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The paper investigates the observer design for a core circadian rhythm network in Drosophila and Neurospora. Based on the
constructed highly nonlinear differential equation model and the recently proposed graphical approach, we design a rather simple
observer for the circadian rhythmoscillator, which canwell track the state of the original system for various input signals. Numerical
simulations show the effectiveness of the designed observer. Potential applications of the related investigations include the real-
world control and experimental design of the related biological networks.

1. Introduction

Controllability, observability, and stability are typical prob-
lems of dynamical systems [1, 2]. Suppose we have a dynam-
ical system with the following form:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) , (1)

where 𝑥(𝑡) ∈ 𝑅𝑁 is the state vector of the system and 𝑢(𝑡) ∈
𝑅
𝑀 is the input vector. System (1) is said to be observable, if

we can find a function

𝑦 (𝑡) = ℎ (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) , (2)

fromwhich one can determine all the state variables of system
(1). Here, 𝑦(𝑡) ∈ 𝑅𝑃 depends on 𝑡, a set of the system’s state
𝑥(𝑡) and the external input 𝑢(𝑡) [1–6].

For 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) with polynomial or rational expres-
sions, existing results have reported that system (1) is observ-
able if the Jacobian matrix 𝐽 = [𝐽

𝑖𝑗
]
𝑁𝑃×𝑁

has full rank
[3, 4], where 𝐽

𝑖𝑗
is the Lie derivative of the output function

ℎ(𝑡, 𝑥(𝑡), 𝑢(𝑡)).
Recently, Liu et al. [4] proposed a graphical approach

to reduce the observability problem to a property of the
inference diagram of a system. The inference diagram is
based on the dynamical equation of the system. If 𝑥

𝑗
appears

in 𝑥
𝑖
’s differential equation, then there is a link from 𝑥

𝑖

to 𝑥
𝑗
in the inference diagram. The inference diagram can

be decomposed into some strongly connected component
(SCC). Those SCCs without incoming edges are called root
SCCs. Liu et al. [4] reported that the number of the root SCCs
provides the lower bound of the monitored state variables
in 𝑦(𝑡). Furthermore, for many nonlinear systems, they
declared that the number of the root SCCs provides not only
necessary but also sufficient numbers of state variables to
realize observability. That is, if the inference diagram of a
system has 𝑘 root SCCs, then one may only need to select 𝑘
state variables from different root SCCs, and the system will
be observable through monitoring these 𝑘 state variables.

Biological systems are typical nonlinear systems [7–23].
Observer design for biological systems has important real-
world implications. For example, through monitoring a few
state variables of a complex biological system, if we can
infer the state of the whole system, then lots of resources
can be saved [4]. Circadian rhythms are typical biological
phenomenon, which display endogenous, entrainable oscil-
lations with a period that lasts approximately 24 hours. Cir-
cadian rhythms are widely in existence in various plants and
animals [12], which are controlled by biomolecular networks.
Circadian rhythms have been extensively investigated during
the last decades [18–23]. For example, in 1995, Goldbeter
established a mathematical model for the circadian rhythms
in the Drosophila [11]. In 1999, Leloup et al. established a
model for the circadian rhythms in the Drosophila and Neu-
rospora [13]. In 2002, Gonze and coauthors [7] investigated
the deterministic and stochastic dynamics in a core circadian
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Figure 1: (a) A core model for circadian rhythms [7]. Parameters marked on the directed edges denote reaction rates. 𝑥
1
denotes the

concentration of the mRNA; 𝑥
2
, 𝑥
3
, 𝑥
4
, and 𝑥

5
are the concentrations of four forms of the protein expressed by the gene; 𝑥

2
, 𝑥
3
, and 𝑥

4
are

cytosolic proteins; 𝑥
5
is nuclear protein. The circadian gene transcripts mRNA 𝑥

1
and then translates protein 𝑥

2
. Proteins 𝑥

2
, 𝑥
3
, and 𝑥

4
can

be reversibly phosphorylated successively.𝑥
4
can be transported into the nucleus; the nucleus protein𝑥

5
can negatively regulate the expression

of the circadian gene.ThemRNA and protein 𝑥
4
suffer from degradations. (b)The inference diagram [4] for the circadian rhythmmodel (3).

