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A B S T R A C T

This study aimed to evaluate and compare the fatigue resistance of ProTaper Gold (PTG) and ProTaper Universal
(PTU) in artificial single and double curvature canals in 5% sodium hypochlorite (NaOCl) at body temperature
(37 °C). PTG and PTU files (size F1) were subjected to fatigue tests in two different artificial ceramic canals. The
single curvature model had a 60° curvature angle with a 5mm radius. The double curvature model had a 60°
curvature angle with a 5mm radius and a second 30° curvature with a 2mm radius. A file segment was in-
troduced into the artificial canal and immersed in water or 5% NaOCl at 37 °C. The total number of cycles to
fracture (NCF) was recorded. Data were analyzed using t-test and linear regression analysis. The NCF of all files
was significantly influenced by the type of NiTi metal alloy (P < .01), canal curvatures (P < .01), and the
environmental conditions (P < .05). PTG had higher fatigue resistance than PTU files in both single and double
curvature canals (P < .05). The NCF of PTU files in 5% NaOCl was shorter than that in water (P < .05). The
mean length of broken PTG was significantly shorter than those of PTU files in both single and double curvature
canals (P < .01). The fatigue performance of PTG is better than that of PTU in both single and double curvature.
Environmental conditions may affect the fatigue behavior of PTU files with single curvature.

1. Introduction

S-shaped or bayonet shaped canals pose great problems during en-
dodontic therapy, since they involve at least two curves, with the apical
curve having maximum deviations in anatomy [1,2]. Endodontic
cleaning and instrumentation is often regarded as technically de-
manding and difficult when such systems are presented. Those systems
pose high stress and dangerous anatomy for nickel-titanium (NiTi) ro-
tary instruments with an increased risk of instrument fracture. Two
different mechanisms may lead to NiTi rotary fracture: cyclic fatigue
and torsional fracture. When a rotary file undergoes repeated com-
pression and extension in a curved canal, this can cause work hardening
of the metal, which causes cyclic fatigue and an increased risk of
fracture [3]. Fatigue has been implicated as the main reason for the
fracture of endodontic rotary files in clinical use [4,5].

ProTaper Universal (PTU, Dentsply Tulsa Dental Specialities, Tulsa,

OK) is a much studied NiTi rotary system manufactured with a variable
taper over the length of the cutting blades, convex triangular cross
sections, and noncutting tips. Later, ProTaper Gold (PTG, Dentsply
Tulsa Dental Specialities) instruments were introduced. The PTG files
have geometries identical to PTU but are more flexible and have been
developed with proprietary advanced metallurgy. Heat treatment
(thermal processing) is one of the most fundamental approaches toward
adjusting the transition temperatures of NiTi alloys [6–9] and affecting
the fatigue resistance of NiTi endodontic files. Due to their specific
phase transformation behavior the PTG instruments have a higher
austenite finish temperature than the PTU instruments. Recent studies
[9–11] showed that the fatigue resistance of PTG was superior to PTU in
single curvature canal. So far there is no information available on fa-
tigue resistance of double curvature canal on PTG instruments.

Root canal instrumentation is recommended to be performed with
sodium hypochlorite (NaOCl) as an irrigant in the canal(s) and a
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reservoir in the pulp chamber. NaOCl has antimicrobial and tissue-
dissolving activity [12,13], but can also cause the corrosion of metals.
Corrosion resistance of NiTi instruments is controversial [14–21].
However, most previous studies were performed after passive exposure
of the instruments to NaOCl for different time periods [14,15,18,19]
immediately before the fatigue test or while instruments were im-
mersed in a low concentration of NaOCl (ie, 1.2%) [16,17] to avoid the
corrosion of the test models, which typically are or contain metallic
parts such as stainless steel. Currently, a couple of studies [21–24] have
shown that immersion in water or NaOCl at simulated body tempera-
ture was associated with a marked decrease in the fatigue life of heat
treated NiTi files, compared to the room temperature. Therefore, fa-
tigue resistance should be tested under specific temperature conditions.
The purpose of this study was to evaluate the corrosion effect of 5%
NaOCl on PTG and PTU instruments at body temperature and to ex-
amine the fatigue behavior of NiTi files in the custom-made zirconium
oxide model with single and double curvature canals.

