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Abstract

Measuring joint kinematics is a key requirement for a plethora of biomechanical research

and applications. While x-ray based systems avoid the soft-tissue artefacts arising in skin-

based measurement systems, extracting the object’s pose (translation and rotation) from

the x-ray images is a time-consuming and expensive task. Based on about 106’000 anno-

tated images of knee implants, collected over the last decade with our moving fluoroscope

during activities of daily living, we trained a deep-learning model to automatically estimate

the 6D poses for the femoral and tibial implant components. By pretraining a single stage of

our architecture using renderings of the implant geometries, our approach offers personal-

ised predictions of the implant poses, even for unseen subjects. Our approach predicted the

pose of both implant components better than about 0.75 mm (in-plane translation), 25 mm

(out-of-plane translation), and 2˚ (all Euler-angle rotations) over 50% of the test samples.

When evaluating over 90% of test samples, which included heavy occlusions and low con-

trast images, translation performance was better than 1.5 mm (in-plane) and 30 mm (out-of-

plane), while rotations were predicted better than 3−4˚. Importantly, this approach now

allows for pose estimation in a fully automated manner.

Introduction

Accurate measurement of joint kinematics is a key requirement for a variety of biomechanical

and medical applications, such as investigating the effect of pathologies, the loading conditions

and injury mechanism of joints, and the development of implants. The most common way of

measuring skeletal kinematics is optical marker tracking, in which infrared cameras observe

reflective markers glued to the subject’s skin and determine the marker positions through tri-

angulation. Since the markers are attached to the skin, the markers’ movement differs from

that of the underlying joint, thus leading to soft-tissue artefacts, which are inherent to all skin-

based measurement systems [1, 2].

Contrary to such indirect approaches, x-ray methods measure the skeletal segments in a

more direct manner, yielding a series of x-ray images of the joint during movement, from

which the 3D kinematics can be estimated. Conventionally, this estimation has been
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performed by acquiring the 3D information of the target joint (e.g. using CT) and then manu-

ally adjusting the pose until the projection matches the x-ray image. This process takes about

one minute per image for an experienced operator, or about five hours of manual matching

work for each ten seconds of measurement. Because this process is so time-intensive, expen-

sive, and operator-dependent [3] even for high-contrast structures such as joint replacements,

there is considerable interest in a process to perform this 2D-3D pose estimation

automatically.

While many approaches towards automation have been developed over recent years, the

need for relatively accurate starting poses means that significant manual work is still required

in practice [3–6]. With the rise of deep learning, pose estimation has attracted attention from

the computer vision community, particularly for tasks such as industrial automation and

robotics, and achieved impressive results in terms of performance and speed over conventional

pose estimation methods. However, training deep learning methods requires large datasets

with accurate pose annotations, which are extremely laborious and costly to collect for real

images. Thus, most work to date has focused on everyday photographs and depth images on

very specific and limited datasets [7], with only few studies exploring the medical imaging

domain [8]. On top of the difficulty of acquiring a sufficient number of datasets, the strict data

protection rules in many countries limit how data can be used and require special computa-

tional infrastructure to perform deep learning experiments on such data.

Over the last two decades, our research group has taken, registered, and annotated over

100’000 x-ray images of knee replacements during activities of daily living using our moving

single-plane fluoroscope [9–11]. The high contrast offered by knee replacements and the stan-

dardized, high quality pose annotations of this unique dataset offers a ideal opportunity to

apply deep-learning methods.

Contrary to most pose estimation tasks in computer vision, the implants’ 3D information is

available for every measurement—typically as a surface file from the manufacturer—allowing

the pose estimation algorithm to be personalised to each subject and their specific implant

combinations. While various approaches for personalising deep-learning models have been

proposed, most of these methods require additional manually annotated data for the personali-

sation process. To avoid the need for such additional annotation, it is possible instead to

employ a personalisation process based on leveraging synthethic x-ray images created by ren-

dering the known implant geometries [12, 13].

