	158	164	639	612	8
Nisa [78] 2010	Japan	Asian	PB	685/778	Multiplex PCR	328	357	356	422	347	338	435	343	8
Zhang SS [50] 2010	China	Asian	PB	197/399	Multiplex PCR	83	114	184	215	150	47	310	89	6
Hlavata [22] 2010	Czech	Caucasian	HB	495/495	PCR-RFLP	228	267	254	241	392	103	395	100	6
Csejtei [26] 2009	Hungary	Caucasian	HB	102/97	PCR	42	60	51	46	68	34	77	20	4
Piao [77] 2009	Korea	Asian	PB	1829/1699	Real-time PCR	825	1,004	776	923	879	950	841	858	9
Matakova [27] 2009	Slovak	Caucasian	PB	183/402	PCR	83	100	202	220	142	41	329	93	6
Zupa [28] 2009	Italy	Caucasian	HB	92/121	PCR	31	61	53	68	NA	NA	NA	NA	5
Curtin [29] 2009	U.S.A.	Caucasian	PB	750/1201	PCR	310	323	465	545	NA	NA	NA	NA	8

Bioscience Reports (2020) 40 BSR20201927 https://doi.org/10.1042/BSR20201927

Table 2 The data between the GSTM1 and GSTT1 polymorphisms and colorectal cancer risk (Continued)

First author/Year	Country	Ethnicity	sc	Sample size (case/ control)	Genotyping methods	GSTM1genotype distribution GSTT1 genotype distribution								
i ii st autiloi/ ieai	Country	Lumberty	30			Case		Control		Case		Control		scores
						Present	Null	Present	Null	Present	Null	Present	Null	_
Epplein [30] 2009	U.S.A.	Mixed	PB	173/313	TaqMan	82	91	166	147	127	46	201	112	7
Lin LM [93] 2008	China	Asian	НВ	120/204	Multiplex PCR	51	69	114	90	56	64	119	85	6
Yang ZF [46] 2008	China	Asian	НВ	84/112	PCR	24	60	61	51	NA	NA	NA	NA	5
Cotterchio [88] 2008	Canada	Caucasian	PB	836/1249	Multiplex PCR	395	441	588	661	679	157	1,029	219	8
Kury [87] 2008	France	Caucasian	PB	1023/1121	TaqMan	479	544	553	568	840	183	916	205	8
Skjelbred [36] 2007	Norway	Caucasian	PB	108/299	Multiplex PCR	53	55	148	151	93	15	262	37	6
Yoshida [35] 2007	Japan	Asian	PB	66/121	PCR	30	36	59	62	NA	NA	NA	NA	3
Xia [59] 2007	China	Asian	НВ	112/140	PCR	45	67	77	63	NA	NA	NA	NA	6
Huang [105] 2007	China	Asian	HB	57/68	PCR	17	40	33	35	33	24	44	24	5
Martínez [38] 2006	Spain	Caucasian	PB	144/329	Multiplex PCR	55	87	180	149	68	74	253	76	6
Probst-Hensch [39] 2006	China	Asian	PB	300/1169	TaqMan	168	132	643	525	200	100	693	475	9
Little [40] 2006	U.K.	Caucasian	PB	241/383	PCR	110	131	162	221	192	49	318	65	7
Fan [41] 2006	China	Asian	PB	140/343	PCR	58	80	151	188	113	25	270	69	6
Huang [42] 2006	U.S.A.	Caucasian	PB	315/547	Multiplex PCR	135	180	258	289	241	74	385	162	6
Huang [42] 2006	U.S.A.	African	PB	239/327	Multiplex PCR	162	77	245	82	187	56	218	109	6
Fu [98] 2006	China	Asian	PB	315/439	PCR	86	229	117	321	141	174	187	251	7
Luo [91] 2006	China	Asian	HB	56/143	PCR	36	20	95	48	NA	NA	NA	NA	3
Rajagopal [89] 2005	U.K.	Caucasian	HB	361/881	PCR	NA	NA	NA	NA	265	96	723	158	7
Landi [44] 2005	Spain	Caucasian	HB	176/162	PCR	77	99	66	96	NA	NA	NA	NA	4
Ateş [45] 2005	Turkey	Caucasian	HB	181/204	Real-Time PCR	83	98	116	88	118	63	151	53	6
Yeh [47] 2005	China	Asian	HB	727/736	Multiplex PCR	325	402	326	410	331	396	376	360	7
van der Logt [51] 2004	U.S.A.	Caucasian	PB	371/415	PCR	186	184	212	203	299	72	346	69	4
Kiss [48] 2004	Hungary	Caucasian	HB	500/500	PCR	209	291	258	242	369	131	392	108	6
Chen [109] 2004	China	Asian	HB	125/339	PCR	56	69	151	188	102	23	270	69	7
Smits [53] 2003	Multiple	Caucasian	PB	724/1743	PCR	381	343	821	922	NA	NA	NA	NA	7.5
van der Hel [54] 2003	U.S.A.	Caucasian	PB	212/765	PCR	124	88	396	369	154	58	541	224	6
Slattery [107] 2003	U.S.A.	Mixed	PB	801/1013	PCR	397	404	467	546	NA	NA	NA	NA	6
Nascimento [55] 2003	Brazil	Mixed	HB	102/300	Multiplex PCR	52	50	166	134	85	17	248	52	6

Continued over

PORTLAN
PRESS

Table 2 The data between the GSTM1 and GSTT1 polymorphisms and colorectal cancer risk (Continued)

First author/Year	Country	Ethnicity	sc	Sample size (case/ control)	Genotyping methods	GSTM1	genotype	e distributio	on	GSTT1 o	genotyp	e distributio	on	Quality scores
				,		Case		Control		Case		Control		
						Present	Null	Present	Null	Present	Null	Present	Null	
Huang [90] 2003	China	Asian	НВ	82/82	Multiplex PCR	36	46	54	28	41	41	42	40	5
Yang [101] 2003	China	Asian	HB	58/65	PCR-RFLP	18	40	36	29	NA	NA	NA	NA	3
Zhang [102] 2003	China	Asian	HB	81/112	Multiplex PCR	NA	NA	NA	NA	27	54	54	58	5
Zhu [57] 2002	China	Asian	HB	104/101	Multiplex PCR	56	48	44	57	55	49	40	61	6
Ye [58] 2002	U.K.	Caucasian	HB	41/82	Specific PCR	21	20	49	33	39	2	73	9	5
Tiemersma [60] 2002	U.S.A.	Mixed	PB	102/537	PCR	44	58	252	285	NA	NA	NA	NA	6
Seow [56] 2002	China	Asian	PB	213/1194	TaqMan	105	108	653	537	133	80	710	480	9
Sachse [81] 2002	U.K.	Caucasian	PB	490/593	PCR	206	284	291	302	306	184	378	215	6
Laso [82] 2002	Spain	Caucasian	HB	247/296	Multiplex PCR	114	133	138	158	116	131	263	33	6
Sgambato [83] 2002	Italy	Caucasian	HB	44/100	Duplex PCR	12	32	47	53	NA	NA	NA	NA	3
Slattery [108] 2002	U.S.A.	Mixed	PB	1577/1904	PCR	761	816	892	1012	NA	NA	NA	NA	9
Butler [62] 2001	Australia	Caucasian	PB	219/200	PCR	97	106	92	108	123	67	160	40	4
Saadat [63] 2001	Iran	Caucasian	HB	46/131	PCR	21	25	78	53	28	18	90	41	5
_oktionov [64] 2001	U.K.	Caucasian	HB	206/355	PCR	73	133	147	208	166	40	301	54	6
Zhang [103] 2001	China	Asian	HB	52/52	Multiplex PCR	30	22	27	25	NA	NA	NA	NA	5
Zhou [97] 2000	China	Asian	HB	55/62	PCR	21	34	29	33	24	31	31	31	5
Gawrońska-Szklarz [66] 1999	Poland	Caucasian	НВ	70/145	PCR	24	46	73	72	NA	NA	NA	NA	6
Yoshioka [67] 1999	Japan	Asian	HB	106/100	PCR	50	56	58	42	55	51	59	41	6
Abdel-Rahman [68] 1999	Egypt	Caucasian	HB	66/55	PCR	26	37	15	30	37	22	30	21	4
Zhang [80] 1999	Sweden	Caucasian	HB	94/109	Multiplex PCR	50	44	54	55	44	50	87	22	6
Welfare [69] 1999	U.K.	Caucasian	PB	196/178	PCR	94	102	88	90	157	39	148	30	6
Gao [104] 1998	China	Asian	HB	19/70	PCR	12	7	45	25	NA	NA	NA	NA	5
Lee [71] 1998	Singapore	Asian	HB	300/183	NA	172	128	94	89	NA	NA	NA	NA	4
Gertig [70] 1998	U.S.A.	Mixed	PB	212/221	PCR	97	114	104	117	173	36	169	51	7
Guo [72] 1996	China	Asian	HB	19/23	PCR	12	7	17	6	NA	NA	NA	NA	5
Katoh [73] 1996	Japan	Asian	HB	103/126	Multiplex PCR	47	56	71	55	53	50	70	56	4
Deakin [52] 1996	U.K.	Caucasian	HB	252/577	PCR	117	135	261	316	189	63	415	94	4
Chenevix-Trench [74] 1995	Australia	Caucasian	НВ	132/200	NA	68	64	99	101	79	15	125	23	2
Zhong [75] 1993	U.K.	Caucasian	PB	196/225	PCR	86	110	131	94	NA	NA	NA	NA	4
Strange [106] 1991	U.K.	Mixed	HB	19/502	HSE	5	14	249	253	NA	NA	NA	NA	5

Abbreviations: HB, hospital-based study; HSE, horizontal starch gel electrophoresis; PB, population-based study; SC, source of control.