If 𝑥
𝑖
appears in 𝑥

𝑗
’s differential equation, then there will be a directed edge from 𝑥

𝑗
to 𝑥
𝑖
.

rhythm network. They found that the core network can
display roughly the same circadian oscillations under both
deterministic and stochastic descriptions.

In this paper, based on the graphical approach introduced
by Liu et al. [4], for the core circadian rhythm network [7] in
Drosophila andNeurospora, we design some simple observers
for the network. Based on the Lyapunov stability theory, we
theoretically verify the correctness of the designed observers.
Finally, numerical simulations show the effectiveness of the
designed observers for various input signals. The rest of
the paper is organized as follows. In Section 2, we briefly
introduce the mathematical model for the core circadian
rhythm network. Observers will be designed in Section 3.We
perform numerical simulations in Section 4. Discussions and
some concluding remarks will be in Section 5.

2. The Core Circadian Rhythm Model

The core circadian rhythm network is reported by Gonze
et al. [7]; the detailed biochemical processes are shown
in Figure 1(a). Figure 1(a) represents a prototype for the
molecular mechanism of circadian oscillations based on neg-
ative autoregulation of gene expression. Real-world circuits
corresponding to Figure 1(a) include the 𝑝𝑒𝑟mRNA and𝑃𝐸𝑅
protein inDrosophila [11, 12] and𝑓𝑟𝑞mRNAand𝐹𝑅𝑄protein
in Neurospora [13].

The core model involves gene transcription and transport
ofmRNA𝑥

1
into the cytosol where it is translated into protein

𝑥
2
and degraded. Protein𝑥

2
can be reversibly phosphorylated

from the form 𝑥
2
into the forms 𝑥

3
and 𝑥

4
, successively.

The phosphorylated protein 𝑥
4
is degraded or transported

into the nucleus, and the nucleus protein 𝑥
5
can negatively

regulate the expression of its gene. Based on the work from
Gonze et al. [7] in 2002, the modified mathematical model

Table 1: Parameter values.

Parameter Value
V
𝑠

0.5 nMh−1

𝑛 4
𝐾
𝑚

0.2 nM
V
1

6.0 nMh−1

V
2

3.0 nMh−1

V
3

6.0 nMh−1

V
4

3.0 nMh−1

V
𝑑

1.5 nMh−1

𝑘
1

2.0 h−1

𝐾
𝐼

2 nM
V
𝑚

0.3 nMh−1

𝑘
𝑠

2.0 h−1

𝐾
1

1.5 nM
𝐾
2

2.0 nM
𝐾
3

1.5 nM
𝐾
4

2.0 nM
𝐾
𝑑

0.1 nM
𝑘
2

1.0 h−1

for the core circadian model can be established as follows.
Consider

𝑑𝑥
1

𝑑𝑡
= V
𝑠

𝐾
𝑛

𝐼

𝐾𝑛
𝐼
+ 𝑥𝑛
5

− V
𝑚

𝑥
1

𝐾
𝑚
+ 𝑥
1

+ 𝑢 (𝑡) ,

𝑑𝑥
2

𝑑𝑡
= 𝑘
𝑠
𝑥
1
− V
1

𝑥
2

𝐾
1
+ 𝑥
2

+ V
2

𝑥
3

𝐾
2
+ 𝑥
3

,
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𝑑𝑥
3

𝑑𝑡
= V
1

𝑥
2

𝐾
1
+ 𝑥
2

− V
2

𝑥
3

𝐾
2
+ 𝑥
3

− V
3

𝑥
3

𝐾
3
+ 𝑥
3

+ V
4

𝑥
4

𝐾
4
+ 𝑥
4

,

𝑑𝑥
4

𝑑𝑡
= V
3

𝑥
3

𝐾
3
+ 𝑥
3

− V
4

𝑥
4

𝐾
4
+ 𝑥
4

− V
𝑑

𝑥
4

𝐾
𝑑
+ 𝑥
4

− 𝑘
1
𝑥
4
+ 𝑘
2
𝑥
5
,

𝑑𝑥
5

𝑑𝑡
= 𝑘
1
𝑥
4
− 𝑘
2
𝑥
5
,

(3)

