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Deep learning features encode 
interpretable morphologies 
within histological images
Ali Foroughi pour1, Brian S. White1, Jonghanne Park1, Todd B. Sheridan1,2 & 
Jeffrey H. Chuang1,3*

Convolutional neural networks (CNNs) are revolutionizing digital pathology by enabling machine 
learning-based classification of a variety of phenotypes from hematoxylin and eosin (H&E) whole 
slide images (WSIs), but the interpretation of CNNs remains difficult. Most studies have considered 
interpretability in a post hoc fashion, e.g. by presenting example regions with strongly predicted 
class labels. However, such an approach does not explain the biological features that contribute to 
correct predictions. To address this problem, here we investigate the interpretability of H&E-derived 
CNN features (the feature weights in the final layer of a transfer-learning-based architecture). While 
many studies have incorporated CNN features into predictive models, there has been little empirical 
study of their properties. We show such features can be construed as abstract morphological genes 
(“mones”) with strong independent associations to biological phenotypes. Many mones are specific 
to individual cancer types, while others are found in multiple cancers especially from related tissue 
types. We also observe that mone-mone correlations are strong and robustly preserved across related 
cancers. Importantly, linear mone-based classifiers can very accurately separate 38 distinct classes 
(19 tumor types and their adjacent normals, AUC = 97.1%± 2.8% for each class prediction), and 
linear classifiers are also highly effective for universal tumor detection (AUC = 99.2%± 0.12% ). This 
linearity provides evidence that individual mones or correlated mone clusters may be associated with 
interpretable histopathological features or other patient characteristics. In particular, the statistical 
similarity of mones to gene expression values allows integrative mone analysis via expression-based 
bioinformatics approaches. We observe strong correlations between individual mones and individual 
gene expression values, notably mones associated with collagen gene expression in ovarian cancer. 
Mone-expression comparisons also indicate that immunoglobulin expression can be identified using 
mones in colon adenocarcinoma and that immune activity can be identified across multiple cancer 
types, and we verify these findings by expert histopathological review. Our work demonstrates that 
mones provide a morphological H&E decomposition that can be effectively associated with diverse 
phenotypes, analogous to the interpretability of transcription via gene expression values. Our work 
also demonstrates mones can be interpreted without using a classifier as a proxy.

Deep learning has become an important methodology for analyzing biomedical images, and in particular for 
analyzing hematoxylin and eosin (H&E) stained whole slide images (WSIs). Deep neural networks have achieved 
classification accuracies higher than classical machine learning models1. However, they are black-boxes that do 
not directly reveal the morphological features they associate with labels, a significant concern for mechanistic 
analysis and clinical decision making2. Identification of biologically meaningful morphological features may be 
confounded by image artifacts3, such as blurring, noise, and lossy image compression4. Tissue damage, image 
quality, and dataset-specific artifacts have also been suggested to affect feature representation and prediction 
accuracy of neural networks1,5,6. Given the impact of such artifacts on deep learning-based predictors, it is of 
critical importance to be able to decompose CNNs into features that can be biologically interpreted.

The majority of models for visualizing, analyzing, and interpreting CNNs reveal “where” a network is “look-
ing” to make its prediction, rather than revealing “what” information in the region of interest is important. Some 
methods output pixel patterns that affect the value of a neuron in a deep network7. However, such techniques 
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tend to output different predictive regions, can be difficult to validate, or have been suggested to be “fragile”, i.e. 
extremely sensitive to small perturbations of the image8. Optimizing conventional deep learning techniques, such 
as self-attention, to identify regions informative of class labels is a current theme in digital pathology9,10. While 
most methods assess deep feature representations as a whole, recent work suggests deep learning features cluster 
together and encode distinct morphologies11. Other recent works have focused on visualizing individual deep 
learning features as heatmaps12. Finally, as the majority of interpretation methods have focused on identifying 
regions predictive of class labels, they requires a trained classifier and cannot be directly used in pipelines that 
employ unsupervised feature learning.

Unlike natural image analysis13, biomedical image analysis is complemented by additional data modalities, 
such as multiplexed imaging, single cell and bulk sequencing, and clinical information14,15. These data may aid in 
interpreting the deep feature representations of the H&E slide. However, models integrating these diverse modali-
ties are needed. The feasibility of doing so is supported by work establishing the connection between modalities, 
for example by using CNNs to predict expression values of specific genes from H&E images16–18. Because of the 
architectural complexity of CNNs, it has often been assumed that CNN-based decompositions of images into 
features are not interpretable. However, there has been little empirical study of this question, e.g. by testing 
whether CNN-derived features are correlated with simple biological features such as gene expression values.