Table 3 The data between combined effects of GSTM1 and GSTT1 polymorphisms and colorectal cancer risk

First author/Year Country		Ethnicity	sc	Sample size	+ -		-+				++		+ – or	- +	+ +, + -	-, or – +	Quality
				Case / control	Cases	Con- trols	Cases	Con- trols	Cases	Con- trols	Cases	Con- trols	Cases	Con-	Cases	Con-	
Rodrigues-Fleming	Brazil	Mixed	НВ	232/738	19	82	97	270	14	83	68	303	116	352	184	655	6.5
Gorukmez [49] 2016	Turkey	Caucasian	НВ	92/116	31	11	24	35	3	14	34	56	55	46	89	102	4
Zeng [99] 2016	China	Asian	НВ	108/215	25	64	35	71	35	34	13	46	60	135	73	181	6
Kassab [76] 2014	Tunisia	Caucasian	НВ	147/128	NA	NA	NA	NA	45	26	NA	NA	NA	NA	102	102	6
Cong [33] 2014	China	Asian	PB	264/317	22	54	23	44	119	83	100	136	45	98	145	234	6
Vogtmann [31] 2014	China	Asian	PB	332/633	NA	NA	NA	NA	106	169	67	128	159	336	226	464	8
Chirila [15] 2013	Romania	Caucasian	НВ	19/19	NA	NA	NA	NA	2	3	3	15	14	1	17	16	3
Huang [96] 2012	China	Asian	НВ	130/100	NA	NA	NA	NA	15	12	46	42	NA	NA	115	88	6
Wang [23] 2011	India	Indian	НВ	302/291	42	37	85	69	15	7	160	178	127	106	287	284	6
Koh [19] 2011	China	Asian	PB	480/1167	NA	NA	NA	NA	163	421	108	263	209	483	317	746	8
Yang [24] 2010	China	Asian	PB	322/1247	NA	NA	NA	NA	96	326	65	234	161	687	226	921	8
Nisa [78] 2010	Japan	Asian	PB	685/778	NA	NA	NA	NA	183	189	NA	NA	NA	NA	502	589	8
Hlavata [22] 2010	Czech	Caucasian	НВ	495/495	NA	NA	NA	NA	61	46	186	200	248	249	434	449	6
Piao [77] 2009	Korea	Asian	PB	1829/1699	428	391	477	456	533	467	391	385	905	847	1296	1232	9
Matakova [27] 2009	Slovak	Caucasian	PB	183/422	20	35	83	162	19	58	61	167	103	197	164	364	6
Huang [105] 2007	China	Asian	HB	57/68	3	13	19	24	19	24	14	20	22	37	36	57	5
Martínez [38] 2006	Spain	Caucasian	PB	142/329	NA	NA	NA	NA	40	24	21	128	81	177	102	305	6
Probst-Hensch [39] 2006	China	Asian	PB	300/1168	NA	NA	NA	NA	45	222	NA	NA	NA	NA	255	946	9
Fan [41] 2006	China	Asian	PB	138/339	5	33	60	152	20	36	53	118	65	185	118	303	6
Huang [42] 2006	U.S.A.	Caucasian	PB	315/547	36	79	142	206	38	83	99	179	178	285	277	464	6
Huang [42] 2006	U.S.A.	African	PB	239/327	37	82	58	55	19	27	125	163	95	137	220	300	6
Ateş [45] 2005	Turkey	Caucasian	HB	180/204	36	34	71	69	27	19	46	82	107	103	153	185	6
Chen [109] 2004	China	Asian	HB	125/339	5	32	51	152	18	35	51	119	56	184	107	303	7
Nascimento [55] 2003	Brazil	Mixed	НВ	102/300	NA	NA	NA	NA	9	24	44	138	49	138	93	276	6
Huang [90] 2003	China	Asian	НВ	82/82	15	26	20	14	26	14	21	28	35	40	56	68	5
Zhu [57] 2002	China	Asian	HB	104/101	35	37	31	36	28	11	10	17	66	73	76	90	6
Seow [56] 2002	China	Asian	PB	213/1190	NA	NA	NA	NA	39	224	NA	NA	NA	NA	174	966	9
Saadat [63] 2001	Iran	Caucasian	HB	46/131	9	27	16	39	9	14	12	51	25	66	37	117	5
Zhou [97] 2000	China	Asian	HB	55/62	14	14	17	16	17	17	7	15	31	30	38	45	5
Yoshioka [67] 1999	Japan	Asian	HB	106/100	20	22	25	23	31	19	30	36	45	45	75	81	6
Abdel-Rahman [68]	Egypt	Caucasian	НВ	56/49	10	4	18	17	12	17	16	11	28	21	44	32	4
Gertig [70] 1998	U.S.A.	Mixed	PB	208/220	NA	NA	NA	NA	24	23	83	75	101	122	184	197	7
Deakin [52] 1996	U.K.	Caucasian	НВ	218/448	38	37	89	207	26	42	65	162	127	244	192	406	4

Abbreviations: HB hospital-based studies; NA not available; PB population-based studies; SC, source of controls.

Table 4 Odds ratios and 95% confidence intervals for the association between *GSTM1* present/null polymorphism and colorectal cancer

Variable	No. of	No. of cases/controls	No. of <i>GSTM1</i> null cases/controls		Test of a	ssociatio	nn.	Test of heterogeneity		
Variable	Studies	cases/controls	cases/controls	OR	95% CI	Z	P	Chi-square	<i>I</i> ² (%)	
Overall Ethnicity	86	24,931/36,537	13,180/18,518	1.17	1.10–1.23*	5.24	<0.001	192.37	55.8	
Caucasian	44	13,363/17,720	7073/9042	1.14	1.05-1.23*	3.22	0.001	99.37	56.7	
Asian	31	7561/12,426	4126/6384	1.19	1.08-1.32*	3.39	0.001	63.44	52.7	
Source of contro	ols									
НВ	51	7892/10,179	4168/4867	1.32	1.20-1.46*	5.59	< 0.001	102.97	51.4	
PB	35	17,039/26,358	9012/13,651	1.03	0.99-1.07	1.30	0.195	59.04	42.4	
Quality score										
≥6	55	21,644/32,009	11,484/16,403	1.11	1.05-1.18*	3.84	< 0.001	109.44	50.7	
<6	31	3287/4528	1696/2115	1.38	1.17-1.62	3.78	< 0.001	73.05	58.9	
Location										
Colon cancer	23	5020/9672	2674/4728	1.32	1.16-1.51*	4.13	< 0.001	51.95	57.7	
Rectal cancer	15	3696/9355	1787/4544	0.99	0.91-1.07	0.27	0.79	21.72	35.5	
Smoking										
Smokers	16	3444/4007	1778/2027	1.03	0.94-1.13	0.56	0.572	20.26	26.0	
Non-smokers	15	2722/4177	1344/2083	1.05	0.87-1.25*	0.56	0.578	37.26	62.4	
Gender										
Males	9	3410/4132	1832/2226	1.02	0.93-1.11	0.32	0.748	12.07	33.7	
Females	9	2607/3905	1424/2198	0.99	0.85-1.17	0.08	0.932	15.14	47.2	
Site										
Distal	10	1631/4017	880/2075	1.26	0.98-1.63*	1.81	0.071	30.55	70.5	
Proximal	10	1246/4017	631/2075	1.03	0.78-1.36*	0.21	0.832	24.41	63.1	

Meta-analysis results

GSTM1 present/null polymorphisms

Table 4 lists the summary ORs and 95% CIs on the *GSTM1* null genotype with CRC risk. The *GSTM1* null genotype was associated with an increased CRC risk (OR = 1.17, 95% CI: 1.10–1.23, I^2 = 55.8%) in the overall population. In subgroup analyses by ethnicity, source of controls, and quality score, a significantly increased CRC risk was observed in Caucasians (OR = 1.14, 95% CI: 1.05–1.23, I^2 = 56.7%, Figure 2) and Asians (OR = 1.19, 95% CI: 1.08–1.32, I^2 = 52.7%, Figure 3), hospital-based studies (OR = 1.32, 95% CI: 1.20–1.46, I^2 = 51.4%), high-quality studies (OR = 1.12, 95% CI: 1.06–1.18, I^2 = 50.7%) and low quality studies (OR = 1.38, 95% CI: 1.17–1.62, I^2 = 58.9%). Moreover, the *GSTM1* null genotype was also associated with an increased colon cancer risk (OR = 1.32, 95% CI: 1.16–1.51, I^2 = 57.7%).

GSTT1 present/null polymorphisms-

Table 5 lists the summary ORs and 95% CIs on the *GSTT1* null genotype with CRC risk. The included studies could not be merged together because $I^2 > 75\%$ was found between the *GSTT1* present/null polymorphism and CRC risk in the overall analysis and Caucasians. In subgroup analysis by ethnicity and quality score, a significantly increased CRC risk was observed in Asians (OR = 1.08, 95% CI: 1.02–1.15, $I^2 = 43.6\%$, Figure 4) and low-quality studies (OR = 1.33, 95% CI: 1.16–1.53, $I^2 = 17.3\%$). The *GSTT1* null genotype was also associated with an increased rectal cancer risk (OR = 1.13, 95% CI: 1.01–1.27, $I^2 = 8.3\%$) in subgroup analysis by tumor location.

Combined effects of GSTM1 and GSTT1 present/null polymorphisms

Table 6 lists the summary ORs and 95% CIs on their combined effects with CRC risk. The *GSTM1* null/*GSTT1* null genotype was associated with an increased CRC risk in the overall analysis $(--vs. + +: OR = 1.42, 95\% CI: 1.17-1.73, I^2 = 68.6\%; --vs. +-: OR = 1.37, 95\% CI: 1.00-1.88, I^2 = 73.0\%; --vs. (+-) + (-+): OR = 1.26, 95\% CI: 1.05-1.51, I^2 = 70.4\%; --vs. (+-) + (-+) + (++): OR = 1.26, 95\% CI: 1.09-1.46, I^2 = 69.0\%).$

In subgroup analyses by ethnicity, source of controls, and quality score, the GSTM1 null/GSTT1 null genotype was associated with an increased CRC risk in Asians (- vs. + +: OR = 1.41, 95% CI: 1.15–1.73, $I^2 = 54.4\%$, Figure 5;

Table 5 Odds ratios and 95% confidence intervals for the association between *GSTT1* present/null polymorphism and colorectal cancer risk

M. C.L.	No. of	No. of	No. of GSTT1 null		Toologo			To do Obod	
Variable	studies	cases/controls	cases/controls	OR	95% CI	ssociatio	on P	Test of hete	rogeneity I ² (%)
				011	33 /0 01			Oni-3quare	1 (70)
Overall	64	19,725/28,725	6512/8888	-	-	-	-	260.28	75.8
Ethnicity									
Caucasian	34	11,337/14,632	2896/3205	-	-	-	-	188.52	82.5
Asian	23	6878/11,659	3286/5069	1.08	1.02-1.15	2.49	0.013	39.03	43.6
Source of contro	ols								
HB	36	6801/8894	2459/2552	-	_	_	_	154.05	77.3
PB	28	12,924/19,831	4053/6336	1.05	0.95-1.16*	0.96	0.337	90.02	70.0
Quality score									
≥6	48	17,832/26,262	5903/8253	-	_	_	_	234.52	80.0
<6	16	1893/2463	609/635	1.33	1.16-1.53	4.09	< 0.001	18.14	17.3
Location									
Colon cancer	11	2324/6062	679/1889	1.11	0.94-1.32	1.22	0.224	16.48	39.3
Rectal cancer	10	2079/6661	695/2143	1.13	1.01-1.27	2.09	0.036	9.81	8.3
Smoking									
Smokers	12	2037/2405	537/641	1.04	0.83-1.30	0.36	0.721	21.46	48.7
Non-smokers	11	1730/2605	386/641	0.96	0.74-1.25	0.28	0.777	23.33	57.1
Gender									
Males	5	1930/2401	615/752	1.13	0.98-1.30	1.71	0.087	3.12	0.0
Females	5	1467/2436	493/930	1.10	0.95-1.28	1.24	0.217	3.51	0.0
Site									
Distal	7	723/1677	194/368	1.24	0.91-1.69	1.34	0.179	10.99	45.4
Proximal	7	340/1677	83/368	1.04	0.78-1.39	0.27	0.786	3.51	0.0