In this work, we have taken advantage of our unique dataset and the new LeoMed ETH

computational cluster, which was specifically designed to facilitate deep learning experiments

on medical data, to 1) extend current deep learning approaches to pose estimation of knee

replacements from x-ray images and 2) personalise these approaches to each subject and their

specific implants. The vision of this work was to create a fully automatic approach to register-

ing x-ray images in a rapid and robust manner for all radio-opaque implants.

Materials and methods

Dataset

Our dataset consisted of about 106’000 x-ray images with manually annotated poses, and

including unique 53 tibial/femoral component combinations, where different implant sizes

were considered different implants. The images were collected over the last two decades at the

Institute for Biomechanics at ETH Zurich during various clinical and biomechanical studies—

using our moving fluoroscope to investigate joint/implant kinematics during activities of daily

living, including walking, ramp descent, and stair descent, as well as knee bending activities

[9–11].
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For this work, the images were downscaled from 1000x1000 pixels (about 0.3 mm pixel) to

512x512 pixels to reduce memory and computational demands. Using the calibration informa-

tion available for each measurement, we standardized the poses to a principal point at the cen-

ter of the image intensifier and a focal distance of 0.97 m. The data was split into a training

dataset from 49 of the unique tibial/femoral component combinations, and a test dataset of 4

combinations, which was used to estimate the performance of our approach on unseen

subjects.

Network architectures

The Deep Auto-Match Network (DAMN) (Fig 1) is split into two parts: a) a “shadownet” net-

work that extracts the implant shadows from the x-ray image and b) a “synthnet” network that

estimates the poses from these shadows. The intuition behind this choice is that extracting the

implant shadow from the x-ray is a general process that a human could do without informa-

tion on the implant geometry, just by noting the strong attenuation of the implant components

and the structure of the surrounding musculoskeletal tissue, such as the thigh and shank seg-

ments. However, the same shadow could imply completely different poses for different

implants, so the pose estimation step clearly needs additional information on the implants’

geometries. By using rendered images of the known component geometries in varying poses,

the “synthnet” learns which landmarks indicate what pose for a certain tibia/femur component

combination—this process is similar to turning an unknown object to find that a certain edge

is only visible for certain poses of the object. So, when this specific edge later appears in an

image, the pose must be within the previously established range.

Clearly, information on the implants’ geometries can help in extracting the shadow from

the x-ray image—particularly for challenging images, which often include partial occlusion

e.g. when the second leg passes during gait and decreases the image contrast. For such images,

even a human would need additional information on how the shadow for this implant combi-

nation could appear. As a consequence, in a second experiment, we extended our architecture

to iteratively consider the rendered implant shadows based on the estimated pose. From the

second iteration onwards, the shadownet extracts the shadow not only from the x-ray image,

but can also use the information from the rendered shadow. For the non-iterative versions of

Fig 1. The shadownet extracts the implant shadow from the x-ray image, while the synthnet estimates the pose

from this shadow for the known tibia/femur implant geometries.

https://doi.org/10.1371/journal.pone.0270596.g001
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our approach and the first iteration of the iterative version, a black image was used for this ren-

dered shadow.

The architecture for the shadownet was based on a Deeplab-v3 segmentation network with

a Resnet-50 backbone [14]. The input layer was changed to accept 2 channels—the x-ray

image, and the image of the rendered components in the estimated pose. The network archi-

tecture for the synthnet was a ResNeXt-50 model [15] (32 groups of width 4) with a 1-channel

input layer and a fully connected output layer giving the 18 pose regression targets—3 transla-

tion components and a 6D representation of the rotation [16] for both the tibia and femur. We

chose to estimate both components at the same time to allow each component to profit from

the other’s likely position as well as from general information, such as features relating to

surrounding structures, including the positions of the thigh and shank. We further

replaced all of the batch normalisation layers with instance normalisation layers, which is

better suited for the small batch sizes we use during training and our recursive architecture

[17, 18].