where 𝑥
𝑖
(𝑖 = 1, . . . , 5) are state variables, which correspond

to species concentrations of the mRNA, the four forms
of proteins. 𝑢(𝑡) represents the external input, which can
be seen as the effect of the environment on the system.
𝐾
𝑖
(𝑖 = 𝐼,𝑚, 1, 2, 3, 4, 𝑑), 𝑘

𝑗
(𝑗 = 1, 2, 𝑠), and V

𝑘
(𝑘 =

𝑠,𝑚, 1, 2, 3, 4, 𝑑) are Michaelis constants, first-order reaction
rate constants, and maximum rates of protein degradation,
transcription, and phosphorylation. It is noted that if we
set 𝑢(𝑡) = 0, then system (3) degenerates into the model
investigated in [7]. A typical set of parameter values for
system (3) are shown in Table 1. Under the parameter values
as shown inTable 1 and for 𝑢(𝑡) = 0, dynamical system (3) can
display circadian rhythms with a period close to 24 hours.

3. Observer Design for the Circadian Rhythm
Model

For simplicity, in the following, we rewrite system (3) as the
following form:

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 (𝑡) + 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(4)

where 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

5
(𝑡))
𝑇 and 𝑓(𝑥(𝑡), 𝑢(𝑡)) ∈ 𝑅

5

denotes the nonlinear term. 𝑦(𝑡) denotes the monitored
output. 𝐶 is a constant matrix.𝐴𝑥(𝑡) denotes the linear term,
with

𝐴 =

[
[
[
[
[

[

0 0 0 0 0

𝑘
𝑠

0 0 0 0

0 0 0 0 0

0 −𝑘
1
0 0 𝑘

2

0 𝑘
1
0 0 −𝑘

2

]
]
]
]
]

]

. (5)

For system (4), similar to theworks in [4–6], our objective
is to design the following observer, which can track the states
of system (4):

𝑑𝑧

𝑑𝑡
= 𝐴𝑧 (𝑡) + 𝑓 (𝑧 (𝑡) , 𝑢 (𝑡)) + 𝐾 (𝑦 (𝑡) − 𝐶𝑧 (𝑡)) , (6)

where 𝐾 is a gain matrix, which is to be determined. The
estimation error dynamics are then given by

𝑑𝑒

𝑑𝑡
= (𝐴 − 𝐾𝐶) 𝑒 (𝑡) + [𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) − 𝑓 (𝑧 (𝑡) , 𝑢 (𝑡))] ,

(7)

where 𝑒(𝑡) = 𝑥(𝑡) − 𝑧(𝑡).

From Liu et al. [4], the observability of a dynamical
systemcanbe revealed by its inference diagram.The inference
diagram of system (3) is shown in Figure 1(b), where the five
nodes are strongly connected and consist of the single root
SCC. From the conclusion in [4], system (3) is observable,
and one should only monitor any one of the five nodes in
Figure 1(b). In the following, for simplicity, we assume that
only 𝑥

1
(𝑡) is monitored. The designed observer of system (3)