-- vs. -+: OR = 1.28, 95% CI: 1.11–1.48, $I^2 = 47.6\%$; -- vs. (+-) + (-+): OR = 1.50, 95% CI: 1.20–1.86, $I^2 = 70.0\%$; -- vs. (+-) + (-+) + (++): OR = 1.38, 95% CI: 1.19–1.60, $I^2 = 49.3\%$), hospital-based studies (-- vs. ++: OR = 1.53, 95% CI: 1.28–1.83, $I^2 = 45.6\%$; -- vs. (+-) + (-+) + (++): OR = 1.38, 95% CI: 1.19–1.60, $I^2 = 49.3\%$) and high-quality studies (-- vs. -+: OR = 1.43, 95% CI: 1.15–1.77, $I^2 = 73.7\%$; -- vs. +-: OR = 1.60, 95% CI: 1.16–2.22, $I^2 = 69.7\%$; -- vs. (+-) + (-+): OR = 1.33, 95% CI: 1.09–1.62, $I^2 = 73.6\%$; -- vs. (+-) + (-+) + (++): OR = 1.29, 95% CI: 1.10–1.51, $I^2 = 73.0\%$).

Heterogeneity and sensitivity analyses

Significant heterogeneity was detected in the meta-analysis, as shown in Tables 4-6. A meta-regression analysis revealed that sample size (P=0.002) was the source of heterogeneity for the GSTM1 present/null polymorphism. Concerning the GSTT1 present/null polymorphism and the combined effects of GSTM1 and GSTT1, meta-regression analysis did not reveal a source of heterogeneity under any genetic model. Additionally, $I^2 > 75\%$ as shown in Tables 4-6.

When the study of Laso et al. [82] was excluded, the values of heterogeneity dropped and the GSTT1 null genotype was associated with an increased CRC risk in the following subgroups: Caucasians (OR = 1.24, 95% CI: 1.09–1.41, $I^2 = 70.8\%$) and hospital-based studies (OR = 1.19, 95% CI: 1.06–1.35, $I^2 = 54.5\%$). When the study of Martínez et al. [38] was excluded, the I^2 value dropped and no significant association was found between the combined effects of GSTM1 and GSTT1 polymorphisms and CRC risk in Caucasians ($-v_1 + v_2 + v_3 + v_4 + v_4 + v_5 + v_5 + v_4 + v_5 + v_5$

Table 6 Combined genotype analysis of the GSTM1 and GSTT1 polymorphisms on risk of colorectal cancer

Variables	No. of studies	No. of cases/controls		Test of a		Test of heterogeneity		
			OR	95% CI	Z	P	Chi-squa	red <i>I</i> ² (%)
VS. ++								
Overall	29	3543/5647	1.42	1.17-1.73*	3.50	< 0.001	89.24	68.6
Ethnicity								
Caucasian	10	780/1371	-	_	-	-	52.35	82.8
Asian	14	2202/3255	1.41	1.15–1.73*	3.29	0.001	28.51	54.4
Source of controls								
HB	18	1193/1954	1.53	1.28-1.83	4.66	< 0.001	31.24	45.6
PB	11	2350/3337	-	-	-	-	51.81	80.7
Quality score								
≥ 6	21	3257/5144	1.43	1.15–1.77	3.19	0.001	75.95	73.7
< 6	8	286/503	1.38	0.85-2.24*	1.32	0.187	12.76	45.1
VS. $-+$								
Overall	20	2469/3221	1.15	0.92-1.44*	1.21	0.226	46.25	58.9
Ethnicity								
Caucasian	7	577/982	0.89	0.61-1.28*	0.64	0.522	11.35	47.1
Asian	10	1604/1728	1.28	1.11-1.48	3.42	0.001	17.16	47.6
Source of controls								
НВ	14	878/1392	1.21	0.99-1.48	1.89	0.059	24.25	46.4
PB	6	1591/1829	_	_	_	_	20.28	75.3
Quality score								
≥ 6	13	2154/2727	1.20	0.91-1.60*	1.28	0.199	40.26	70.2
_ < 6	7	315/494	1.07	0.77-1.47	0.39	0.693	5.99	0.0
VS. +-								
Overall	20	1878/2218	1.37	1.00-1.88*	1.98	0.048	70.50	73.0
Ethnicity								
Caucasian	7	314/474	0.66	0.37-1.17*	1.42	0.154	18.89	68.2
Asian	10	1418/1426	_	_	_	_	36.61	75.4
Source of controls		-					-	-
HB	14	582/790	1.32	0.83-2.09*	1.18	0.239	44.80	71.0
PB	6	1296/1428	-	_	_	_	24.47	79.6
Quality score	-							
≥ 6	13	1646/1944	1.60	1.15-2.22*	2.82	0.005	39.67	69.7
< 6	7	232/274	_	_	_	-	28.60	79.0
vs.(- +) + (+ -)		202/2/1					20.00	7 0.0
vs.(- +) + (+ -) Overall	28	4842/7564	1.26	1.05–1.51*	2.45	0.014	91.18	70.4
Ethnicity	20	10 12, 7 007	20		2.70	5.014	01.10	70.7
Caucasian	10	1203/1709	_	_	_	_	41.23	78.2
Asian	13	3070/4836	1.50	1.20–1.86*	3.60	<0.001	40.06	70.2
Source of controls	10	001 0/ 1 000	1.50	1.20-1.00	5.00	~U.UU1	TU.UU	70.0
HB	17	1563/2293	1.23	0.92-1.63*	1.40	0.162	39.44	59.4
nb PB	11	3279/5271	-	0.92-1.03	-	-	50.60	80.2
	1.1	UZ13/UZ11	_	_	_	_	50.00	00.2
Quality score	20	4391/6934	1.33	1 00_1 60*	2.85	0.004	71.8	73.6
≥ 6	8	451/630		1.09–1.62*				
< 6		401/000	0.91	0.53-1.54	0.36	0.715	18.80	62.8
VS. $(-+)$ + $(+-)$ + $(+$	-							
Overall	33	8270/14,381	1.26	1.09-1.46*	3.08	0.002	103.11	69.0
Ethnicity					2.00	2.302		
Caucasian	8	1893/2888	_	_	_	_	47.52	79.0
Asian	17	5328/9617	1.30	- 1.10–1.53*	3.14	0.002	47.75	66.5
Source of controls	17	0020/0017		1.10-1.33	0.14	0.002	71.1∪	00.0
HB	19	2620/3008	1.38	1.19-1.60	A 17	< 0.001	35 47	49.3
LIL	13	2620/3998	1.30	1.19-1.00	4.17	< U.UU I	35.47	45.0

Continued over

Table 6 Combined genotype analysis of the GSTM1 and GSTT1 polymorphisms on risk of colorectal cancer (Continued)

Variables	No. of studies	No. of cases/controls		Test of a	Test of heterogeneity			
			OR	95% CI	Z	P	Chi-squa	red I ² (%)
Quality score								
≥ 6	25	7647/13,393	1.29	1.10-1.51*	3.08	0.002	88.88	73.0
< 6	8	623/988	1.10	0.72-1.70*	0.45	0.656	14.27	0.047

^{+ -:} GSTM1 present/GSTT1 null; - +: GSTM1 null/GSTT1 present; - -: GSTM1 null/GSTT1 null; + +: GSTM1 present/GSTT1 present; HB Hospital-based studies; PB Population-based studies

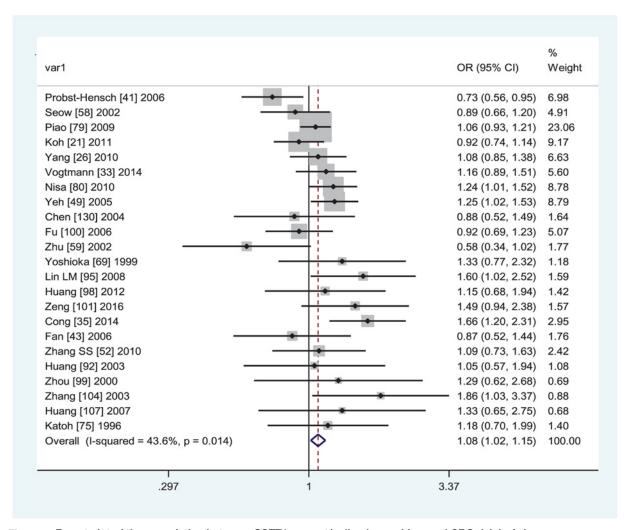


Figure 4. Forest plot of the association between GSTT1 present/null polymorphism and CRC risk in Asians

+ -: OR = 1.13, 95% CI: 0.78–1.65, I^2 = 54.4%; - vs. - +: OR = 0.88, 95% CI: 0.65–1.19, I^2 = 55.3%). A single study was excluded each time to assess the stability of the results. Figures 6–12 suggest that the results are stable in the present meta-analysis.

Publication bias

Begg's funnel plot and Egger's test were used to assess publication bias in the meta-analysis. The Begg's funnel plot shape and Egger's test (P<0.001) revealed obvious publication bias between the GSTM1 present/null polymorphism

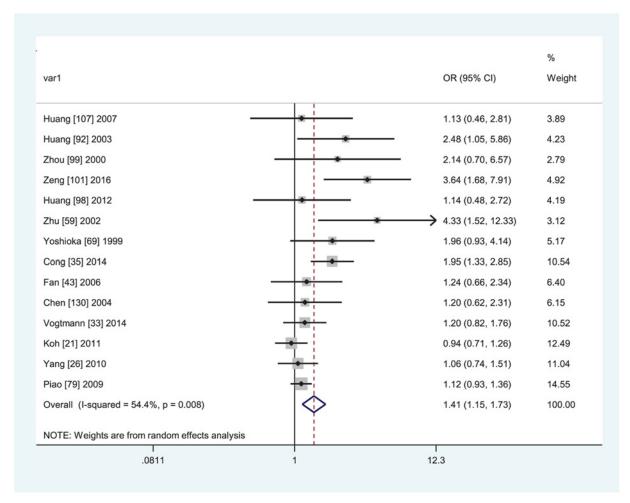


Figure 5. Forest plot of the association between the combined of *GTSM1* present/null and *GSTT1* present/null polymorphisms and CRC risk in Asians

and CRC risk in the overall analysis. Figure 13 shows the Begg's funnel plots by the trim and fill method; 24 missing studies should be added to this. Notably, log OR and 95% CI did not alter significantly when the trim and fill method was used. No significant publication bias was observed for the *GSTT1* present/null polymorphism (P=0.195). Concerning their combined effects, no publication bias was detected under any genetic model (P=0.093 for - vs. + +; P=0.398 for - vs. + -; P=0.764 for - vs. + +; P=0.643 for - vs. (+ -) + (- +); P=0.280 for - vs. (+ -) + (- +) + (- +) + (- +).