Synthnet-training

First, we pretrain the synthnet on synthetically rendered, binarized (shadow) images of each

individual femoral/tibial implant combination. Because the parameter space of the two

implant poses is so high-dimensional, using purely random poses would lead to a lot of non-

sensical situations, such as when the femur and tibia are impossibly overlapping or impossibly

far apart considering the anatomical constraints, or would lead to poses that are irrelevant for

activities of daily living (e.g. upside-down). To keep the model focussed on the task and the

computational time low, it is thus important to focus on creating implant poses that are close

to the ones arising in activities of daily living. Towards this goal, we perturb poses from our

dataset of activities of daily living using Gaussian noise for each of the 18 pose components to

create realistic poses close to the original kinematics.

For each implant component combination, we removed all entries of this combination in

the dataset for training to avoid the synthnet overfitting on any of the poses it will later

encounter during the training of the shadownet. To make the synthnet more resistant to occlu-

sions, we implemented the CutOut [19] method with a probability of 0.3, and 4 squares of 128

pixels, corresponding to one quarter of the image size. The translation components of the pose

were normalized over the dataset and the rotation components were transformed from Euler

angles to a 6D representation [16], giving a total of 18 regression targets.

We used batch sizes of 4 samples, and ADAM as an optimiser (learning rate of 2 � 10−3, β
values of 0.9 and 0.99, and no weight decay). As it is known that batch-size plays a key role dur-

ing training [20], we accumulated the gradients of 32 samples before updating the weights dur-

ing optimisation.

The pose-loss was given by a combination of translation losses LT and rotation losses LR for

both the femur and the tibia poses:

Lposeðpt; ppÞ ¼ LT;femðpt; ppÞ þ LR;femðpt; ppÞ þ LT;tibðpt; ppÞ þ LR;tibðpt; ppÞ ð1Þ

with pt 2 R
18

being the target pose and pp 2 R
18

being the predicted pose.

The translation losses LT were weighted L1-losses with the in-plane directions (x,y) having

a relative weight of 10 compared to the out-of-plane direction (z). This choice reflects the fact

that out-of-plane translations are more difficult to estimate, as variations in this component

lead only to small changes in the size of the implant components due to perspective. A
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Geodesic loss was used for the rotational loss LR [16]

LR ¼ jcos� 1
1

2
ðtrðRpR

T
t Þ � 1Þ

� �

j; ð2Þ

with Rp the rotation matrix corresponding to the predicted pose of either femoral or tibial

implant, and Rt the rotation matrix corresponding to the true pose.

Using this procedure, we first trained one synthnet to completion for about five days, and

then froze the first quarter of the network before training the individualised networks for each

of the 53 femoral/tibial implant combinations, which took about one day for each synthnet on

a Nvidia GTX2080Ti GPU. Freezing the input layers of the synthnet ensured that the input fea-

tures remained consistent between different synthnets, which was required as the synthnet

part was swapped out during the training process of the shadownet in the next step.

Shadownet-training

To train the shadownet part of the DAMN, we loaded the corresponding pretrained synthnet

for each batch. By freezing the weights of the synthnet, we ensured that the training procedure

only affected the weights of the generic shadownet. The optimiser was stochastic gradient

descent with a learning rate of 10−2 and no momentum. Notably, we chose not to use momen-

tum during this step, because all samples from a certain tibia/femur combination were loaded

after one another. While this process avoided the requirement to frequently swap the synthnet,

momentum would build up as long as the synthnet remained the same, but could be

completely inappropriate as soon as the synthnet was switched to the next tibia/femur combi-

nation. The batch size for this training step was set to 2 samples for the non-iterative version

and 1 sample for the iterative version of our approach. Similar to the training of the synthnet,

we accumulated the gradients of 16 samples before updating the weights during stochastic gra-

dient descent.