In this work, we investigate the interpretability of CNN-derived image features. Prior works1,19 have referred 
to these by various names (e.g. features, fingerprints ) whose use is not specific to biological image analysis. For 
clarity and because they represent morphological features in many ways analogous to genes, we refer to them as 
mones (i.e. “morphological genes”). We find that mones share statistical similarities with gene expression data, 
and hence, a mone can be conceptualized as an abstract gene with some expression value. Individual mones have 
strong linear associations with phenotypic features, making them directly interpretable, which we demonstrate in 
several analyses. We demonstrate that many mones can distinguish cancer tumors from adjacent normal slides. 
These mones can be linearly combined for reliable prediction of both pan-cancer and tissue-specific cancer 
phenotypes. Mone-mone correlation analysis identifies clusters of highly correlated mones within cancer types, 
and these correlations are strongly preserved among cancers from related tissues. The similarity of mone values 
to gene expression data allows immediate use of many interpretable bioinformatics tools and machine learning 
models to identify the underlying biology of morphologies encoded by CNNs. For example, integrative mone-
gene expression correlation analysis reveals that collagen content and immune infiltration are linearly associated 
with morphologies encoded by mones in several cancer types, and we confirm these relationships by expert 
histopathological review. Our studies confirm individual deep learning features encode distinct and identifi-
able morphology, and demonstrate the power of mones for computationally deconstructing cancer images into 
interpretable biological features.The linear analysis of individual deep learning features versus expression values 
or interpretable morphology provides a simple and effective approach to interpreting deep learning models in 
biological image analysis, notably without the need for a trained classifier.

Results
We analyzed the InceptionV320 features of tiles from whole slide images of The Cancer Genome Atlas (TCGA)1 
for 19 cancers (see Supplementary File 1 for the full list). We used features derived from this architecture because 
predictive models based on Inception have shown high accuracy for identifying phenotypes in prior studies1. 
We hereafter denote each of the 2048 outputs of the global average pooling layer of the Inception V3 network as 
mones (morphological genes). We use this terminology because mones have analogies to genes with individual 
expression values. Tile level mones can be combined to construct slide level mones (see “Methods”). Unless oth-
erwise stated, in the studies below “mone” refers to a slide level characterization. Figure 1 provides an overview 
of interpretive mone analyses and their connection to current interpretation techniques in the field.

Individual mones differentiate phenotypes.  We first investigated to what extent individual mones can 
differentiate phenotypes, focusing on TCGA tumor/normal slide comparisons. We initially identified individual 
mones with significant differences in distribution between breast cancer (BRCA) tumor and adjacent normal 
slides (> 1800 mones were statistically significant with FDR < 5%). A clustermap of the top 100 such mones was 
able to clearly separate these classes (see “Methods”, Fig. 2a, and Supplementary Fig. 1, clustermap AUC = 89%, 
rand score = 96%, and adjusted rand score = 85%). These results were typical of mone behaviors in many tumor 
types—in any given tumor type, many mones were able to separate frozen tumor from normal slides (see “Meth-
ods” and Supplementary File 1). We applied several statistical methods to test the robustness of such mones. In 
each cancer, at least 40% of mones were statistically significant irrespective of the statistical test used (FDR = 5%, 
Supplementary File 1), and 75.7% of mones significant by at least one method were significant by all tests (see 
“Methods”, Fig. 2b). A smaller subset of these mones showed strong effect sizes, as identified by optimal Bayesian 
filter (OBF)21 statistics (see “Methods”). 22% of all mone-cancer pairs met this criterion based on distributional 
differences between tumor and normal slides (Supplementary Fig. 2).

As an example, mone 983 is a tumor marker with a distributional difference between frozen tumor and 
adjacent normal breast cancer (BRCA) slides (Fig. 2c). It also behaves similarly in several other tumor types 
(Supplementary Fig. 3). It strongly correlates with cell density in frozen BRCA slides (see “Methods”, Fig. 2d,e, 
Pearson r = 0.69, p-value < 1e−200, Supplementary File 2) and significantly though with moderate magnitude 
in FFPE BRCA tumor slides (Pearson r = 0.24, p-value = 1.9e−13). Mone 983 has higher correlation with cell 
density in FFPE LUAD slides (Pearson r = 0.61, p-value = 2.2e−34) than frozen LUAD slides (Pearson r = 0.28, 
p-value = 4.1e−18, Supplementary File 2).

To further test whether mones exhibit consistent behavior in different cancer types, we analyzed the four 
cancer families of1: pan-GYN, pan-KIDNEY, pan-LUNG, and pan-GI (Supplementary File 3 for cancers in each 
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family). More than half of the mones with distributional differences in each cancer type also have distributional 
differences in all cancers of the family (Supplementary File 3). Although cancer-specific mones are uncommon, 
such mones still show clear distributional differences between tumor and normal (Supplementary Fig. 4). Inter-
estingly, most mones distinguishing tumor from normal in both LUAD and LUSC also distinguish between the 
LUAD and LUSC cancers (Supplementary File 3), suggesting quantitative values are important. For example, 
mone 1914 distinguishes LUAD and LUSC frozen (adjusted t-test p-value < 1e−50) and FFPE (adjusted t-test 
p-value < 2.1e−28) tumor slides, where LUAD slides tend to have a higher mone1914 value (Supplementary 
Fig. 5).

Individual mones can also distinguish frozen from FFPE slides (Supplementary File 4). We observed the 
ability of some mones to distinguish between tumor and normal is impacted by differences between frozen and 
FFPE modalities ( 421± 112 across all cancers, see “Methods”, Supplementary File 4), though the majority of 
mones behave similarly in frozen and FFPE.