Discussion

Strange et al. [106] in 1991 first reported an association between the *GSTM1* null genotype and colon adenocarcinoma risk. Chenevix-Trench et al. [21] first analyzed the association between the *GSTT1* null genotype and CRC risk in 1996. Deakin et al. [52] first examined their combined effects with CRC risk in 1996. Since then, many case-control studies have investigated the associations but the results are still inconsistent. Hence, an updated meta-analysis was performed to explore the *GSTM1* null genotype, *GSTT1* null genotype, and their combined effects with CRC risk.

Overall, this meta-analysis indicates that the *GSTM1* and *GSTT1* null genotypes are associated with increased CRC risk in Asians and Caucasians, and the *GSTM1* null/*GSTT1* null genotype was associated with increased CRC risk in Asians, but not in Africans and Indians. In addition, the *GSTM1* null genotype was associated with colon cancer risk but not rectal cancer, while conversely that the *GSTT1* null genotype was associated with rectal caner but not colon cancer.

Actually, it may not be uncommon that the same polymorphism played different roles in cancer risk among different ethnic population, because cancer is a complicated multi-genetic disease, and different genetic backgrounds

Meta-analysis random-effects estimates (exponential form) Study ommited

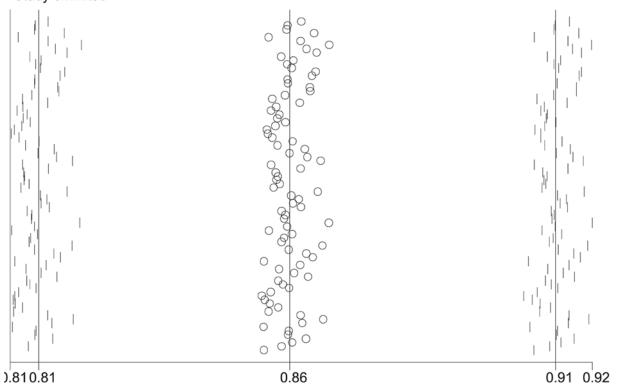


Figure 6. Sensitive analysis of the null genotype of GSTM1 on CRC risk in overall population

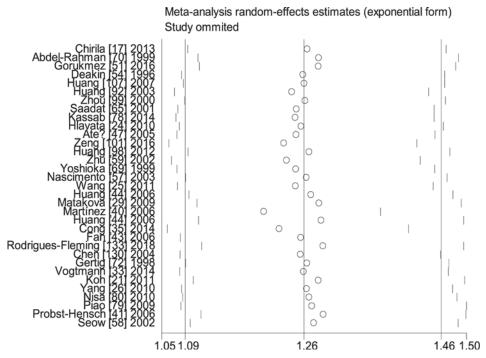


Figure 12. Sensitive analysis of the combined effects of *GSTM1* and *GSTT1* on CRC risk in overall population ((+ -) + (- +) + (+ +))

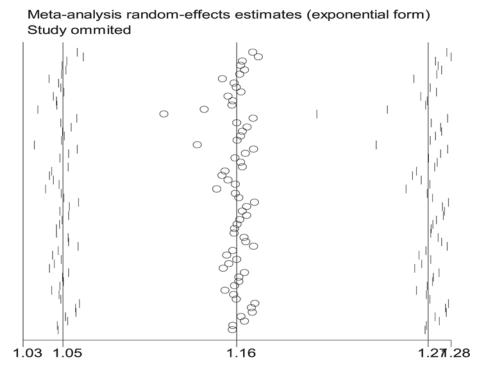


Figure 7. Sensitive analysis of the null genotype of GSTT1 on CRC risk in overall population

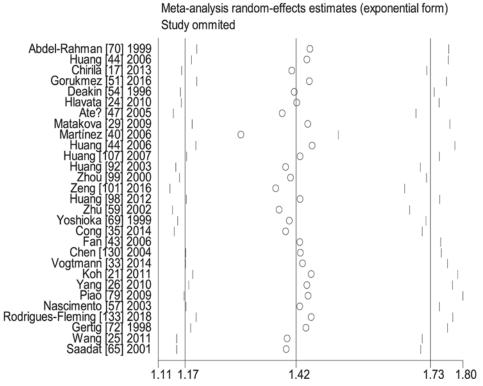


Figure 8. Sensitive analysis of the combined effects of GSTM1 and GSTT1 on CRC risk in overall population (- - vs. + +)

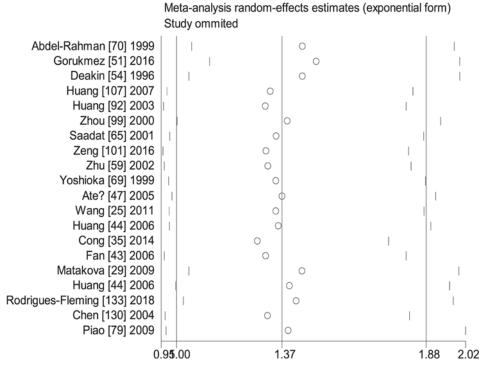


Figure 9. Sensitive analysis of the combined effects of GSTM1 and GSTT1 on CRC risk in overall population (- - vs. + -)

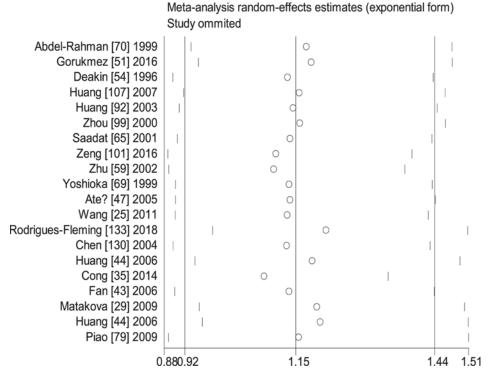


Figure 10. Sensitive analysis of the combined effects of GSTM1 and GSTT1 on CRC risk in overall population (- - vs. - +)

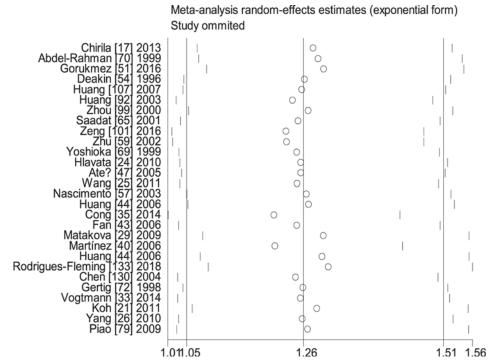


Figure 11. Sensitive analysis of the combined effects of *GSTM1* and *GSTT1* on CRC risk in overall population (- - vs. (+ -) + (- +))

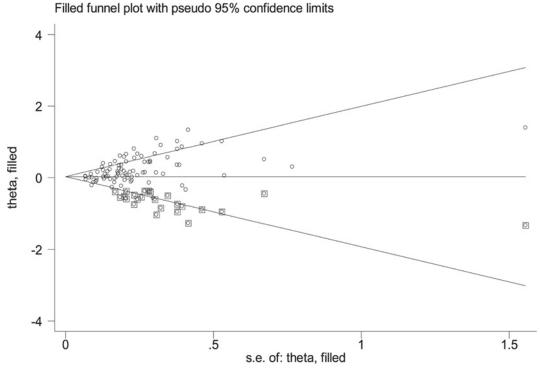


Figure 13. The Duval and Tweedie nonparametric "trim and fill" method's funnel plot of the *GSTM1* present/null polymorphism

may contribute to the discrepancy [134]. In addition, the differences might arise by chance because studies in Indians and Africans with small sample size may have insufficient statistical power to generate an authoritative risk estimate [135]. Therefore, a large population-based case-control study is required to confirm the GSTM1, GSTT1 and their combined effects with CRC risk in Indians and Africans. Nine [32,33,46,59,90,93,99,101,105] and seven [38,45,48,75,81,83,85] studies indicated that the *GSTM1* null genotype was associated with an increased CRC risk in Asians and Caucasians, respectively. Five [33,47,78,93,102] and eight [26,38,49,52,62,80,82,89] studies indicated that the *GSTT1* null genotype had a significantly increased CRC risk in Asians and Caucasians, respectively. Moreover, five studies [33,41,57,90,99] reported a significant association between their combined effects and CRC risk in Asians. The results of present study strongly supported these findings.

Subgroup analysis by source of control found a significant association in hospital-based studies, but not in population-based studies in the present meta-analysis. However, hospital-based controls are not likely to replace the general population because they may have more bias than population-based studies [136]. Therefore, the results of hospital-based controls should be carefully explained. Heterogeneity is a common problem in meta-analyses. The present study observed several high levels of heterogeneity ($I^2 > 75\%$), and the results of meta-regression analysis indicated that sample size was the source of heterogeneity between the *GSTM1* null genotype and CRC risk. Small sample size studies may be important confounding bias in molecular epidemiological studies, because random error and bias were common in the studies with small sample sizes, and the results were unreliable [137]. Furthermore, small sample studies were easier to accept if there was a positive report as they tend to yield false-positive results because they may be not rigorous and are often of low-quality. In addition, several value of $I^2 > 75\%$ dropped when a single study was excluded, the results indicate that source of heterogeneity also may be from one or multiple small sample or low quality studies. Figure 13 indicates that the asymmetry of the funnel plot was caused by studies with low-quality small samples.