The loss function for this training step was given by the combination

Ltotalðpt; pp; sp; stÞ ¼ wLsegðst; spÞ þ Lposeðpt; ppÞ; ð3Þ

of the pose loss Lpose (Eq 1) and a Lovasz-Hinge loss, which is a smooth extension of the Jac-

card index [21, 22], as the segmentation loss Lseg. Here, pt and st are the true pose and true

shadow (acquired by rendering the implants in the true pose pt), while sp describes the shadow

predicted by the shadownet, pp is the pose predicted by the synthnet. Further, w = 10 is a

weight factor to make the two loss components comparable in magnitude. Training of the sha-

downet took about five days on a Nvidia GTX2080 Ti GPU, with improvements slowing down

considerably after about three days. Overall, the training of the complete, personalised DAMN

model took about 63 GPU days, which we parallelised using multiple GPUs. After the initial

training, any new subject will only require a new personalised synthnet, which can be trained

in 1 day using transfer-learning.

Results

Figs 2–5 show the performance of the individualised non-iterative and iterative approaches on

the testset, re-emphasizing that no data from subjects in the testset was used during training.

For 50% of all images in the 4 subject test dataset, the non-iterative approach predicted the

pose of both implants better than about 0.75 mm for in-plane translations and 25 mm for out-

of-plane translations, while the iterative approach improved the out-of-plane predictions to

below 10 mm. For 90% of the testset, the non-iterative approach achieved 1.5 mm and 30 mm

(in-plane, out-of-plane) and the iterative approach achieved 2.5 mm and 25 mm. The
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predicted rotations (presented as Euler angles for interpretability instead of the internal 6D

representation) differed by less than about 2˚ from the ground truth over 50% of the testset for

the non-iterative and less than 1.5˚ for the iterative version. Over 90% of the samples, both iter-

ative and non-iterative versions predicted all rotations better than 3−4˚.

Discussion

This work presented an automated method to perform 2D-3D pose estimation from fluoro-

scopic images based on a deep-learning approach that is individualised to each subject and

their implants. For a large part of the test-set, in-plane translations were predicted to within

0.75 mm—typically for clean x-ray images with high contrast and no occlusions. Predictions

were made in a fully-automated manner, in less than 10 s for 100 images, saving about 90 min

required for manual annotation.

Our approach struggled for images in which the implant was occluded, as frequently hap-

pens e.g. during normal gait when the legs pass each other and decrease the contrast. Notably,

such images are challenging even for humans, decreasing the quality of manual poses used as

ground truths in this work. Some subjects even had two knee replacements, which can be in

the image at the same time or overlap; while the algorithm can properly identify the implant to

be registered (the one closer to the image intensifier), overlapping leads to a distorted shadow

Fig 2. Translation performance for the individualised non-iterative DAMN on the test-set.

https://doi.org/10.1371/journal.pone.0270596.g002
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Fig 3. Translation performance for the individualised non-iterative DAMN on the test-set.

https://doi.org/10.1371/journal.pone.0270596.g003

Fig 4. Translation performance for the individualised 2-iteration DAMN on the test-set.

https://doi.org/10.1371/journal.pone.0270596.g004
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segmentation. This is a classic case of distribution mismatch, because the synthnet is trained

using ideal (rendered) shadows while the shadownet might not be able to provide those in all

cases. For such difficult images, the in-plane translation performance dropped to about 1.5

mm. Overall, the in-plane performance is sufficiently high for most clinical and research appli-

cations on implant development and kinematics, but visual inspection of the images together

with the predicted pose is advised to find major mis-predictions. Alternatively, the predicted

pose could be used as the starting pose for a pose refinement optimisation [3, 4, 6], and conver-

gence could be used as an indicator for successful pose estimation.