Mone clusters provide robust encodings of cancer phenotypes.  We next investigated to what 
extent mones are independent or encode behaviors together. We did this by calculating pairs of mones that 
were significantly correlated, for each cancer type. We analyzed this first by restricting to frozen slides (to avoid 
Simpson’s paradox), and second by combining frozen and FFPE slides (to avoid false correlations due to frozen-
specific artifacts). The results were generally robust between the two methods-a few cancers had a non-trivial 
difference in the ratio of correlated mone pairs ascertained by the two methods (ESCA, KICH, SARC, and 
PRAD 22.3%± 2.22% ), while the remaining cancers had small differences ( 7.8%± 3.9% , Supplementary File 
6). Therefore we subsequently analyzed frozen samples only unless otherwise specified. Overall, we found that 
correlated mones are prevalent among tumor slides (Fig. 2f,g, and Supplementary File 6). For example, 83.9% 
and 88.7% of mone-mone pairs are correlated within LUAD and within LUSC, respectively (see “Methods” and 
Supplementary File 6). We observed similar results for other cancers: 68.8%± 13% of all mone-pairs were statis-
tically significant across cancers (Supplementary File 6). Remarkably, we observed that pairwise correlations are 
preserved within cancer families—more than 45% of mone-pairs statistically significant in one cancer are sig-
nificant in all cancers of the family (pan-GYN, pan-KIDNEY, pan-LUNG, and pan-GI, Supplementary Fig. 6). 

Figure 1.   An overview of interpretation methods in deep learning. Blue arrows denote methods that require a 
trained classifier, and green arrows denote methods that do not require a trained classifier. (a) Several methods 
identify regions which drive the network’s prediction. These masks can be generated by the network, e.g. spatial 
self-attention62, or as a post-process via visualization methods7 such as GradCam, or prediction heatmaps1. 
Heatmaps of individual mones and mone-based classifiers can be used to detect predictive regions. (b) Channel 
attention62 and sparse models, including sparse mone-based classifiers, identify subsets of features that are 
predictive of class labels. Differential mone analysis identifies discriminative features without training of a 
classifier. (c) Methods in (a) and (b) are typically used to select example image regions that have high attention, 
affect predictions the most, or affect the value of a feature. Mone analysis can be used to (d) identify features 
that encode a given phenotype of interest and (e) identify the morphology a feature of interest encodes without 
training a classification model.
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For example, the mone-mone correlations in lung adenocarcinoma and lung squamous cell carcinoma are nearly 
identical (Fig. 2f,g). We also calculated mone-mone correlations in the normal slides associated with each cancer 
type, hypothesizing that the difference in mone-mone correlations between tumor and normal might be impor-
tant to distinguishing tumor from normal images. However, these differential mone correlations are weaker and 
less preserved across cancers (Supplementary File 6 and Supplementary Fig. 6).

Different cancers can be distinguished by different sets of mones. For example, while mone 983 separates 
tumor and normal slides of BRCA, it does not differentiate COAD tumor and normal slides (Supplementary 
Fig. 3). We identified 105 mones that are highly correlated with mone 983 in BRCA (Null: |r| ≤ 0.5 , FDR = 0.1% , 
see “Methods”), among which 52, 14, and 29 also differentiate tumor from normal slides in COAD, READ, 
and STAD, respectively (t-test FDR < 0.1% ). The first principal component of these COAD-overlapping mones 
(explaining 41% of the variance across COAD samples) strongly correlates with cell density in frozen slides 
(Cellpose cellularity estimates: Pearson r = 0.22, p-value = 2.2e−11, HoverNet cellularity estimates: Pearson 
r = 0.43, P-value = 1.9e−47, see “Methods” and Supplementary File 2). Thus the high cellularity in BRCA​22,23 
and COAD24,25 involve incompletely overlapping mone sets.

Linear models of mones can detect and distinguish tumors.  We investigated linear models of 
mones for predicting phenotypes, as they allow direct interpretation of mone values. We observed that linear 
models of mones can efficiently distinguish tumor from adjacent normal slides, as well as the cancer type from 
which they are derived (19 cancers, 38 classes, see “Methods”, Fig. 3a–c). We tested two linear models, multi-class 
linear discriminant analysis [MLDA, One versus Rest (OVR)-AUC = 97.1%± 4.6% , Supplementary File 7] and 
multinomial logistic regression with LASSO penalty (LR-LASSO, OVR-AUC = 97.1%± 4.2% , Supplementary 
File 7). MLDA encodes mone patterns indicative of class labels into a low dimensional space (i.e. the number 
of classes - 1), yielding t-SNE visualizations with improved interpretability over naïve t-SNE (compare Fig. 3a,b 
and Supplementary Fig. 7a,b). LR-LASSO, on the other hand, is a linear model based on small mone sets, so its 
regression coefficients can be interpreted directly with risks incurred by each mone.

Although CNN methods typically use difficult-to-interpret fully connected layers at the classification step, we 
found that efficiently designed linear models can replace fully connected layers while still achieving high predic-
tion AUCs. Combining tumor probabilities of the LR-LASSO classifier we obtained a universal tumor detector 