A total of 13 meta-analyses [115-125,126,127] were conducted between 2010 and 2019 reported on the associations between the GSTM1 present/null and/or GSTT1 present/null polymorphisms with CRC risk. Cai et al. [115] examined 17 studies that included 5907 CRC cases and 9726 controls to explore the association between the GSTM1 null genotype and CRC risk in Asians, reporting that the GSTM1 null genotype was associated with an increased CRC risk. Liao et al. [116] examined 23 studies including 5058 cases and 5999 controls to show that the GSTT1 null genotype was associated with an increased CRC risk in Caucasians and Asians. Wan et al. [117] identified 30 studies of 7635 cases and 12,911 controls in all races, and demonstrated that the GSTT1 null genotype was associated with an increased CRC risk in Caucasians. Teng et al. [118] examined 13 studies (including 2225 cases and 3990 controls) to assess the GSTM1 null genotype with CRC risk and they found that the GSTM1 null genotype was associated with an increased CRC risk in Chinese. Gao et al. [119] assessed the association of the GSTM1 null genotype with CRC risk in all races (including 10,009 cases and 15,070 controls from 36 studies) and indicated that the GSTM1 null genotype was associated with an increased risk of CRC, especially in Caucasians. Qin et al. [120] selected 46 studies including 15,373 cases and 21,238 controls to show that the GSTT1 null genotype may contribute to an increased CRC risk in Asians and Caucasians. Wang et al. [121] (19 studies including 3130 cases and 6423 controls) found that the null genotypes of GSTM1 and GSTT1 and the dual null genotype of GSTM1/GSTT1 were not associated with CRC risk in Chinese population. The examination of 44 studies of GSTM1 (11,998 CRC cases and 17,552 controls) and 34 studies of GSTT1 (8596 CRC cases and 13,589 controls) by Economopoulos and Sergentanis [122] indicated that the GSTM1 and GSTT1 null genotypes were associated with an increased CRC risk in Caucasians. Li et al. [123] analyzed 33 studies (including 8502 CRC Asian cases and 13,699 controls) and indicated that the GSTM1 null genotype conferred susceptibility to CRC, especially in Chinese population. Xu et al. [124] examined 13 publications of 4832 cases and 7045 controls, demonstrating that the GSTT1 null genotype was associated with an increased CRC risk in Asians. Zhong et al. [125] conducted an association of 12 studies involving 4517 cases and 6607 controls, and suggested that the GSTT1 null genotype contributed to an increased CRC risk in Asians. Du et al. [126] examined 12 studies of GSTM1 and 8 studies of GSTT1, and found no association on the GSTM1 or GSTT1 null genotype with CRC risk. Huang et al. [127] selected 55 studies including 17,498 cases and 26,441 controls to show that the GSTM1 null genotype was a risk factor for CRC.

The current meta-analysis has several advantages over previous meta-analyses [115–125,126,127]. First, the sample size was much larger, with 86 case–control studies including 24,931 CRC cases and 36,537 controls evaluated for the *GSTM1* present/null polymorphism, 64 case–control studies including 19,725 CRC cases and 28,725 controls for the *GSTT1* present/null polymorphism, and 33 case-control studies including 8306 CRC cases and 14,369 controls for their combined effects in all races. Second, this is the first meta-analysis to explore their combined effects in overall population. Third, we used a meta-regression analysis method to explore the source of heterogeneity. Finally, the current meta-analysis included the most recent relevant publications to produce more accurate results.

Similar to previous meta-analyses, our study also has several limitations. First, only published articles were selected. Hence, publication bias may be found as shown in Figure 13. Moreover, positive results are known to be published more readily than negative ones. If negative results were included, an underestimation of the effect may be observed. Second, some case-control studies were based on hospital-based controls. These controls with non-cancerous disease may influence the pooled results in this study. Therefore, the use of population-based control studies may be more appropriate than hospital-based control studies. Third, only one study on Africans and Indians were included in the present study. Further new original studies were need on these issues in Africans and Indians.

In summary, the present study indicates that the *GSTM1* null genotype is associated with increased CRC risk in Asians and Caucasians, the *GSTT1* null genotype is associated with increased CRC risk in Asians, and the *GSTM1* null/*GSTT1* null genotype was associated with increased CRC risk in Asians. Further investigations involving large population-based studies should be conducted to explore the associations on the *GSTM1* null genotype, *GSTT1* null genotype and their combined effects with CRC risk.

Data Availability

All relevant data are within the paper.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

The authors declare that there are no sources of funding to be acknowledged.

Author Contribution

Liang Song: Performed research, collected data, check data, and wrote manuscript. Chen Yang: Performed research, collected data, check data, and revised manuscript. Xiao-Feng He: designed research, analyzed data, and revised manuscript.

Abbreviations

CBM, Chinese Biomedical Medical; CI, confidence interval; CNKI, China National Knowledge Infrastructure; CRC, colorectal cancer; GSTM1, glutathione S-transferase M1; GSTT1, glutathione S-transferase T1; MOOSE, Meta-analyses of Observational Studies in Epidemiology; OR, odds ratio.

References

- 1 Brenner, H., Kloor, M. and Pox, C.P. (2014) Colorectal cancer. Lancet 383, 1490-1502, https://doi.org/10.1016/S0140-6736(13)61649-9
- 2 Potter, J.D. (1999) Colorectal cancer: molecules and populations. J. Natl. Cancer Inst. 91, 916–932, https://doi.org/10.1093/jnci/91.11.916
- 3 Hemminki, K. and Czene, K. (2002) Attributable risks of familial cancer from the family-cancer database. Cancer Epidemiol. Biomarkers Prev. 12, 1638–1644
- 4 Lichtenstein, P. et al. (2000) Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. *N. Engl. J. Med.* **343**, 78–85, https://doi.org/10.1056/NEJM200007133430201
- 5 Tomlinson, I.P. et al. (2008) A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. *Nat. Genet.* **40**, 623–630, https://doi.org/10.1038/ng.111
- 6 Hayes, J.D. and Pulford, D.J. (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 30, 445–600, https://doi.org/10.3109/10409239509083491
- 5 Strange, R.C., Spiteri, M.A., Ramachandran, S. and Fryer, A.A. (2001) Glutathione-Stransferase family of enzymes. *Mutat. Res.* 482, 21–26, https://doi.org/10.1016/S0027-5107(01)00206-8
- Board, P.G., Webb, G.C. and Coggan, M. (1989) Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. *Ann. Hum. Genet.* **53**, 205–213, https://doi.org/10.1111/j.1469-1809.1989.tb01786.x
- 9 Pemble, S. et al. (1994) Human glutathione S-transferase theta (*GSTT1*): cDNA cloning and the characterization of a genetic polymorphism. *Biochem. J.* **300**, 271–276, https://doi.org/10.1042/bj3000271
- 10 Chenevix-Trench, G., Young, J., Coggan, M. and Board, P. (1995) Glutathione S-transferase M1 and T1 polymorphisms: susceptibility to colon cancer and age of onset. *Carcinogenesis* **16**, 1655–1677, https://doi.org/10.1093/carcin/16.7.1655
- 11 Board, P.G., Baker, R.T., Chelvanayagam, G. and Jermiin, L.S. (1997) Zeta, a novel class of glutathione transferases in a range of species from plants to humans. *Biochem. J.* **328**, 929–935, https://doi.org/10.1042/bj3280929
- Hayes, J.D. and Strange, R.C. (2000) Glutathione S-transferase polymorphisms and their biological consequences. *Pharmacology* 61, 154–166, https://doi.org/10.1159/000028396
- 13 Pearson, W.R., Vorachek, W.R., Xu, S.J., Berger, R., Hart, I., Vannais, D. et al. (1993) Identification of class-mu glutathione transferase genes *GSTM1-GSTM5* on human chromosome 1p13. *Am. J. Hum. Genet.* **53**, 220–233