Even though the CutOut-method [19] used during training of the synthnet should confer

some resilience to occlusions, extracting a shadow from an occluded image without any addi-

tional information simply remains challenging. Consequently, we proposed an extension to

our architecture to iteratively feed the rendered implant shadows back into the shadownet,

based on the estimated pose Fig 1. Suprisingly, the iterative version of our approach, which

tries to provide some approximate information on how the object’s full shadow could look

like, did not improve predictions on such harder images, but sometimes even worsened the

registration performance. The reason for this result could be that the recursive networks are

harder to train and require more computational resources due to their increased depth. Even

using our dedicated computational cluster, we were still only able to train the network with 1

additional iteration, which is unlikely to be sufficient for the network to learn a new iterative

process—particularly for these challenging images for which the predicted shadow and pose

Fig 5. Rotation (right) performance for the individualised 2-iteration DAMN on the test-set.

https://doi.org/10.1371/journal.pone.0270596.g005
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after the first iteration are still poor. To evaluate the true potential of the iterative approach,

further investigation with a higher number of iterations will therefore be needed, most likely

requiring a method to distribute the model across multiple GPUs e.g as described for volumet-

ric data in [23].

Compared to the excellent predictions for in-plane translation, out-of-plane translations

were much harder to estimate, predominantly because a change in the out-of-plane position

only leads to a comparatively small change in the apparent size of the implant due to perspec-

tive. Consequently, we used a lower weight in the loss function for the out-of-plane translation,

which makes the algorithm focus less on this component and resulted in a lower out-of-plane

performance of 25 mm. Again, surprisingly, the iterative version of our approach improved

this out-of-plane prediction to about 10 mm. As discussed above, training on networks with a

higher number of iterations will be necessary to study this effect, and establish the trade-off

between performance improvement and computational requirements.

Performance in pose estimation tasks is fundamentally limited by the image resolution and

the quality of the 3D implant information. For example, the in-plane translation performance

of our approach is about 0.75 mm, which corresponds to about one to two pixels for the down-

sampled 512px images. Considering this resolution limit, it is likely that the performance of

our approach could be further improved by using the original 1000px images. However, use of

these larger images substantially increases the size of the model and thus the required

memory and training time by a factor of four. Considering the substantial training time (for a

Nvidia GTX 2080 Ti: 5 days for the initial synthnet, 1 day for each implant combination, 5

days for the shadownet) this complexity increase seems infeasible impractical without making

considerable improvements to either the model or the training process—particularly during

development (e.g. dealing with occlusions) where rapid prototyping and evaluation is

necessary.

Rather than using high resolution images in the deep-learning model directly, the predicted

pose from a lower-resolution model could be used as the starting pose for a pose-refinement

algorithm. Such pose-refinement algorithms have reported performances comparable to our

results, when applied to high resolution images as long as they have been provided with good

starting poses [3, 4, 6]. Since most of these algorithms work iteratively, one could save the one-

time cost to train our deep-learning model on high-resolution images, but would pay with sub-

stantially longer times of multiple minutes per image for pose inference as compared to the

mere seconds required for the deep-learning model.

One core limitation of this study is that manually annotated data are considered the ground

truth. Even though a pose optimiser algorithm was applied after manual pose estimation to

reduce inter-operator variability, the x-ray measurement system still had a limited resolution,

and was subject to various distortion effects stemming from the experimental setup. Our

results can thus only be interpreted in the context of replacing the manual pose estimation,

and can only be considered as approximations with respect to the real poses. Notably, most

other studies that investigated performance also suffered from this limitation, even though

some aspects can be addressed through manufactured objects with known geometries [3]. On

such objects, manual pose estimation achieved an in-plane performance between 0.3 mm to

0.6 mm and 7 mm out-of-plane, and predicted rotations to about 0.3 deg to 1.0 deg. However,

these results are derived from relative poses, so no conclusions can be drawn about absolute

poses. Furthermore, the calibration object was a simple geometric structure with good con-

trast, so the performance of manual pose estimation is likely to be worse for the more challeng-

ing implants, low contrast images, or images with occlusions. To assess the performance of

various pose estimation approaches with respect to reality, future studies should acquire the
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true pose of more realistic objects and more realistic poses through an independent and sub-

stantially more accurate means, such as mechanical precision devices.