Figure 2.   Individual mones and mone pairs encode and distinguish phenotypes. (a) Clustermap of BRCA 
slides using the top100 mones differentiating the slides. 100 mones are sufficient to separate frozen normal 
(green) from frozen tumor (orange) slides. (b) Venn diagram of statistically significant mones differentiating 
tumor from adjacent normal frozen slides, comparing different statistical tests. Venn diagrams were calculated 
for each cancer type, and the observed plot shows the average across all cancer types. On average the statistical 
tests agree on 75% of mones differentiating between tumor and normal slides. (c) Probability density function of 
mone 983 among frozen tumor (orange) and adjacent normal (green) BRCA slides. (d) Log-normalized scatter 
plot of slide level mone 983 and cellpose57 estimates of cellularity across BRCA frozen slides. (e) Example tiles 
from slides with extreme mone 983 values (high and low). (f) Cluster map of the mone-mone correlation matrix 
of LUAD tumor slides, demonstrating that many mones pairs are highly correlated. (g) Mone-mone correlation 
matrix of LUSC slides, with mones ordered identically to the Fig. 1f cluster map.
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with extremely high AUC ( 99.2%± 0.12% , see “Methods”), out-performing the fully deep learning model of26 
(Reported AUC = 0.95± 0.02 ). Furthermore, LR-LASSO is effective at cross-classification similar to CNNs with 
fully connected classification layers1, i.e., LR-LASSO trained to distinguish tumor/normal for one cancer type 
can distinguish tumor/normal for other cancer types as well (Fig. 3d and Supplementary Fig. 7c). While the 
LR-LASSO model has smaller average AUC (0.84) compared to the fully deep learning model of1 (0.88), logistic 
regression is more interpretable than a multi-layer perceptron. Our slide level tumor detectors also produce 
meaningful tile level predictions. Independent review by our pathology team supports most tumor regions having 
high tumor probability, and most non-tumor regions have low tumor probability in these images, with the cases 
of misclassification tending to be prediction of non-tumor regions to be tumor (Supplementary Fig. 8). These 
results indicate that the LR-LASSO slide level tumor markers are effective at the tile level.

Mones have interpretable correlations with gene expression.  We next investigated whether mones 
are linearly associated with gene expression values, as this could provide transcriptional interpretability for 
mones (see “Methods” for data stratification and pre-processing). We observed many mones significantly cor-
related with individual genes. Across five cancers analyzed (OV, COAD, KIRC, LUAD, and LUSC) between 83 

Figure 3.   The joint distribution of mones reliably separates tumor and normal slides and the underlying cancer. 
2D t-SNE plots of the mone-based MLDA feature space distinguishing 38 classes (19 cancers, tumor/normal 
status) based on (a) cancer type and (b) tumor/normal status. (c) Normalized confusion matrix of the 38-class 
mone-based logistic regression classifier. The color depicts the ratio of slides with a given true class predicted 
as any of the possible classes. The large diagonal values suggest the classifier has high accuracy. (d) The cross-
classification AUCs of mone-based logistic regression tumor/normal classifier trained on each cancer and 
applied to all cancers.
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(LUSC) and 1797 (KIRC) mones were associated with at least one gene, whereas between 332 (LUSC) and 16474 
(KIRC) genes were associated with at least one mone (“Methods”, Supplementary File 8). We then analyzed 
several cases of particular interest.

Mones encode collagen content.  We first used unsupervised analysis to study clusters of correlated mone-gene 
pairs. We identified a cluster of highly correlated mones and collagen genes in OV (Fig. 4a and Supplementary 
Fig. 9). These mone values can be efficiently combined for association with phenotype using PCA (PC-1 explains 
63% of the variance). Histopathological review by our pathology team confirmed tiles with high PC-1 values as 
typically rich in collagen (Fig. 4d and Supplementary Fig. 10), and tiles with low PC-1 values as having low colla-
gen but increased cellularity. These mone-gene associations may be clinically relevant, as high expression of col-
lagen genes correlates with multi-drug resistance27 and poor prognosis in ovarian cancers28. Mone 1062—one of 
the mones in the identified cluster—was additionally highly correlated with ECM2, THBS1 and THBS2, which 
have been suggested to play a significant role in ovarian cancer drug resistance and metastasis28–30.

Mones encode immune infiltration.  Supervised correlation analysis using fixed gene sets can also be used to 
test if mones encode morphological features associated with a biological phenotype. We tested whether mones 
encode immune infiltration in pan-GI (COAD, READ, and STAD) and pan-LUNG (LUAD and LUSC) cancers, 
with immune related gene sets taken from31 and32 (see “Methods” and Supplementary File 9).

We identified 19 mones significantly correlating (some positive, some negative) with immune related genes 
in pan-GI cancers (Fig. 4b and Supplementary File 9). These mones have significant correlations with each 
other (|r| = 0.56± 0.13 ), and 14 mones significantly correlate with more than one immune gene. LAIR1, LCP2, 
MS4A4A, and CCR1 correlate with 15, 9, 12, and 15 mones, respectively. All 19 mones are significantly correlated 
with prior TCGA estimates of leukocyte fraction33 (FDR < 0.05, |r| = 0.29± 0.07 ) and HoverNet estimates of 
immune cell quantity from the H&E images (see “Methods”, FDR < 0.05, |r| = 0.45± 0.12 ) in COAD. Mone 
179 had strong positive correlations with both leukocyte fraction (r = 0.2) and HoverNet estimates (r = 0.65). 
Histopathological review confirmed that mone 179 differentiates amongst COAD tiles according to their level 
of immune infiltration (Fig. 4e and Supplementary Fig. 11). PC-1 of the 19 mones has significant correlation 
with leukocyte fraction (r = 0.4, p-value = 2.4e−35) and HoverNet estimates (r = 0.17, p-value = 2.5e−17). His-
topathological review validated that PC-1 also differentiates COAD tiles according to differing levels of immune 
infiltration (Supplementary Fig. 12). Thus PC-1 efficiently combines mones and provides a stronger separation 
than individual mones.