- 14 Saeed, H.M. et al. (2013) Cytochrome P450 1A1, 2E1 and GSTM1 gene polymorphisms and susceptibility to colorectal cancer in the Saudi population. Asian Pac. J. Cancer Prev. 14, 3761–3768, https://doi.org/10.7314/APJCP.2013.14.6.3761
- 15 Chirila, D.N. et al. (2013) GST gene variants in synchronous colorectal cancers and synchronous association of colorectal cancers with other cancers. Chirurgia (Bucur) 108, 365–371
- Hezova, R. (2012) Common polymorphisms in GSTM1, GSTT1, GSTP1, GSTP1 and susceptibility to colorectal cancer in the Central European population. Eur. J. Med. Res. 17, 17, https://doi.org/10.1186/2047-783X-17-17
- 17 Rudolph, A. et al. (2012) Copy number variations of *GSTT1* and *GSTM1*, colorectal cancer risk and possible effect modification of cigarette smoking and menopausal hormone therapy. *Int. J. Cancer* **131**, E841–E848, https://doi.org/10.1002/ijc.27428
- 18 Fu, Q.H., Gao, C.M., Wu, J.Z., Cao, J., Tajima, K.Z. and Zhou, J.N. (2007) Polymorphisms of *GSTM1*, *GSTT1* and *GSTP1* and susceptibility of rectal cancer. *Acta Universitatis Medicinalis Nanjing (Nat. Sci.)* 27, 196–201
- 19 Koh, W.P., Nelson, H.H., Yuan, J.M., Van den Berg, D., Jin, A., Wang, R. et al. (2011) Glutathione S-transferase (*GST*) gene polymorphisms, cigarette smoking and colorectal cancer risk among Chinese in Singapore. *Carcinogenesis* **32**, 1507–1511, https://doi.org/10.1093/carcin/bgr175
- 20 Darazy, M., Balbaa, M., Mugharbil, A., Saeed, H., Sidani, H. and Abdel-Razzak, Z. (2011) CYP1A1, CYP2E1, and GSTM1 gene polymorphisms and susceptibility to colorectal and gastric cancer among Lebanese. *Genet Test Mol. Biomarkers* 15, 423–429, https://doi.org/10.1089/gtmb.2010.0206
- 21 Cleary, S.P., Cotterchio, M., Shi, E., Gallinger, S. and Harper, P. (2010) Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk. *Am. J. Epidemiol.* **172**, 1000–1014, https://doi.org/10.1093/aje/kwg245
- 22 Hlavata, I. et al. (2010) Association between exposure-relevant polymorphisms in *CYP1B1*, *EPHX1*, *NQ01*, *GSTM1*, *GSTP1* and *GSTT1* and risk of colorectal cancer in a Czech population. *Oncol. Rep.* **24**, 1347–1353
- 23 Wang, J. et al. (2011) Genetic polymorphisms of glutathione S-transferase genes and susceptibility to colorectal cancer: a case-control study in an Indian population. *Cancer Epidemiol.* **35**, 66–72, https://doi.org/10.1016/j.canep.2010.07.003
- 24 Yang, G. et al. (2010) Isothiocyanate exposure, glutathione S-transferase polymorphisms, and colorectal cancer risk. *Am. J. Clin. Nutr.* **91**, 704–711, https://doi.org/10.3945/ajcn.2009.28683
- 25 Yeh, C.C., Lai, C.Y., Hsieh, L.L., Tang, R., Wu, F.Y. and Sung, F.C. (2010) Protein carbonyl levels, glutathione S-transferase polymorphisms and risk of colorectal cancer. *Carcinogenesis* **31**, 228–233, https://doi.org/10.1093/carcin/bgp286
- 26 Csejtei, A., Tibold, A., Ember, I. and Kiss, I. (2009) Genetic polymorphism in patients with colorectal and with head and neck cancer. *Orv. Hetil.* **150**, 1545–1549, https://doi.org/10.1556/oh.2009.28634
- 27 Matakova, T., Sivonova, M., Halasova, E., Mistuna, D., Dzian, A., Masar, J. et al. (2009) Polymorphisms of biotransforming enzymes (*GSTs*) and their association with colorectal cancer in the Slovak population. *Neoplasma* **56**, 422–427, https://doi.org/10.4149/neo²2009'05'422
- 28 Zupa, A. et al. (2009) GSTM1 and NAT2 polymorphisms and colon, lung and bladder cancer risk: a case-control study. Anticancer Res. 29, 1709–1714
- 29 Curtin, K., Samowitz, W.S., Wolff, R.K., Herrick, J., Caan, B.J. and Slattery, M.L. (2009) Somatic alterations, metabolizing genes and smoking in rectal cancer. Int. J. Cancer 125, 158–164, https://doi.org/10.1002/ijc.24338
- 30 Epplein, M. et al. (2009) Urinary isothiocyanates; glutathione S-transferase M1, T1, and P1 polymorphisms; and risk of colorectal cancer: the Multiethnic Cohort Study. *Cancer Epidemiol. Biomarkers Prev.* **18**, 314–320, https://doi.org/10.1158/1055-9965.EPI-08-0627
- 31 Vogtmann, E. et al. (2014) Cruciferous vegetables, glutathione S-transferase polymorphisms, and the risk of colorectal cancer among Chinese men. Ann. Epidemiol. 24, 44–49, https://doi.org/10.1016/j.annepidem.2013.10.003
- 32 Khabaz, M.N., Nedjadi, T., Gari, M.A., Al-Maghrabi, J.A., Atta, H.M., Bakarman, M. et al. (2016) *GSTM1* gene polymorphism and the risk of colorectal cancer in a Saudi Arabian population. *Genet Mol. Res.* **15**, https://doi.org/10.4238/gmr.15017551
- 33 Cong, N., Liu, L., Xie, Y., Shao, W. and Song, J. (2014) Association between glutathione S-transferase T1, M1, and P1 genotypes and the risk of colorectal cancer. *J. Korean Med. Sci.* **29**, 1488–1492, https://doi.org/10.3346/jkms.2014.29.11.1488
- 34 Djansugurova, L., Zhunussova, G., Khussainova, E., Iksan, O., Afonin, G., Kaidarova, D. et al. (2015) Association of DCC, MLH1, GSTT1, GSTM1, and TP53 gene polymorphisms with colorectal cancer in Kazakhstan. *Tumour Biol.* **36**, 279–289, https://doi.org/10.1007/s13277-014-2641-2
- 35 Yoshida, K. et al. (2007) Association of CYP1A1, CYP1A2, GSTM1 and NAT2 gene polymorphisms with colorectal cancerand smoking. Asian Pac. J. Cancer Prev. 8, 438–444
- 36 Skjelbred, C.F. et al. (2007) Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas. *BMC Cancer* **7**, 228, https://doi.org/10.1186/1471-2407-7-228
- 37 Yeh, C.C., Sung, F.C., Tang, R., Chang-Chieh, C.R. and Hsieh, L.L. (2007) Association between polymorphisms of biotransformation and DNA-repair genes and risk of colorectal cancer in Taiwan. *J. Biomed. Sci.* **14**, 183–193, https://doi.org/10.1007/s11373-006-9139-x
- Martínez, C. et al. (2006) Glutathione S-transferases mu 1, theta 1, pi 1, alpha 1 and mu 3 genetic polymorphisms and the risk of colorectal and gastric cancers in humans. *Pharmacogenomics* 7, 711–718, https://doi.org/10.2217/14622416.7.5.711
- 39 Probst-Hensch, N.M., Sun, C.L., Van Den Berg, D., Ceschi, M., Koh, W.P. and Yu, M.C. (2006) The effect of the cyclin D1 (CCND1) A870G polymorphism on colorectal cancer risk is modified by glutathione-S-transferase polymorphisms and isothiocyanate intake in the Singapore Chinese Health Study. Carcinogenesis 27, 2475–2482, https://doi.org/10.1093/carcin/bgl116
- 40 Little, J., Sharp, L., Masson, L.F., Brockton, N.T., Cotton, S.C., Haites, N.E. et al. (2006) Colorectal cancer and genetic polymorphisms of CYP1A1, GSTM1 and GSTT1: a case-control study in the Grampian region of Scotland. *Int. J. Cancer* 119, 2155–2164, https://doi.org/10.1002/ijc.22093
- 41 Fan, C.H. et al. (2006) Association between genetic polymorphisms of metabolic enzymes and susceptibility of colorectal cancer. *Zhonghua Yu Fang Yi Xue Za Zhi* **40**, 13–17
- 42 Huang, K., Sandler, R.S., Millikan, R.C., Schroeder, J.C., North, K.E. and Hu, J. (2006) GSTM1 and GSTT1 polymorphisms, cigarette smoking, and risk of colon cancer: a population-based case-control study in North Carolina (United States). *Cancer Causes Control* 17, 385–394, https://doi.org/10.1007/s10552-005-0424-1

- 43 Chen, K., Jin, M.J., Fan, C.H., Song, L., Jiang, Q.T., Yu, W.P. et al. (2005) A case-control study on the association between genetic polymorphisms of metabolic enzymes and the risk of colorectal cancer. *Zhonghua Liu Xing Bing Xue Za Zhi* 26, 659–664
- 44 Landi, S. et al. (2005) A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenet. Genomics 15, 535–546. https://doi.org/10.1097/01.fpc.0000165904.48994.3d
- 45 Ateş, N.A., Tamer, L., Ateş, C., Ercan, B., Elipek, T., Ocal, K. et al. (2005) Glutathione S-transferase M1, T1, P1 genotypes and risk for development of colorectal cancer. *Biochem. Genet.* 43, 149–163, https://doi.org/10.1007/s10528-005-1508-z
- 46 Yang, Z.F. (2008) Relationship between CYP2C19, GSTM1 Genetic Poly morphism and Colorectal Cancer Susceptibility, Inner Mongolia medical school graduate student degree thesis
- 47 Yeh, C.C., Hsieh, L.L., Tang, R., Chang-Chieh, C.R. and Sung, F.C. (2005) Vegetable/fruit, smoking, glutathione S-transferase polymorphisms and risk for colorectal cancer in Taiwan. *World J. Gastroenterol.* **11**, 1473–1480, https://doi.org/10.3748/wjg.v11.i10.1473
- 48 Kiss, I. et al. (2004) Polymorphisms of glutathione-S-transferase and arylamine N-acetyltransferase enzymes and susceptibility to colorectal cancer. Anticancer Res. 24, 3965–3970
- 49 Gorukmez, O., Yakut, T., Gorukmez, O., Sag, S.O., Topak, A., Sahinturk, S. et al. (2016) Glutathione S-transferase T1, M1 and P1 Genetic Polymorphisms and Susceptibility to Colorectal Cancer in Turkey. Asian Pac. J. Cancer Prev. 17, 3855–3859
- 50 Zhang, S.S. (2010) Association study on organochlorine compounds and colorectal cancer risk, Zhejiang university doctoral dissertation
- 51 van der Logt, E.M. et al. (2004) Genetic polymorphisms in UDP-glucuronosyltransferases and glutathione S-transferases and colorectal cancer risk. *Carcinogenesis* **25**, 2407–2415, https://doi.org/10.1093/carcin/bgh251
- 52 Deakin, M. et al. (1996) Glutathione S-transferase GSTT1 genotypes and susceptibility to cancer: studies of interactions with GSTM1 in lung, oral, gastric and colorectal cancers. *Carcinogenesis* 17, 881–884, https://doi.org/10.1093/carcin/17.4.881
- 53 Smits, K.M. et al. (2003) Interaction between smoking, GSTM1 deletion and colorectal cancer: results from the GSEC study. *Biomarkers* **8**, 299–310, https://doi.org/10.1080/1354750031000121467
- 54 van der Hel, O.L. et al. (2003) No modifying effect of NAT1, GSTM1, and GSTT1 on the relation between smoking and colorectal cancer risk. *Cancer Epidemiol. Biomarkers Prev.* **12**, 681–682
- 55 Nascimento, H., Coy, C.S., Teori, M.T., Boin, I.F., Góes, J.R., Costa, F.F. et al. (2003) Possible influence of glutathione S-transferase *GSTT1* null genotype on age of onset of sporadic colorectal adenocarcinoma. *Dis. Colon Rectum* **46**, 510–515, https://doi.org/10.1007/s10350-004-6591-4
- 56 Seow, A., Yuan, J.M., Sun, C.L., Van Den Berg, D., Lee, H.P. and Yu, M.C. (2002) Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. *Carcinogenesis* 23, 2055–2061, https://doi.org/10.1093/carcin/23.12.2055
- 57 Zhu, Y., Deng, C., Zhang, Y., Zhou, X. and He, X. (2002) The relationship between *GSTM1*, *GSTT1* gene polymorphisms and susceptibility to sporadic colorectal adenocarcinoma. *Zhonghua Nei Ke Za Zhi* **41**, 538–540
- 58 Ye, Z. and Parry, J.M. (2002) Genetic polymorphisms in the cytochrome P450 1A1, glutathione S-transferase M1 and T1, and susceptibility to colon cancer. *Teratog. Carcinog. Mutagen.* **22**, 385–392, https://doi.org/10.1002/tcm.10035
- 59 Xia, X.P., Zhou, S.M., Wang, W.X., Jiang, Y. and Lin, L.M. (2007) Correlation between the genetic polymorphism of glutathione S-Transferase M1 and sporadic colorectal adenocarcinoma. *ZheJiang Medical Education* **6**, 40–43
- Tiemersma, E.W., Kampman, E., Bueno de Mesquita, H.B., Bunschoten, A., van Schothorst, E.M., Kok, F.J. et al. (2002) Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study. *Cancer Causes Control* 13, 383–393, https://doi.org/10.1023/A:1015236701054
- 61 Slattery, M.L., Edwards, S.L., Samowitz, W. and Potter, J. (2000) Associations between family history of cancer and genes coding for metabolizing enzymes (United States). Cancer Causes Control 11, 799–803, https://doi.org/10.1023/A:1008912317909
- 62 Butler, W.J., Ryan, P. and Roberts-Thomson, I.C. (2001) Metabolic genotypes and risk for colorectal cancer. *J. Gastroenterol. Hepatol.* **16**, 631–635, https://doi.org/10.1046/j.1440-1746.2001.02501.x
- 63 Saadat, I. and Saadat, M. (2001) Glutathione S-transferase M1 and T1 null genotypes and the risk of gastric and colorectal cancers. *Cancer Lett.* **169**, 21–26, https://doi.org/10.1016/S0304-3835(01)00550-X
- 64 Loktionov, A., Watson, M.A., Gunter, M., Stebbings, W.S., Speakman, C.T. and Bingham, S.A. (2001) Glutathione-S-transferase gene polymorphisms in colorectal cancer patients: interaction between *GSTM1* and *GSTM3* allele variants as a risk-modulating factor. *Carcinogenesis* **22**, 1053–1060, https://doi.org/10.1093/carcin/22.7.1053
- 65 Jiang, Q.T. (2003) A case-control study on environmental exposure factors and metabolic enzymes genetic polymorphisms of colorectal cancer, Zhejiang university doctoral dissertation
- 66 Gawrońska-Szklarz, B. et al. (1999) Polymorphism of *GSTM1* gene in patients with colorectal cancer and colonic polyps. *Exp. Toxicol. Pathol.* **51**, 321–325, https://doi.org/10.1016/S0940-2993(99)80014-1
- 67 Yoshioka, M., Katoh, T., Nakano, M., Takasawa, S., Nagata, N. and Itoh, H. (1999) Glutathione S-transferase (GST) M1, T1, P1, N-acetyltransferase (*NAT*) 1 and 2 genetic polymorphisms and susceptibility to colorectal cancer. *J. UOEH* 21, 133–147, https://doi.org/10.7888/juoeh.21.133
- 68 Abdel-Rahman, S.Z. et al. (1999) Polymorphism of glutathione S-transferase loci *GSTM1* and *GSTT1* and susceptibility to colorectal cancer in Egypt. *Cancer Lett.* **142**, 97–104, https://doi.org/10.1016/S0304-3835(99)00159-7
- 69 Welfare, M., Monesola Adeokun, A., Bassendine, M.F. and Daly, A.K. (1999) Polymorphisms in *GSTP1*, *GSTM1*, and *GSTT1* and susceptibility to colorectal cancer. *Cancer Epidemiol Biomarkers Prev.* 8, 289–292
- 70 Gertig, D.M., Stampfer, M., Haiman, C., Hennekens, C.H., Kelsey, K. and Hunter, D.J. (1998) Glutathione S-transferase *GSTM1* and *GSTT1* polymorphisms and colorectal cancer risk: a prospective study. *Cancer Epidemiol. Biomarkers Prev.* **7**, 1001–1005
- 71 Lee, E., Huang, Y., Zhao, B., Seow-Choen, F., Balakrishnan, A. and Chan, S.H. (1998) Genetic polymorphism of conjugating enzymes and cancer risk: *GSTM1, GSTT1, NAT1* and *NAT2. J. Toxicol. Sci.* **23**, 140–142