Our approach requires that the 3D information of the target object is accurately known—if

the algorithm does not know what do look for, how should it be able to find and estimate its

pose? While we had no way of measuring the implant geometries directly, manufacturing dis-

crepancies from the implant designs (which were available) are assumed to be negligible com-

pared to other error sources. If the 3D geometry of the target object is uncertain (e.g. when

estimating the pose of natural bone, which is often acquired by CT, which has a limited resolu-

tion), this effect will be more pronounced and should be investigated. Here, different discrep-

ancies (scale, loss of detail, slight geometric changes of one part of the outline) could be

investigated with respect to their effect on the estimation result and compared to the results of

the gold standard using the modified geometry. While this process seems prohibitively time-

and cost-intensive when using manual registration as gold standard, an automated approach

using mechanical precision devices could provide a practical implementation.

For the out-of-plane translations, the information available from single-plane fluoroscopic

images is inherently limited, which has led various research groups to develop dual-plane fluo-

roscopes [5, 24, 25]. Our pose estimation approach can directly be applied to dual-plane

images by simply training the synthnet on two synthetic x-ray shadows instead of one (taking

into account the relative angles and positions of the dual-plane setup). Similarly, the overall

DAMN would take one additional image as an input, with no other changes required. If a

trained single-plane model is already available, transfer-learning could be used to acquire a

dual-plane model, requiring only minimal annotated dual-plane data.

Our approach is designed to estimate the poses frame-by-frame. While this decision allows

our method to work independently of frame rate or task performed, the algorithm remains

ignorant of valuable time-information (where was the object one or two frames previously or

subsequently?) and the allowed movement space for a certain task (how does the joint angle

typically vary with time for healthy subjects?). In principle, a variety of deep learning

approaches exist to deal with time-series and video-data, but would require exorbitant compu-

tational facilities as well as training different models for each device, frame rate, or task. A

recent study proposed an interesting alternative, and trained an auto-encoder to learn the pos-

sible movement space of the joint for a certain task. Then, approximate poses were improved

by a Kalman-filter that considered both the time-information over multiple frames but also

the kinematic understanding learned by the auto-encoder [26].

Our approach can further be extended to estimate the poses of natural bone instead of

implants. Assuming that the bone geometry is known (e.g. from CT), our approach can be

used with no further modifications. Indeed, for certain applications, our approach of a seg-

mentation and a personalized regression network can also be used to estimate poses from CT-

data, thus opening opportunities in other fields using CT or μ-CT, such as research on porous

media [27–29]. While our approach is easily extensible to deal with volumetric data (instead of

2D images) by using standard 3D-networks, the main limitation remains the requirement that

the target object’s geometry must be known to personalise the regression network. Because

implants have high absorption and thus appear as nearly uniform shapes in the x-ray image,

our approach binarizes the segmentation and regression networks. For estimating the poses of

structures with lower absorption that show more internal structure on x-ray images (e.g.

bone), one could replace our binary segmentation and regression networks with greyscale

versions to consider this additional information. However, it is likely that this version

would be more susceptible to noise or occlusion effects, so it remains to be investigated

whether a binarized or grey-scale approach is advantageous for estimating the poses of natural

bone.

PLOS ONE Personalised pose estimation from single-plane moving fluoroscope images

PLOS ONE | https://doi.org/10.1371/journal.pone.0270596 June 24, 2022 10 / 13

https://doi.org/10.1371/journal.pone.0270596


Conclusion

We presented a deep-learning based approach to estimate joint poses from fluoroscopic

images, which is personalised to each subject without any additional manual pose registration.

Depending on the required performance, our approach can be used directly to predict poses to

about 0.75 mm (in-plane translation) and 2˚ (all Euler-angle rotations), and can easily be

extended to natural bone, multi-plane fluoroscopy, or even CT, assuming that the target

object’s geometry is known. Alternatively, our approach can be combined with pose refine-

ment algorithms [3–6] by providing approximate starting poses in a fully automated manner,

thus avoiding the laborious and expensive task of manually estimating the poses for each

image.
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