is described as

𝑑𝑧
1

𝑑𝑡
= V
𝑠

𝐾
𝑛

𝐼

𝐾𝑛
𝐼
+ 𝑧𝑛
5

− V
𝑚

𝑧
1

𝐾
𝑚
+ 𝑧
1

+ 𝑢 (𝑡) + 𝑘𝑐 (𝑥1 − 𝑧1) ,

𝑑𝑧
2

𝑑𝑡
= 𝑘
𝑠
𝑧
1
− V
1

𝑧
2

𝐾
1
+ 𝑧
2

+ V
2

𝑧
3

𝐾
2
+ 𝑧
3

,

𝑑𝑧
3

𝑑𝑡
= V
1

𝑧
2

𝐾
1
+ 𝑧
2

− V
2

𝑧
3

𝐾
2
+ 𝑧
3

− V
3

𝑧
3

𝐾
3
+ 𝑧
3

+ V
4

𝑧
4

𝐾
4
+ 𝑧
4

,

𝑑𝑧
4

𝑑𝑡
= V
3

𝑧
3

𝐾
3
+ 𝑧
3

− V
4

𝑧
4

𝐾
4
+ 𝑧
4

− V
𝑑

𝑧
4

𝐾
𝑑
+ 𝑧
4

− 𝑘
1
𝑧
4
+ 𝑘
2
𝑧
5
,

𝑑𝑥
5

𝑑𝑡
= 𝑘
1
𝑧
4
− 𝑘
2
𝑧
5
,

(8)

where 𝑘, 𝑐 are the nonzero elements in matrix𝐾 and𝐶 of (6).
For simplicity, we denote

𝑔 (𝐾
𝑗
, 𝑥
𝑖
) =

𝑥
𝑖

𝐾
𝑗
+ 𝑥
𝑖

. (9)

Then,

𝐾
𝑛

𝐼

𝐾𝑛
𝐼
+ 𝑥𝑛
5

= 1 − 𝑔 (𝐾
𝑛

𝐼
, 𝑥
𝑛

5
) . (10)

The corresponding error dynamics are described as

𝑑𝑒
1

𝑑𝑡
= V
𝑠
[𝑔 (𝐾

𝑛

𝐼
, 𝑧
𝑛

5
) − 𝑔 (𝐾

𝑛

𝐼
, 𝑥
𝑛

5
)]

− V
𝑚
[𝑔 (𝐾
𝑚
, 𝑥
1
) − 𝑔 (𝐾

𝑚
, 𝑧
1
)] − 𝑘𝑐𝑒

1
,

𝑑𝑒
2

𝑑𝑡
= 𝑘
𝑠
𝑒
1
− V
1
[𝑔 (𝐾
1
, 𝑥
2
) − 𝑔 (𝐾

1
, 𝑧
2
)]

+ V
2
[𝑔 (𝐾
2
, 𝑥
3
) − 𝑔 (𝐾

2
, 𝑧
3
)] ,

𝑑𝑒
3

𝑑𝑡
= V
1
[𝑔 (𝐾
1
, 𝑥
2
) − 𝑔 (𝐾

1
, 𝑧
2
)]

− V
2
[𝑔 (𝐾
2
, 𝑥
3
) − 𝑔 (𝐾

2
, 𝑧
3
)]

− V
3
[𝑔 (𝐾
3
, 𝑥
3
) − 𝑔 (𝐾

3
, 𝑧
3
)]

+ V
4
[𝑔 (𝐾
4
, 𝑥
4
) − 𝑔 (𝐾

4
, 𝑧
4
)] ,

𝑑𝑒
4

𝑑𝑡
= V
3
[𝑔 (𝐾
3
, 𝑥
3
) − 𝑔 (𝐾

3
, 𝑧
3
)]

− V
4
[𝑔 (𝐾
4
, 𝑥
4
) − 𝑔 (𝐾

4
, 𝑧
4
)]

− V
𝑑
[𝑔 (𝐾
𝑑
, 𝑥
4
) − 𝑔 (𝐾

𝑑
, 𝑧
4
)] − 𝑘

1
𝑒
4
+ 𝑘
2
𝑒
5
,

𝑑𝑒
5

𝑑𝑡
= 𝑘
1
𝑒
4
− 𝑘
2
𝑒
5
.

(11)
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Figure 2: (a)–(e) State trajectories of systems (3) and (8). (f) The error dynamics of system (11). Here, 𝑢(𝑡) = 0, 𝑦(𝑡) = 𝑥
1
(𝑡), and 𝑘 = 5.