2. Materials and methods

Instruments of PTU and PTG (F1) were subjected to fatigue tests
inside two custom-made zirconium oxide canals. Each group included
15 instruments. The artificial ceramic canals were milled in an InCoris
ZI zirconium oxide disc (Dentsply Sirona, Bensheim, Germany) using
the inLab MC X5 Digital computeraided design and computer-aided
manufacturing (CAD/CAM) System (Dentsply Sirona). The canal was
customized to apical size #25, and apical tapers from 0 to 6mm was
8%, middle tapers from 6 to 13mm was 6% and coronal tapers from 13
to 16mm was zero taper. The single curvature model had a 60° cur-
vature angle and 5mm radius. In the double curvature model, the first
angle was a 60° curvature angle with a 5mm radius and the second
angle was a 30° curvature with a 2mm radius [25]. The model was
fixed and placed in 300mL of 5% NaOCl (The Clorox Company,
Brampton, Ontario, Canada) or distilled water. The container was
mounted on a hot plate using plastic strips, and the temperature of the
medium solution was stabilized to remain at body temperature (37 °C).
A 19-mm-long segment from the tip of the instrument was introduced
into the ceramic canal and immersed in the liquid medium during the
test [20]. The torque control motor (AEU-20T Endodontic System)
settings for the rotary handpiece were adjusted to follow the manu-
facturer recommendation for size F1 ProTaper files (PG: 300 rpm and
150 GCM, PU: 300 rpm and 250 GCM). The time to fracture (seconds)
was recorded and multiplied by the number of rotations per minute to
obtain the total number of cycles to failure (NCF). The length of the
fragments was measured by using a stereomicroscope at X10 magnifi-
cation (Microdissection; Zeiss, Bernried, Germany). Three samples from
each group were randomly chosen for fractographic examination under
a scanning electron microscope (SEM; Helios NanoLab 650; FEI, Eind-
hoven, Netherlands) [20].

The IBM SPSS for Windows 25.0 software was used for statistical
analyses (IBM, Chicago, IL) and the threshold for significance was set at
P < .05. The normality distribution and the assumption for the
homogeneity of variance were examined using the Kolmogorov-
Smirnov test and Levene's test, respectively. The independent sample t-
test was used to compare the study groups. The multiple linear re-
gression analysis was used to examine the potential predictors/ex-
planatory factors associated with the outcome variable (NCF).

3. Results

Table 1 shows the comparison of the performance of two types of
files (PTG and PTU) in two types of curvatures. Two types of compar-
isons are presented in this table. Vertical comparisons compare two files
separately for each of the two mediums and each of the two curvatures.
The horizontal comparisons compare the performance of a specific file
for each curvature separately between the two mediums. The

performance of PTG (vertical comparisons) was significantly better
than PTU in both the single curvature model and in the double curva-
ture model and in two different medium solutions, 5% NaOCl and
distilled water (P < .001). In the single curvature canal, the PTU files
were more resistant to fatigue failure in the distilled water than in 5%
NaOCl solution (P < .03) (Table 1). There were no significant differ-
ences of the fatigue resistance of the PTG files between the two med-
iums either in the single or in the double curved canals.

Tolerance values for the predictors (file type, curvature, and solu-
tion) of the multiple regression model were 1.0, indicating the as-
sumption of absence multicollinearity was fulfilled (Table 2).

The linear regression in this model contains independent variables
that are statistically significantly different with a reasonably high R-
squared value (P < .001), and three predictors jointly explained 75.4%
of the variance in the NCF. This analysis showed that the NCF was
significantly influenced by file type (P < .001), canal curvature
(P < .01), and the type of medium solution (P < .05).

There were significant differences in file lengths between the two
types of files (PTG vs. PTU) in both single (P < .001) and double
curvature (P < .001) canals. The fragment of PTG was significantly
shorter than those of PTU files in both single curvature (3.6 ± 0.2mm
vs. 5.4 ± 0.3mm) and double curvature (3.6 ± 0.3mm vs.
4.4 ± 0.9mm). The mean length of broken fragments of PTU in single
curvature canals (5.4 ± 0.3mm) was significantly longer than that of
fragments in double curvature canal (4.4 ± 0.9 mm)(P < .001). The
SEM topographic appearance of the fracture surfaces showed typical
features of cyclic fatigue (Fig. 1). None of the tested files showed pitting
or crevice corrosion in water or 5% NaOCl as evaluated under SEM.

4. Discussion

The size of ProTaper F1 is 20/.07 at the file tip area, while from D4
to D14 the F1 file has a gradually decreasing taper which serves to
improve the flexibility of the file. In this study, the custom-made, size-
matched artificial canal allowed the instrument to have a close fit
without binding. Only one instrument size of both brands (size F1) was
tested because this is the most commonly used size during in-
strumentation. The noncorrosive biomaterial model allowed a stan-
dardized evaluation of the fatigue resistance of NiTi files in a poten-
tially corrosive environment of concentrated NaOCl, which will mimic
clinical conditions better than earlier models. Recently, only one study
[23] evaluated the fatigue resistance of PTG F2 immersed in 2.5% and
5.25% NaOCl using stainless steel block model in a single curvature.
The authors described that for the corrosive action of NaOCl, the arti-
ficial metallic canal was replaced when any sign of corrosion was ob-
served. To our knowledge, the present study is the first one to simulate
the fatigue resistance of PTG files in the continuous presence of a high
concentration of NaOCl in the double curvature canal.