Figure 4.   Mone-gene correlation analysis identifies highly correlated mone-gene clusters. Correlation matrix 
of (a) a cluster of highly correlated mones and collagen genes in OV , and a cluster of highly correlated mones 
and immune-related genes in (b) pan-GI cancers and (c) LUAD. See Supplementary Fig. 9 for adjusted p-values. 
Example tiles from slides with (d) high and low PC-1 in OV, (e) high and low mone 179 in COAD, and (f) high 
and low PC-1 in LUAD. Histopathology review identifies that mone-predicted (d) OV tiles with high PC-1 
are rich in collagen, and (e) COAD tiles with high mone 179 and (f) luad tiles with high PC-1 have a strong 
lymphocyte presence. See Supplementary Figs. 10–13 for additional examples at both high and low mone values.
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We observed similar correlations, but smaller in magnitude, between mones and local immune cytolytic 
activity genes in lung cancers (Fig. 3c and Supplementary File 10). We observed stronger correlations in LUAD 
than LUSC (LUAD |r| = 0.20± 0.05 , LUSC |r| = 0.12± 0.05 ). We identified 31 mones significantly correlating 
(some positive, some negative) with immune related genes in LUAD. 7 mones correlated with at least 3 genes 
(Fig. 4c). Only one LUAD immune mone did not correlate with lymphocyte fraction (FDR = 0.05). PC-1 of the 
31 mones correlates with lymphocyte fraction (r = 0.28, p-value = 2.2e−4). Histopathological review of LUAD 
slides based on PC-1 suggests LUAD tiles with high PC-1 show a strong tumor infiltrating lymphocyte presence 
and have inflammation, while tiles with low PC-1 are typically not inflamed and show weaker immune infiltra-
tion (Fig. 4f, Supplementary Fig. 13).

Mones identify immunoglobulin gene expression in highly cellular colon adenocarcinoma tumors.  Supervised 
correlation analysis can also clarify finer behaviors within WSIs. For example, highly cellular COAD tumors 
typically show high expression of immunoglobulin (IG) genes. We considered the 52 mones correlated with 
mone 983 and which differentiate COAD tumor from normal (“Mone clusters provide robust encodings of can-
cer phenotypes” section). The PC-1 dimension of these mones significantly correlates with 87 genes in COAD 
(FDR < 0.05 , Supplementary File 11 for the full gene list), as well with the average expression of these 87 genes 
(r = 0.33, p-value = 3.8e−12). Immunoglobulin (IG) genes dominate this gene set, and we define their average 
expression as a sample’s IG score.

B-cells express immunoglobulin, and as expected we observed a statistically significant correlation between 
the log normalized B-cell estimates of33 and IG score (p-value = 2.4e−12). Interestingly, however, B cells comprise 
only a small fraction of cells in each sample ( 0.86%± 1.5% ), and we did not observe a significant correlation 
between the B-cell estimates and mone PC-1 (correlation coefficient = − 0.009, P-value = 0.85). Thus mone 
analysis suggests that IG expression is not due solely to B-cells. This supports recent studies suggesting colon 
cancer cells themselves express IG genes34.

External validation on CPTAC​.  We externally validated mone patterns on CPTAC-LUAD35 and CPTAC-
LUSC36. Mone 983 correlates with cell density in CPTAC-LUSC (r = 0.41, p-value = 1.1e−40, Supplementary 
Fig. 14) and CPTAC-LUAD (r = 0.21, p-value = 1.8e−12, Supplementary Fig. 14). Pathologist evaluation con-
firmed the ability of the PC-1 dimension of TCGA-LUAD immune mones (“Mones encode immune infiltration” 
section) to separate CPTAC-LUAD slides by immune activity. We also observed that HoverNet frequently mis-
labels lymphocytes as dead cells (Supplementary Fig. 14). Therefore, mone analysis has more robust behavior on 
CPTAC-LUAD than HoverNet (Supplementary Fig. 14).

Similar to TCGA, CPTAC-LUAD slides tend to have a higher mone 1914 value than LUSC slides (t-test raw 
p-value < 1e−50). Pathologist review suggests LUAD slides with high values of mone 1914 tend to have gland 
and micropapillary formations, and have finely vacuolated cytoplasm (Supplementary Fig. 5). These features 
are indicative of adenocarcinoma and were not observed in CPTAC-LUSC slides with low mone 1914 values 
(Supplementary Fig. 5).

Discussion
Mone analysis provides interpretability of deep neural networks through the linear correlations of deep learning 
features against phenotypes and gene expression profiles. While the richness of CNN features suggests potential 
linear correlations of individual features with human interpretable morphologies, validation of such relations is 
necessary, as human interpretability is not explicitly enforced in the training of CNNs. Furthermore, identifica-
tion of the encoded morphology by each mone is a non-trivial task. Although correlation is not causation, our 
mone analysis empirically shows that mones efficiently encode strong morphological features that can often be 
used to replace multi-layer perceptrons with robust and interpretable linear classification models. Mone-analysis 
is flexible, can be used in a diverse set of interpretation modalities, and can be applied to features engineered 
through various training methodologies. Moreover, we have demonstrated that integrative mone-gene cor-
relation analysis can identify specific transcriptional processes from images, and verified these through expert 
pathological review.