Initial values are randomly chosen.
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Before we analyze the stability of system (11), we note
that since𝑥

𝑖
, 𝑧
𝑖
represent species concentrations, theymust be

nonnegative and bounded [24]. Furthermore, since 𝑔(𝐾
𝑗
, 𝑥
𝑖
)

is continuous and differentiable, by the mean value theorem,
there must exist 𝜉

𝑖
between 𝑥

𝑖
and 𝑧
𝑖
, satisfying

𝑔 (𝐾
𝑗
, 𝑥
𝑖
) − 𝑔 (𝐾

𝑗
, 𝑧
𝑖
) = 𝑔
󸀠
(𝐾
𝑗
, 𝜉) (𝑥

𝑖
− 𝑧
𝑖
)

=
𝐾
𝑗

(𝐾
𝑗
+ 𝜉
𝑖
)
2
(𝑥
𝑖
− 𝑧
𝑖
) .

(12)

For system (11), we construct the following Lyapunov
function:

𝑉 (𝑡) =
1

2

5

∑

𝑖=1

𝑒
𝑖(𝑡)
2
. (13)

Based on (12), the derivative of (13) along system (11) is

𝑉̇ (𝑡) =

5

∑

𝑖=1

𝑒
𝑖 (𝑡) ̇𝑒𝑖 (𝑡)

= −[𝑘𝑐 +
𝑉
𝑚
𝐾
𝑚

(𝐾
𝑚
+ 𝜉
1
)
2
] 𝑒
2

1
−

𝑉
1
𝐾
1

(𝐾
1
+ 𝜉
2
)
2
𝑒
2

2

− [
𝑉
2
𝐾
2

(𝐾
2
+ 𝜉
3
)
2
+

𝑉
3
𝐾
3

(𝐾
3
+ 𝜉󸀠
3
)
2
] 𝑒
2

3

− [
𝑉
4
𝐾
4

(𝐾
4
+ 𝜉
4
)
2
+

𝑉
𝑑
𝐾
𝑑

(𝐾
𝑑
+ 𝜉󸀠
4
)
2
+ 𝑘
1
] 𝑒
2

4

− 𝑘
2
𝑒
2

5
+ 𝑘
𝑠
𝑒
1
𝑒
2
+ [

𝑉
2
𝐾
2

(𝐾
2
+ 𝜉
3
)
2
+

𝑉
1
𝐾
1

(𝐾
1
+ 𝜉
2
)
2
] 𝑒
2
𝑒
3

+ (𝑘
1
+ 𝑘
2
) 𝑒
4
𝑒
5

+ [
𝑉
4
𝐾
4

(𝐾
4
+ 𝜉
4
)
2
+

𝑉
3
𝐾
3

(𝐾
3
+ 𝜉󸀠
3
)
2
] 𝑒
3
𝑒
4
−
𝑛𝑉
𝑠
𝐾
𝑛

𝐼
𝜉
𝑛−1

5

(𝐾𝑛
𝐼
+ 𝜉𝑛
5
)
2
𝑒
1
𝑒
5

= 𝑒
𝑇
𝑄𝑒.

(14)

Here,

𝑄 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑉
𝑚
𝐾
𝑚

(𝐾
𝑚
+ 𝜉
1
)
2
− 𝑘𝑐

𝑘
𝑠

2
0 0

−𝑛𝑉
𝑠
𝐾
𝑛

𝐼
𝜉
𝑛−1

5

2(𝐾𝑛
𝐼
+ 𝜉𝑛
5
)
2

∗
−𝑉
1
𝐾
1

(𝐾
1
+ 𝜉
2
)
2

0.5𝑉
2
𝐾
2

(𝐾
2
+ 𝜉
3
)
2
+
0.5𝑉
1
𝐾
1

(𝐾
1
+ 𝜉
2
)
2

0 0

0 ∗
−𝑉
2
𝐾
2

(𝐾
2
+ 𝜉
3
)
2
−

𝑉
3
𝐾
3

(𝐾
3
+ 𝜉󸀠
3
)
2

0.5𝑉
4
𝐾
4

(𝐾
4
+ 𝜉
4
)
2
+
0.5𝑉
3
𝐾
3

(𝐾
3
+ 𝜉󸀠
3
)
2

0

0 0 ∗
−𝑉
4
𝐾
4

(𝐾
4
+ 𝜉
4
)
2
−

𝑉
𝑑
𝐾
𝑑

(𝐾
𝑑
+ 𝜉󸀠
4
)
2
− 𝑘
1

𝑘
1
+ 𝑘
2

2

∗ 0 0 ∗ −𝑘
2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (15)