Recently, the temperature has been investigated as a possible vari-
able influencing the fatigue resistance of rotary NiTi files [11,21–24].
Thermally treated NiTi files have transformation temperatures much
higher than those of conventional austenitic NiTi files [7,9,26]. de
Hemptinne et al. [27] found that intracanal temperature ranges from 31
to 35 °C. Some studies [27,28] have shown that warming NaOCl to
60 °C significantly increases the rate and effectiveness of tissue dis-
solution. It has been reported that the benefits of heated irrigants only
lasts during delivery, since body temperature is reached immediately
after [29]. In the other way, an irrigant at room temperature is quickly
warmed to body temperature when entering the root canal [29].
Therefore, to simulate the clinical situation, the testing temperature
was set to 37 °C in the present study.

The metallurgical characteristics of PTU files showed that file has an
austenite structure, whereas PTG file with thermal processing is es-
sentially in the martensite condition at body temperature [9]. This
would explain why the fatigue resistance of PTG was better than that of
PTU files in both single and double curvatures. Interestingly, there was
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no significant difference of fatigue resistance of PTG files between
water and 5% NaOCl in both curvatures. Post heat treatment was ap-
plied after the flutes of PTG file have been manufactured. The tem-
perature used in heat treatment is in a range of 370–510 °C for a vari-
able period of time (typically 10–60min, depending on file size and
taper) [30]. With increased exposure time at moderate temperatures,
the oxide formed is composed mainly of TiO2 with a slow formation and
growth [31]. The observation in the present study further supports the
assumption that the oxide surface layer which can be obtained after the

proprietary heat treatment manufacturing process may protect the
stressed PTG instruments from corrosion.

The fractographic appearance of instruments fatigued in hypo-
chlorite is very similar to that the instrument tested in deionized water.
Intergranular crack growth, typical of corrosion fatigue [32] was not
detected here. However, 5% NaOCl had a negative effect on the fatigue
life of PTU in the single curvature. The present study focused on the low
cyclic fatigue test, which was less than 350 cycles for PTU, and thus the
corrosion on the fractographic surface at low strain amplitudes could
not be determined. Further research is needed to evaluate the corrosion
behavior of NiTi files by the cyclic potentiodynamic polarization
curves.

A double curvature canal was simulated in the present study in
which the second curvature was extended from the single curvature
model. No significant difference of the fatigue life between water of
NaOCl on double curvature, which may be partly explained by the short
fatigue life on the double curvature, compared to the single curvature.
The majority of files in the double curvature fractured in the second
curvature area. The explanation for this is that the second curvature
was more abrupt than the first curvature due to the short radius of only

Table 1
The number of revolutions until fracture of files in water and sodium hypochlorite (NaOCl) at 37 °C with a single curve and double curves.

Single curvature Double curvature

Water 5% NaOCl Water 5% NaOCl

Mean ± SD Mean ± SD Significance Mean ± SD Mean ± SD Significance

ProTaper Gold 667 ± 118 662 ± 118 0.922 591 ± 87 533 ± 73 0.079
ProTaper Universal 343 ± 53 266 ± 106 0.030 303 ± 47 298 ± 62 0.818
Significance <0.001 <0.001 <0.001 <0.001

Table 2
Predictors of file failure (linear multiple regression).

Linear regression model

Model summary: Adj R2= 0.754 (p < 0.001)

Predictors β(p) Tolerance

File type −0.854 (< 0.001) 1.0
Curvature −0.147 (0.003) 1.0
Solution −0.100 (0.044) 1.0

Fig. 1. The fracture surface of ProTaper Gold files after the fatigue test in 5% NaOCl at 37 °C in single curvature (A and B) and double curvature (C and D) canals.
High-magnification view of one cutting edge area of the crack ignition in B (black arrow in A) and D (black arrow in C). The arrows point toward the crack initiation
points; the region of fatigue crack propagation and dimple area outlined by the dotted line. No signs of corrosion can be seen on the files.
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2mm, which is in agreement with the results obtained in a previous
double curvature study [25]. Interestingly, 10 of 30 PTU and 5 of 30
PTG files fractured in the first curvature. This may be caused by the fact
that PTU files are stiffer and, consequently, the first and second cur-
vature may have strains under this condition. Previous study [33]
showed that the length of fragment tended to affect the success rate of
the removal of fractured NiTi instruments. The short fragment may
raise the challenge for the removing instruments.

In summary, the two precisely shaped, variable taper artificial
curvature canals (one single curvature and one double curvature ca-
nals) enabled the characterization of fatigue resistance of PTU and PTG
files in high concentration NaOCl. The fatigue performance of PTG is
better than that of PTU in both single and double curvature. Double
curvature canals represent much more stressful and challenging
anatomy than single curvature canals for the variable taper files. The
effect of NaOCl on PTU files in use cannot be dismissed.
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