- 72 Guo, J.Y., Wan, D.S., Zeng, R.P. and Zhang, Q. (1996) The polymorphism of *GSTM1*, mutagen sensitivity in colon cancer and healthy control. *Mutat. Res.* 372, 17–22, https://doi.org/10.1016/S0027-5107(96)00093-0
- 73 Katoh, T. et al. (1996) Glutathione S-transferase M1 (*GSTM*1) and T1 (*GSTT*1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma. *Carcinogenesis* **17**. 1855–1859. https://doi.org/10.1093/carcin/17.9.1855
- 74 Chenevix-Trench, G., Young, J., Coggan, M. and Board, P. (1995) Glutathione S-transferase M1 and T1 polymorphisms: susceptibility to colon cancer and age of onset. *Carcinogenesis* **16**, 1655–1657, https://doi.org/10.1093/carcin/16.7.1655
- 75 Zhong, S., Wyllie, A.H., Barnes, D., Wolf, C.R. and Spurr, N.K. (1993) Relationship between the *GSTM1* genetic polymorphism and susceptibility to bladder, breast and colon cancer. *Carcinogenesis* **14**, 1821–1824, https://doi.org/10.1093/carcin/14.9.1821
- 76 Kassab, A., Msolly, A., Lakhdar, R., Gharbi, O. and Miled, A. (2014) Polymorphisms of glutathione-S-transferases M1, T1, P1 and susceptibility to colorectal cancer in a sample of the Tunisian population. *Med. Oncol.* **31**, 760, https://doi.org/10.1007/s12032-013-0760-z
- 77 Piao, J.M. et al. (2009) Glutathione-S-transferase (*GSTM1*, *GSTT1*) and the risk of gastro-intestinal cancer in a Korean population. *World J. Gastroenterol.* **15**, 5716–5721, https://doi.org/10.3748/wjg.15.5716
- 78 Nisa, H. et al. (2010) Cigarette smoking, genetic polymorphisms and colorectal cancer risk: the Fukuoka colorectal cancer study. *BMC Cancer* **10**, 274, https://doi.org/10.1186/1471-2407-10-274
- 79 Slattery, M.L., Potter, J.D., Samowitz, W., Bigler, J., Caan, B. and Leppert, M. (1998) NAT2, GSTM-1, cigarette smoking, and risk of colon cancer. Cancer Epidemiol. Biomarkers Prev. 7, 1079–1084
- 80 Zhang, H. et al. (1999) Glutathione S-transferase T1 and M1 genotypes in normal mucosa, transitional mucosa and colorectal adenocarcinoma. *Int. J. Cancer* 84, 135–138, https://doi.org/10.1002/(SICI)1097-0215(19990420)84:2%3c135::AID-IJC7%3e3.0.CO;2-C
- 81 Sachse, C. et al. (2002) A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer. *Carcinogenesis* **23**, 1839–1849, https://doi.org/10.1093/carcin/23.11.1839
- 82 Laso, N. et al. (2002) Glutathione S-transferase (GSTM1 and GSTT1)-dependent risk for colorectal cancer. Anticancer Res. 22, 3399-3403
- 83 Sgambato, A. et al. (2002) Glutathione S-transferase (*GST*) polymorphisms as risk factors for cancer in a highly homogeneous population from southern Italy. *Anti Cancer Res* **22**, 3647–3652
- 84 Csejtei, A. et al. (2008) GSTM, GSTT and p53 polymorphisms as modifiers of clinical outcome in colorectal cancer. Anticancer Res. 28, 1917–1922
- 85 Procopciuc, L.M. and Osian, G. (2014) *GSTM1*-null genotype as a risk factor for sporadic colorectal cancer in a Romanian population. *Cancer Invest.* 32, 53–62, https://doi.org/10.3109/07357907.2013.867972
- 86 Chen, K., Jiang, Q.T., Ma, X.Y., Yao, K.Y., Leng, S.G., Yu, W.P. et al. (2004) Associations between genetic polymorphisms of glutathione S-transferase M1 and T1, smoking and susceptibility to colorectal cancer: a case-control study. *Zhonghua Zhong Liu Za Zhi* 26, 645–648
- 87 Küry, S. et al. (2008) Low-penetrance alleles predisposing to sporadic colorectal cancers: A French case-controlled genetic association study. *BMC Cancer* **8**, 326, https://doi.org/10.1186/1471-2407-8-326
- 88 Cotterchio, M., Boucher, B.A., Manno, M., Gallinger, S., Okey, A.B. and Harper, P.A. (2008) Red meat intake, doneness, polymorphisms in genes that encode carcinogen-metabolizing enzymes, and colorectal cancer risk. *Cancer Epidemiol. Biomarkers Prev.* **17**, 3098–3107, https://doi.org/10.1158/1055-9965.EPI-08-0341
- 89 Rajagopal, R. et al. (2005) Glutathione S-transferase T1 polymorphisms are associated with outcome in colorectal cancer. *Carcinogenesis* **26**, 2157–2163, https://doi.org/10.1093/carcin/bgi195
- 90 Huang, P., Zhou, Z., Liu, J., Ma, H., Zhou, Y. and Ge, H. (2003) GSTM1 and GSTT1 polymorphisms and colorectal cancer susceptibility in Chongqing people. Acta Acad. Med. Militaris Tertiae 25, 1714–1717
- 91 Luo, J., He, M. and Liu, X. (2006) Relationship between polymorphisms in glutathione-S-transferase M1 gene and susceptibility to colorectal cancer. Anat. Res. 28, 52–54
- 92 Xia, X.P., Wang, W.X., Jiang, Y., Lin, L., Chen, H. and Zhang, D.L. (2007) Glutathione Stransferase M1 genotype with ulcerative colitis and colorectal cancer susceptibility. *Chin J Intern Med* **46**, 583–585
- 93 Lin, L.M., Min, X. and Chen, H. (2008) Glutathione S-transferases polymorphisms and sporadic colorectal cancer susceptibility in Zhejiang province. Chin J. Int. Med. 47, 413–414
- 94 Lin, L.M. (2008) Relationship between the genotypes of glutathione S-transferase(M1,T1,P1) and the susceptibility to sporadic colorectal adenocarcinoma in Chinese Hans. Master degree theses of master of wenzhou medical college
- 95 Kiss, I., Sándor, J., Pajkos, G., Bogner, B., Hegedüs, G. and Ember, I. (2000) Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1, 2E1, and glutathione-S-transferase M1 enzymes. *Anticancer Res.* **20**, 519–522
- 96 Huang, X., Tan, Z. and Zhang, Y. (2012) GSTM1, GSTT1 gene polymorphisms and susceptibility to colorectal cancer in Guangxi Zhuang relationship. J. Guangxi Med. Univ. 29, 106–108
- 97 Zhou, J.N., Xu, F.P., Li, Z.Y., Wang, J.D., Li, J.T. and Gao, C.M. (2000) The relationship between polymorphism of *GSTM1* and *GSTT1* gene andgenetic susceptibility to colorectal cancer. *J Jiangsu Clin. Med.* **4,** 90–94
- 98 Fu, Q.H., Gao, C.M., Wu, J.Z., Cao, J., Tajima, K. and Zhou, J.N. (2006) Polymorphisms of *GSTT1*, *GSTM1* and *GSTP1* and susceptibility of colorectal cancer. *Pract. J. Cancer* 21, 247–250, [+260]
- 99 Zeng, L.P., Wu, H.P., Shu, X.C., Shu, X., Yang, M.L. and Zeng, W.M. (2016) Association between Genetic Polymorphism of GSTM1 and GSTT1 and Susceptibility to Colorectal Cancer in Hunan Province. J Med Res 45, 61–65
- 100 Chen, K. and Huang, L.R. (2009) A study on *GSTT1* gene polymorphism and colorectal cancer susceptibility in smokers. *Chin Foreign Med. Res.* **7**, 19–21
- 101 Yang, J., Peng, R.X., Kong, R. and Le, J. (2003) A study on *CYP2E1* and *GSTM1* gene polymorphisms and colon cancer susceptibility. *Chin Pharmacol.* **20**, 35