which is a symmetricalmatrix. 𝜉
𝑖
, 𝜉
󸀠

𝑖
are values between𝑥

𝑖
and

𝑧
𝑖
. For appropriate gain 𝑘, if 𝑄 < 0, 𝑉̇(𝑡) < 0. System (11) will

be globally asymptotically stable. In other words, system (3)
can be observed through the observer (8).

Remark 1. If any one of the other variables is used to track
the state of the original system (3), one should only slightly
revise the observer (8). If more than one variable is measured
to track the original system, the observer can be similarly
designed. For example, if 𝑦(𝑡) in (4) is 𝑦(𝑡) = (𝑐

1
𝑥
1
, 𝑐
2
𝑥
2
)
𝑇,

the control gain matrix𝐾 is chosen as

𝐾 =

[
[
[
[
[

[

𝛼 0

0 𝛽

0 0

0 0

0 0

]
]
]
]
]

]

. (16)

Then, the observer is designed as

𝑑𝑧
1

𝑑𝑡
= V
𝑠

𝐾
𝑛

𝐼

𝐾𝑛
𝐼
+ 𝑧𝑛
5

− V
𝑚

𝑧
1

𝐾
𝑚
+ 𝑧
1

+ 𝑢 (𝑡) + 𝛼𝑐1 (𝑥1 − 𝑧1) ,

𝑑𝑧
2

𝑑𝑡
= 𝑘
𝑠
𝑧
1
− V
1

𝑧
2

𝐾
1
+ 𝑧
2

+ V
2

𝑧
3

𝐾
2
+ 𝑧
3

+ 𝛽𝑐
2
(𝑥
2
− 𝑧
2
) ,

𝑑𝑧
3

𝑑𝑡
= V
1

𝑧
2

𝐾
1
+ 𝑧
2

− V
2

𝑧
3

𝐾
2
+ 𝑧
3

− V
3

𝑧
3

𝐾
3
+ 𝑧
3

+ V
4

𝑧
4

𝐾
4
+ 𝑧
4

,

𝑑𝑧
4

𝑑𝑡
= V
3

𝑧
3

𝐾
3
+ 𝑧
3

− V
4

𝑧
4

𝐾
4
+ 𝑧
4

− V
𝑑

𝑧
4

𝐾
𝑑
+ 𝑧
4

− 𝑘
1
𝑧
4
+ 𝑘
2
𝑧
5
,

𝑑𝑥
5

𝑑𝑡
= 𝑘
1
𝑧
4
− 𝑘
2
𝑧
5
.

(17)

For appropriate parameters 𝛼, 𝛽, one can easily prove that
the original system is also observable from the observer (17).
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Figure 3: (a) State trajectories of systems (3) and (8) with 𝑢(𝑡) = 𝜖 sin(𝑡). (b) The error dynamics of system (11). Here, 𝑦(𝑡) = 𝑐𝑥
1
(𝑡), 𝑘 =

2.5, 𝑐 = 2, and 𝜖 = 0.1.
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Figure 4: (a) State trajectories of systems (3) and (8) with step input signal 𝑢(𝑡). (b)The error dynamics of system (11). Here,𝑦(𝑡) = 𝑐𝑥
1
(𝑡), 𝑘 =

2.5, 𝑐 = 2, and 𝑢(𝑡) = 0 for 𝑡 ≤ 50 and 𝑢(𝑡) = 0.1 for 𝑡 > 50.

Obviously, the corresponding observer (17) is more complex
than the observer (11).