Mones provide image‑based interpretability.  Linear models based on mones have several empirical 
and theoretical strengths for image analysis. Individual mones and small mone clusters directly correlate with 
phenotypes (“Individual mones differentiate phenotypes” and “Linear models of mones can detect and distin-
guish tumors” sections), enabling a simpler interpretation of CNNs compared with methods that integrate all 
CNN features together. Most interpretation models assume deep feature representations are complex and non-
linear, and therefore provide interpretability primarily through example regions identified by problem-specific 
classifiers. On the other hand, our results demonstrate CNNs decompose H&E stained images into interpretable 
features that linearly correlate with phenotypes, and the highly non-linear feature representation assumption can 
be relaxed for interpreting CNNs trained on H&E slides.

Some prior linear analyses of deep learning features have enabled partial interpretation of CNNs trained on 
one cancer type12,37. In contrast to12, which only reported on individual mones through their heatmaps overlaid 
with H&E images, our mone analysis identifies individually correlated mones and genes, providing finer inter-
pretability. The canonical correlation analysis of37 also has less interpretability than our approach as it investigates 
many-to-many relationships between mones and gene expression. These works also focus on individual cancers, 
while our study provides pan-cancer interpretations. For example, our results demonstrate a pan-cancer mone 
can encode conserved morphological features across multiple cancer types (“Individual mones differentiate 
phenotypes” section), and a conserved morphological feature can be encoded by distinct mones in different 
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cancer types (“Mone clusters provide robust encodings of cancer phenotypes” section). Moreover, mones within 
strongly correlated clusters can be linearly combined to better identify shared encoded morphology (“Mone 
clusters provide robust encodings of cancer phenotypes” section and11).

Pan-cancer mones and correlations between mones can facilitate and improve robustness of interpretation 
across cancer types. For example, mone983 encodes cellularity (both in TCGA and CPTAC, see “Individual 
mones differentiate phenotypes” and “External validation on CPTAC​” sections) and distinguishes tumor and 
normal slides of multiple cancers (Supplementary Fig. 3), but not GI cancers (Supplementary Fig. 3). However, 
mones encoding cellularity in COAD can be identified through their correlations with mone983 (“Mone clusters 
provide robust encodings of cancer phenotypes” section), even though mone983 is not itself associated with 
cellularity in COAD. Another example is correlation of mone1895 and mone327 with immune genes in LUAD 
and pan-GI cancers (Fig. 4).

Mone analysis improves low dimensional visualization of large image sets, such as via t-SNE plots. Pre-trained 
CNNs are universal feature extractors that encode morphological features predictive of a multitude of labels1,38,39. 
Because not all high-dimensional complex relations can be easily embedded in 2D, mone analysis can be used as 
a first phase of targeted search to identify the mones relevant to classes of interest (“Linear models of mones can 
detect and distinguish tumors” section), allowing more accurate visualization of class separations in mone space.

Mone analysis guides classifier design by exploring statistical properties of the learned features. For exam-
ple, linear associations of correlated mone clusters with phenotypes suggests utility of sparse linear models for 
reliable classification (“Linear models of mones can detect and distinguish tumors” and “External validation 
on CPTAC​” sections). Robustness of linear models using a small number of mones (“Linear models of mones 
can detect and distinguish tumors” and “External validation on CPTAC​” sections) provides empirical evidence 
for the theoretical results establishing robustness of sparse deep learning models40–42. Furthermore, removing 
mones encoding tissue-specific structures and keeping mones encoding morphological features of interest can 
help build classifiers robust to tissue specific patterns.

Correlation analysis of mones with gene expression values is a powerful approach for interpreting mones. 
We identified clusters of highly correlated mone-gene sets, demonstrating clear connection of mones to the 
underlying genetics. Some recent studies have used exhaustive sets of deep learning features to predict expression 
profiles16–18, but our work shows that small mone-gene clusters can be sufficient and provide simpler interpret-
ability. Both supervised and unsupervised analyses identify meaningful clusters (“Mones have interpretable 
correlations with gene expression” section). Supervised analysis using fixed gene sets is particularly interesting, 
as it enables direct assessment of genes of interest via mones (“Mones encode immune infiltration” section).

Strong correlations of individual mones with image-derived features (“Individual mones differentiate pheno-
types” section and Fig. 1d) or gene expression values (“Mones have interpretable correlations with gene expres-
sion” section and Fig. 4b) facilitate direct interpretation, but moderate correlations require further analysis. 
Dimensionality reduction methods, such as PCA, combine moderately correlated mones and boost the associa-
tions between mones and the encoded morphology. Whether moderate correlations are due to multiple mones 
being weak detectors of a complex morphology, individual mones partially encoding multiple morphologies, or 
gene expression profiles having moderate correlation with morphology (see16–18 for examples) are open research 
questions.

Interpretation without classifier training.  A notable advantage of the mone approach is that it does not 
require a trained classifier, which is especially desirable when feature engineering and classification are decou-
pled (e.g. transfer learning, unsupervised learning). Interpretation models that require a trained classifier, such 
as attention-based models, are restricted to the morphologies that are predictive of a predetermined set of classes 
and are utilized by the classifier. Additionally, different classification architectures applied to a fixed learned 
feature space may use different features and morphologies for predicting a class label. Mone analysis does not 
require a classifier to determine if the learned features encode a given phenotype (“Mones encode immune infil-
tration” and “Mones identify immunoglobulin gene expression in highly cellular colon adenocarcinoma tumors” 
sections). It can be immediately applied to any learned feature space irrespective of training methodology, and 
can be used in an unsupervised fashion to identify encoded morphologies (“Mones encode collagen content” 
section).