- 102 Zhang, Y.C., Deng, C.S., Zhu, Y.Q., Zhou, X., He, X.L. and Xu, L.H. (2003) Relationship between genetic polymorphisms of glutathione-Stransferase T1 and the clinico-pathological features of sporadic colorectal adenocarcinoma in the elderly. *Chin J. Geriatr* **22**, 400–402
- 103 Zhang, Y.C., Deng, C.S., Zhu, Y.Q., Zhou, X. and He, X.L. (2001) Relationship between *GSTM1* null genotypes and genetic susceptibility to colonic cancers. *Med. J. Wuhan Univ.* **22.** 131–133
- 104 Gao, J.R., Chen, C.F. and Zhang, Q. (1998) Study on the relationship between GSTM1 genetic polymorphism and lung cancer, colon cancer susceptibility. J. Zhenjiang Med. Coll. 8, 446–447
- 105 Huang, L.R. (2007) Genetic polymorphisms of GSTM1 and GSTT1 and colorectal tumor susceptibility, Fujian Medical University
- 106 Strange, R.C., Matharoo, B., Faulder, G.C., Jones, P., Cotton, W., Elder, J.B. et al. (1991) The human glutathione S-transferases: a case-control study of the incidence of the *GST1* 0 phenotype in patients with adenocarcinoma. *Carcinogenesis* **12**, 25–28, https://doi.org/10.1093/carcin/12.1.25
- 107 Slattery, M.L., Edwards, S., Curtin, K., Schaffer, D. and Neuhausen, S. (2003) Associations between Smoking, Passive Smoking, *GSTM-1*, *NAT2*, and Rectal Cancer. *Cancer Epidemiol. Biomarkers Prev.* **12**, 882–889
- 108 Slattery, M.L., Curtin, K., Ma, K., Schaffer, D., Potter, J. and Samowitz, W. (2002) GSTM-1 and NAT2 and genetic alterations in colon tumors. *Cancer Causes Control* 13, 527–534, https://doi.org/10.1023/A:1016376016716
- 109 Chen, K., Jiang, Q.T., Ma, X.Y., Yao, K.Y., Leng, S.G., Yu, W.P. et al. (2004) Associations between genetic polymorphisms of glutathione S-transferase M1 and T1, smoking and susceptibility to colorectal cancer: a case-control study. *Zhonghua Zhong Liu Za Zhi 26*, 645–648
- 110 Klusek, J., Nasierowska-Guttmejer, A., Kowalik, A., Wawrzycka, I., Chrapek, M., Lewitowicz, P. et al. (2019) The Influence of Red Meat on Colorectal Cancer Occurrence Is Dependent on the Genetic Polymorphisms of S-Glutathione Transferase Genes. *Nutrients* 11, E1682, pii:, https://doi.org/10.3390/nu11071682
- 111 Stojkovic Lalosevic, M.L., Coric, V.M., Pekmezovic, T.D., Simic, T.P., Pljesa Ercegovac, M.S., Pavlovic Markovic, A.R. et al. (2019) Deletion and Single Nucleotide Polymorphisms in Common Glutathione-S Transferases Contribute to Colorectal Cancer Development. *Pathol. Oncol. Res.* 25, 1579–1587, https://doi.org/10.1007/s12253-019-00589-1
- 112 Rodrigues-Fleming, G.H., Fernandes, G.M.M., Russo, A., Biselli-Chicote, P.M., Netinho, J.G., Pavarino, ÉC et al. (2018) Molecular evaluation of glutathione S transferase family genes in patients with sporadic colorectal cancer. World J. Gastroenterol. 24, 4462–4471, https://doi.org/10.3748/wjg.v24.i39.4462
- 113 Waś, J., Karasiewicz, M., Bogacz, A., Dziekan, K., Górska-Paukszta, M., Kamiński, M. et al. (2018) The diagnostic potential of glutathione S-transferase (GST) polymorphisms in patients with colorectal cancer. *Adv. Clin. Exp. Med.* 27, 1561–1566, https://doi.org/10.17219/acem/74682
- 114 Klusek, J., Nasierowska-Guttmejer, A., Kowalik, A., Wawrzycka, I., Lewitowicz, P., Chrapek, M. et al. (2018) GSTM1, GSTT1, and GSTP1 polymorphisms and colorectal cancer risk in Polish nonsmokers. *Oncotarget* 9, 21224–21230, https://doi.org/10.18632/oncotarget.25031
- 115 Cai, X., Yang, L., Chen, H. and Wang, C. (2014) An updated meta-analysis of the association between *GSTM1* polymorphism and colorectal cancer in Asians. *Tumour Biol.* **35**, 949–953, https://doi.org/10.1007/s13277-013-1125-0
- 116 Liao, C., Cao, Y., Wu, L., Huang, J. and Gao, F. (2010) An updating meta-analysis of the glutathione S-transferase T1 polymorphisms and colorectal cancer risk: a HuGE review. *Int. J. Colorectal Dis.* **25**, 25–37, https://doi.org/10.1007/s00384-009-0805-0
- 117 Wan, H., Zhou, Y., Yang, P., Chen, B., Jia, G. and Wu, X. (2010) Genetic polymorphism of glutathione S-transferase T1 and the risk of colorectal cancer: a meta-analysis. *Cancer Epidemiol.* **34**, 66–72, https://doi.org/10.1016/j.canep.2009.12.006
- 118 Teng, Z., Wang, L., Zhang, J., Cai, S. and Liu, Y. (2014) Glutathione S-transferase M1 polymorphism and colorectal cancer risk in Chinese population. Tumour Biol. 35, 2117–2121, https://doi.org/10.1007/s13277-013-1281-2
- 119 Gao, Y., Cao, Y., Tan, A., Liao, C., Mo, Z. and Gao, F. (2010) Glutathione S-transferase M1 polymorphism and sporadic colorectal cancer risk: An updating meta-analysis and HuGE review of 36 case-control studies. *Ann. Epidemiol.* 20, 108–121, https://doi.org/10.1016/j.annepidem.2009.10.003
- 120 Qin, X.P., Zhou, Y., Chen, Y., Li, N.N., Chen, B., Yang, P. et al. (2013) Glutathione S-transferase T1 gene polymorphism and colorectal cancer risk: an updated analysis. *Clin. Res. Hepatol. Gastroenterol.* **37**, 626–635, https://doi.org/10.1016/j.clinre.2013.04.007
- 121 Wang, D., Zhang, L.M., Zhai, J.X. and Liu, D.W. (2012) *GSTM1* and *GSTT1* polymorphisms and colorectal cancer risk in Chinese population: a meta-analysis. *Int. J. Colorectal Dis.* **27**, 901–909, https://doi.org/10.1007/s00384-011-1406-2
- 122 Economopoulos, K.P. and Sergentanis, T.N. (2010) *GSTM1*, *GSTT1*, *GSTP1*, *GSTA1* and colorectal cancer risk: A comprehensive meta-analysis. *Eur. J. Cancer* **46**, 1617–1631, https://doi.org/10.1016/j.eica.2010.02.009
- 123 Li, J., Xu, W., Liu, F., Huang, S. and He, M. (2015) *GSTM1* polymorphism contribute to colorectal cancer in Asian populations: a prospective meta-analysis. *Sci. Rep.* **5**, 12514, https://doi.org/10.1038/srep12514
- 124 Xu, D., Yan, S., Yin, J. and Zhang, P. (2011) Null genotype of *GSTT1* contributes to colorectal cancer risk in Asian populations: evidence from a meta-analysis. *Asian Pac. J. Cancer Prev.* **12**, 2279–2284
- 125 Zhong, S., Yang, J.H., Liu, K., Jiao, B.H. and Chang, Z. (2012) Null genotype of glutathione S-transferase TI contributes to colorectal cancer risk in the Asian population: a meta-analysis. *J. Gastroenterol. Hepatol.* 27, 231–237, https://doi.org/10.1111/j.1440-1746.2011.06920.x
- 126 Du, L. et al. (2018) The Interaction of Smoking with Gene Polymorphisms on Four Digestive Cancers: A Systematic Review and Meta-Analysis. *J. Cancer* **9**, 1506–1517, eCollection 2018, https://doi.org/10.7150/jca.22797
- 127 Huang, M., Zeng, Y., Zhao, F. and Huang, Y. (2018) Association of glutathione S-transferase M1 polymorphisms in the colorectal cancer risk: A meta-analysis. *J. Cancer Res. Ther.* **14**, 176–183, https://doi.org/10.4103/jcrt.JCRT 446 16
- 128 Stroup, D.F., Berlin, J.A., Morton, S.C., Olkin, I., Williamson, G.D., Rennie, D. et al. (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA*. **283**, 2008–2012, https://doi.org/10.1001/jama.283.15.2008
- 129 Peng, Q., Lu, Y., Lao, X., Chen, Z., Li, R., Sui, J. et al. (2014) The *NQ01* Pro187Ser polymorphism and breast cancer susceptibility: evidence from an updated meta-analysis. *Diagn Pathol* **9**, 100, https://doi.org/10.1186/1746-1596-9-100

- 130 Peng, Q., Chen, Z., Lu, Y., Lao, X., Mo, C., Li, R. et al. (2014) Current evidences on XPC polymorphisms and gastric cancer susceptibility: a meta-analysis. Diagn. Pathol. 9, 96, https://doi.org/10.1186/1746-1596-9-96
- 131 Higgins, J.P., Thompson, S.G., Deeks, J.J. and Altman, D.G. (2003) Measuring inconsistency in meta-analyses. *BMJ* **327**, 557–560, https://doi.org/10.1136/bmj.327.7414.557
- 132 Mantel, N. and Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719-748
- 133 DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Control. Clin. Trials 7, 177-188, https://doi.org/10.1016/0197-2456(86)90046-2
- 134 Hirschhorn, J.N., Lohmueller, K. and Byrne, E. (2002) A comprehensive review of genetic association studies. *Genet. Med.* **4**, 45–61, https://doi.org/10.1097/00125817-200203000-00002
- 135 Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L. and Rothman, N. (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. *J. Natl. Cancer Inst.* **96**, 434–442, https://doi.org/10.1093/jnci/djh075
- 136 Wacholder, S., Silverman, D.T., McLaughlin, J.K. and Mandel, J.S. (1992) Selection of controls in case-control studies. II. Types of controls. *Am J Epidemiol.* **135**, 1029–1041, https://doi.org/10.1093/oxfordjournals.aje.a116397
- 137 Attia, J., Thakkinstian, A. and D'Este, C. (2003) Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. *J. Clin. Epidemiol.* **56**, 297–303, https://doi.org/10.1016/S0895-4356(03)00011-8