Remark 2. There are manymethods to prove the stability of a
dynamical system. One can easily prove that the nonlinear
terms on the right-hand side of system (11) are Lipschitz.
For Lipschitz nonlinear systems, Rajamani [5] proposed a
general theorem for the observer design. However, due to the
complexity of the biological model, the theorem obtained in

[5] fails to work for the error system (11). Therefore, we have
used themean value theorem to simplify the error system (11)
and obtained a sufficient condition for the observer design.
The matrix 𝑄 relies on the bound of system (3).

4. Numerical Simulations

Hereinafter, we numerically verify the effectiveness of the
designed observers. Firstly, we assume 𝑢(𝑡) = 0; the output
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Figure 5: (a) State trajectories of systems (3) and (17) with step input signal 𝑢(𝑡) in (19). (b)The error dynamics between systems (3) and (17).
Here 𝑦(𝑡) = (𝑐

1
𝑥
1
(𝑡), 𝑐
2
𝑥
2
(𝑡))
𝑇
, 𝛼 = 2, 𝛽 = 3, 𝑐

1
= 2.2, and 𝑐

2
= 1.

function 𝑦(𝑡) = 𝑥
1
(𝑡). For 𝑘 = 5, all the state variables in the

original system (3) can be tracked by the observer (8). Under
randomly initial values, Figure 2 shows the state trajectories
of systems (3) and (8), as well as the error dynamics of system
(11). From Figure 2, one can see that the state variables of
(3) oscillate with a period close to 24 hours. The observer
system (8) can track the states of the original system. The
error between the observer system and the original system
quickly approximates to zero.

For different input signals and under appropriate gain
𝑘, system (8) can always track the states of system (3). For
example, when 𝑢(𝑡) = 𝜖 sin(𝑡), 𝑦(𝑡) = 𝑐𝑥

1
(𝑡), 𝑘 = 2.5, 𝑐 =

2, and 𝜖 = 0.1, Figure 3 shows the state trajectories of systems
(3) and (8) as well as the error dynamics of system (11).
From Figure 3, we can see that the states of system (3) can be
observed by the observer (8).The error system (11) converges
to zero quickly. When 𝑢(𝑡) is a step signal, the observer (11)
can also well monitor the states of the original (3). Figure 4
shows the case for 𝑦(𝑡) = 𝑐𝑥

1
(𝑡), 𝑘 = 2.5, and 𝑐 = 2, and the

step input signal

𝑢 (𝑡) = {
0, 𝑡 ≤ 50,

0.1, 𝑡 > 50.
(18)

For the cases discussed in Remark 1, when we choose 𝛼 =
2, 𝛽 = 3, 𝑐

1
= 2.2, 𝑐

2
= 1, and the following input signal,

𝑢 (𝑡) =

{{

{{

{

0, 𝑡 ≤ 50,

0.2, 50 < 𝑡 < 150,

0, 𝑡 ≥ 150,

(19)

Figure 5 shows the numerical simulation results for such case.
From Figure 5, we see that the observer (17) can also well

track the states of system (3). Additionally, combinedwith the
simulation results as shown in Figures 2–5, we can conclude
that the designed observers have good performance under
various kinds of inputs, and the input signal 𝑢(𝑡) can affect
the period of the circadian oscillator.

5. Discussions and Conclusions

Biological systems are typical complex dynamical systems. To
efficiently infer the state of a biological system, it is necessary
to develop some simple observers via monitoring a few
system variables. Based on the recently proposed graphical
approach, we have designed some rather simple observers
for a core circadian rhythm network. For various input
signals and under appropriate control gains, the designed
observer can well infer the states of the original system. The
investigations in this paper further support the conclusions
in [4]. Real-world applications of the related investigations
on biological networks include the experimental design and
control of the related biological systems.

We have considered three types of inputs, and it is intrigu-
ing to investigate the observer design problems for stochastic
systems, since biological systems are inherent stochastic and
perturbed by environment [14–16]. Another question that
deserves to be further investigated is to develop some general
theorems to guarantee the observability of the biological
systems [25–28]. Finally, it is also intriguing to investigate the
observability of large-scale biological networks [17], such as
the yeast cell cycle network with boolean dynamical model
or differential equation models [18–23]. These topics will be
discussed in our future works.
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