Optimization of training classifiers that are robust to stain differences across datasets is an open research 
question. However, an advantage of mone analysis is that it can be more robust to stain differences than pure 
classification models, as we observed for cell classification, where our mone-based model enjoyed better gener-
alization to external datasets than HoverNet (“External validation on CPTAC​” section). It can also be used to 
analyze how stain differences affect feature representations and a classifier’s ability to make reliable predictions.

Mone analysis across architectures and data modalities.  Our analyses demonstrate that mones pro-
vide an efficient and interpretable CNN embedding of image data, but a caveat is that they have been restricted 
to Inception V3 mones. Architectures with fully connected layers tend to increase non-linearity in feature repre-
sentations. Therefore, models that do not utilize multiple sequences of fully connected layers, such as Inception, 
are more appropriate for linear mone analysis. For example, recent work suggests a small subset of VGG19 fea-
tures may also be interpreted via their direct association with phenotypes12. However, we believe Inception V3 
mones are more appropriate for linear association studies because they are the direct inputs to the classification 
layer. A few other studies have explored correlations between deep autoencoder features and gene37 or protein 
expression43 for other architectures, but the relations between mones across architectures remains a broad and 
open research topic. We have found that Inception V3 mone 983 in BRCA can be reliably estimated via linear 
models using ResNet152V3 and DenseNet201 mones ( R2

> 0.95 ). Furthermore, we have been able to convert 
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Xception mones to Inception V3 mones using autoencoders with reasonable accuracy ( R2 ≈ 0.5 ). Recent work 
suggests InceptionV3 and ResNet features are almost equivalent44.These studies suggest that integrative linear 
mone-gene correlation analysis can be made effective across a range of deep learning architectures.

While this work focuses solely on H&E WSIs, we believe mone-based interpretation will be valuable for 
extension to other spatial data types. Immunohistochemistry (IHC) images are primed for rapid progress, as 
recent work has shown that several IHC markers can be virtualized from H&E45,46. Generalizing mone analysis 
for other data types such as spatial transcriptomics and multi-channel protein data is also an exciting and open 
area, though new architectures will need to be explored to handle the high dimensionality of such images. The 
interpretation of CNNs for these image types is a challenging but important task, and we expect that integrative 
multi-modal multi-architecture mone analysis will be a potent and informative approach.

Methods
Data acquisition and pre‑processing.  The 20X H&E WSIs of TCGA were pre-processed, tiled, and 
passed through an InceptionV3 model pre-trained on image-net data as described in1. Consistent with1 non-
overlapping 512 pixel-by-512 pixel tiles were used, and only tiles containing at least 50% tissue were passed 
through InceptionV3. The cached 2048 global average pooling layer features of InceptionV3 (called mones in 
this manuscript) were written to disk and analyzed. For each of these 2048 mones, the median value across all 
tiles within a slide was computed to yield the slide-level mone value. CPTAC-LUAD and CPTAC-LUSC cohorts 
were processed similarly.

Differential mone analysis.  Differential mone analysis identifies mones with statistically significant dis-
tributional differences across classes. Welch’s t-test, Kolmogorov Smirnov (KS) test, Wilcoxon Rank Sum (WRS) 
test, and optimal Bayesian Filter (OBF) (see21 for details) were used for statistical analysis. t-test, WRS test, and 
KS test use the Benjamini-Hochberg procedure47 for FDR correction. The scipy python package48 was used to 
implement t-test, KS test, and WRS test. The statsmodels49 implementation of the Benjamini-Hochberg proce-
dure was used.

Minimal risk OBF (see21 for details) identifies mones with posterior probabilities larger than 1− α , where 
α is the FDR rate. FDR-OBF (see50 for details) outputs the feature set that bounds the sample conditioned FDR 
by α . OBF can report the FDR of any arbitrary feature set. Unless otherwise stated FDR-OBF is used. OBF uses 
Jeffrey’s prior, assumes the prior probability of a mone having distributional differences is 50% (to model no 
preference on the identity of a mone, i.e., with or without distributional differences across classes), and sets the 
normalization constant of the prior to 0.1. Mones with distributional differences across classes are hereafter called 
markers, and mones without distributional differences are called non-markers. The posterior probabilities of OBF 
can be used to estimate the first two moments (mean and standard deviation) of the number of markers (see50 
for details). Assuming mone identities (marker or non-marker) are independent across cancers, the posterior 
probabilities can be multiplied to calculate the probability of a joint event.

OBF intrinsically computes the ratio between sample variance and weighted geometric mean of class-con-
ditioned variances, hereafter denoted by a(m) for mone m. Similar to many ANOVA-based analyses this ratio 
measures distributional differences and is closely related to Bhattacharyya distance51. It converges to 1 for non-
marker mones and converges to larger values for markers. Larger a(m) values denote larger distributional dif-
ferences. Assuming balanced samples of sizes 200 and 100 we compute the a(m) values resulting in a posterior 
of 0.95 as thresholds to distinguish moderate [a(m) = 1.088] and strong [a(m) = 1.159] mones separating tumor 
from normal slides (Supplementary Fig. 2).

Structured multi-class OBF (see52 for details) considers the four possible relations (known as structures by 
OBF) between frozen normal, frozen tumor, and FFPE tumor slides: (A) a mone does not differentiate between 
slides (prior probability = 0.5), (B) a mone has one distribution for frozen slides (both tumor and adjacent 
normal slides) and another distribution for FFPE slides (prior probability = 0.5/3), (C) a mone has one distri-
bution for tumor slides (both frozen and FFPE) and another distribution for frozen normal slides (prior prob-
ability = 0.5/3), and (D) a mone has one distribution for FFPE tumor slides and frozen adjacent normal slides 
and another distribution for frozen tumor slides. Mones with structure B for which frozen tumor and FFPE 
tumors lie on both sides of frozen adjacent normal slides (based on mean values) are considered ineffective due 
to FFPE/frozen differences.

Mone correlation analysis.  For each cancer type, we calculated correlations between mones over all sam-
ples of the given cancer type. This analysis was done for each cancer type. We use the Ledoit-Wolf shrinkage53 
implementation of the scikit-learn python package54 for computing covariance matrices. We then compute the 
correlation matrix from the covariance matrix. We apply the Fisher transform to correlation coefficients and 
approximate the null with its asymptotic Gaussian distribution. Benjamini-Hochberg47 procedure is used for 
FDR correction. We use seaborn package55 with default values to generate clustergrams. Correlation matrices are 
averaged to compute the pooled correlation matrix. Statistically significant mone-mone correlations are referred 
to as “correlated mone pairs”.

Differential mone correlations denote the difference between the correlation coefficient of tumor and normal 
slides, i.e., for each cancer, differential matrix is computed by subtracting the correlation coefficient matrix of 
normal slides form the correlation coefficient matrix of tumor slides. Differential mone correlation analysis 
uses the asymptotic Gaussian distribution of the difference between Fisher transformed correlation coefficients 
to compute the p-values. Statistically significant differential mone correlations are referred to as “differentially 
correlated mone pairs”.
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Linear classification models.  We implement MLDA and LR-LASSO using the scikit-learn python 
package54 with default values except we set C = 100 and use the “saga” solver56 in non-binary problems for LR-
LASSO. We observed little sensitivity of AUCs to the C values ranging from 1 to 1000, and hence use C = 100 
throughout. We adopted a Monte-Carlo cross-validation strategy and randomly split data to train and test sets 
10 times using scikit-learn’s train_test_split function. The splits were made at the patient level, and class ratios 
were preserved across train and test portions. The mean and variance of the AUCs across all splits are reported. 
We used the Scipy package48 to implement the Wilcoxon signed rank test to compare AUCs.

2D t-SNE visualizations of the MLDA space were implemented using scikit-learn. PCA initialization was 
used to improve reproducibility of the t-SNE plots and separation of classes. Number of neighbors was set to 50. 
All other parameters were set to the default values.

Cell segmentation and classification.  Cellpose57 was used to segment and count number of cells in 
BRCA, LUAD, and COAD tiles. Given the fixed magnification and tile size the number of cells per tile captures 
tile level cell density. Median number of cells per tile was used as slide level cell density index. HoverNet58 
was used to segment, count, and classify nuclei within COAD tumor slides. HoverNet was executed using the 
pre-trained PanNuke model59, such that nuclei were classified into one of five types: neoplastic epithelial, non-
neoplastic epithelial, connective (including fibroblasts and endothelial), inflammatory (including leukocytes, 
lymphocytes, and macrophages), and dead nuclei. Median number of cells nuclei across tiles were used as cell 
density. Median number of predicted inflammatory nuclei across tiles were used to characterize presence of 
immune cells.

Integrative mone‑gene analysis.  Gene expression data were downloaded from the GDC portal60. We only used 
slide-gene expression pairs where both the slide and the expression profile were from the same vial. Log nor-
malized FPKMs were used. Genes with zero counts in more than half the mone-gene pairs or expression stand-
ard deviation below 0.25 were removed. Given a set of mone-gene pairs, we stack the mone and gene vectors 
and compute the covariance matrix using the Ledoit-Wolf shrinkage method53 implemented in the scikit-learn 
python package54. Correlation values are computed given the covariance matrix similar to mone correlation 
analyses. Statistical significance tests are performed similar to mone correlation analyses.

Immune profiling and analysis.  Leukocyte fractions of TCGA samples were obtained from33. All T-cell and 
B-cell categories were summed to obtain T-cell and B-cell proportions, respectively. The fractions of T-cell and 
B-cells were summed to obtain lymphocyte fractions. Log normalization of fractions were used throughout. 
Correlation analysis of immune scores with mones and IG score was performed similar to mone correlation 
analysis. B-cell percentages above 3% were removed for computing the B-cell correlations as they were deemed 
outliers.

Data availability
TCGA data are publicly available through the GDC portal (https://​portal.​gdc.​cancer.​gov) and CPTAC data are 
publicly available through the cancer imaging archive61 portal (https://​www.​cance​rimag​ingar​chive.​net/).

Code availability
The code for mone analysis is available on github (https://​github.​com/​aforo​ughip​our/​mone).
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