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Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico

Received 15 February 2008

Revised 12 March 2008

Accepted 13 March 2008

Azotobacter vinelandii is a nitrogen-fixing soil bacterium that undergoes differentiation to form

cysts resistant to desiccation. Upon encystment, this bacterium becomes non-motile. As in enteric

bacteria, motility in A. vinelandii occurs through the use of peritrichous flagella. Pseudomonas

aeruginosa, a phylogenetically close relative of A. vinelandii, possesses a single polar flagellum.

The FlhDC proteins are the master regulators of flagella and motility in enterobacteria, whereas

FleQ is the master regulator in P. aeruginosa, and it is under AlgU (sigmaE) negative control.

At present, nothing is known about the organization and expression of flagella genes in A.

vinelandii. Here, we identified the flagella gene cluster of this bacterium. Homologues of the

master regulatory genes flhDC and fleQ are present in A. vinelandii. Inactivation of flhDC, but not

fleQ, impaired flagella biogenesis and motility. We present evidence indicating that a negative

effect of the AlgU sigma factor on flhDC expression causes loss of motility in A. vinelandii, and

that CydR (a homologue of Fnr) is under AlgU control and has a negative effect on flhDC

expression. Taken together, these results suggest the existence of a cascade consisting of AlgU

and CydR that negatively controls expression of flhDC; the results also suggest that the block

in flagella synthesis under encystment conditions centres on flhDC repression by the AlgU–CydR

cascade.

INTRODUCTION

Azotobacter vinelandii, a Gram-negative bacterium belong-
ing to the Gammaproteobacteria, is closely related to bacteria
of the genus Pseudomonas (Rediers et al., 2004), and
undergoes a differentiation process to form cysts resistant
to desiccation. In A. vinelandii, motility occurs through the
use of peritrichous flagella. When induced for encystment,
this bacterium becomes non-motile (Sadoff, 1975). To the
best of our knowledge, studies on the genes involved in
motility in this organism have not been carried out. Genes
involved in the biogenesis and function of flagella have been
extensively studied in Escherichia coli and Salmonella, where
motility also occurs by peritrichous flagella. In those
bacteria, flagella and motility genes comprise a large and
complex regulon, with more than 50 genes organized in at
least 17 operons (Macnab, 1996). The flagella operons are
classified into three hierarchical transcriptional classes,
where the class 1 flhDC operon is the master regulator of

flagella and motility (for a review see Aldridge & Hughes,
2002). FlhDC proteins are activators of the class 2 genes,
which include those encoding proteins involved in the
formation of the hook basal body, the flagella sigma factor
FliA, and its anti-sigma factor FlgM. FliA is necessary to
activate transcription of the class 3 genes, and these include
fliC, which encodes the structural component of the
filament, the flagellin. Transcription of flhDC is initiated at
six start sites, and its regulation is very complex (Clarke &
Sperandio, 2005; Francez-Charlot et al., 2003; Kutsukake,
1997; Soutourina et al., 1999; Wei et al., 2001; Yanagihara
et al., 1999).

In Pseudomonas aeruginosa, motility occurs through the
use of a single polar flagellum. Flagella genes are clustered
in three regions of the chromosome. Transcription of the
flagella genes requires a number of regulatory proteins,
including FleQ (Arora et al., 1997) and the two-component
system FleSR (Ritchings et al., 1995), acting in a four-tiered
transcriptional regulatory circuit (Dasgupta et al., 2003).
The master regulator FleQ, an NtrC-like transcriptional
activator, belongs to the top tier of the flagella hierarchy,
and is required to activate all other flagella genes, with the
exception of fliA (Arora et al., 1997; Dasgupta et al., 2003;
Jyot et al., 2002). The anti-activator protein FleN negatively
controls the activity of FleQ (Dasgupta & Ramphal, 2001).

Abbreviation: qRT-PCR, quantitative RT-PCR.

Tables of A. vinelandii flagellar and motility genes, and consensus
sequences recognized by FliA and RpoD sigma factors present
upstream of A. vinelandii flagellar genes are available with the online
version of this paper.
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In P. aeruginosa and A. vinelandii, the alternative sigma
factor AlgU (also named AlgT) controls alginate biosyn-
thesis. The mechanism by which AlgU exerts this control is
well understood (Martı́nez-Salazar et al., 1996; Núñez
et al., 2000; Ramsey & Wosniak, 2005). The anti-sigma
proteins MucA and MucB negatively control AlgU activity
(Mathee et al., 1997; Schurr et al., 1996; Xie et al., 1996).
External stresses affecting the folding of periplasmic
proteins initiate the cleavage of MucA, and the release of
AlgU (Qiu et al., 2007). In P. aeruginosa, this sigma factor
is required to activate the alginate biosynthesis operon
(Martin et al., 1993; Wozniak & Ohman, 1994). In A.
vinelandii, AlgU is required for activation of the alginate
biosynthesis genes algD and algC (Campos et al., 1996;
Gaona et al., 2004). Thus, in both P. aeruginosa and A.
vinelandii, mutations inactivating algU abrogate alginate
synthesis (Moreno et al., 1998), whereas mutations in
mucA produce an alginate-overproducing phenotype
(Martin et al., 1993; Núñez et al., 2000).

In P. aeruginosa, AlgU activity has a negative effect on
flagellum synthesis (Garrett et al., 1999). Tart et al. (2005)
showed that the flagella regulon is significantly downregulated
in the presence of AlgU, and that increased expression of fleQ
reverses the AlgU-mediated inhibition, and thus they
concluded that AlgU inhibits expression of FleQ. The
mechanism of this inhibition has been shown to be indirect,
and it acts by promoting the expression of the transcriptional
regulator AmrZ (AlgZ), which interacts directly with the fleQ
promoter as a repressor (Tart et al., 2006).

When vegetative motile cells of A. vinelandii are induced
for encystment, they lose motility (Sadoff, 1975). We show
here that this loss is caused by the activity of the sigma
factor AlgU. Thus, similar to the findings for P. aeruginosa,
we found a negative effect of AlgU on motility and flagella
synthesis.

The organization and expression of flagella genes in A.
vinelandii are unknown. A search of the A. vinelandii
genome for the flagella regulon was carried out in this
study, and revealed the presence of homologues of flhDC
and fleQ, which are the master regulators in E. coli and
Pseudomonas, respectively. Inactivation of these genes
indicated that flhDC, but not fleQ, is required for flagella
biogenesis and motility in A. vinelandii. We also show that
AlgU and CydR have a negative effect on flhDC expression.

METHODS

Microbiological procedures. The bacterial strains and plasmids

used in this work are shown in Table 1. A. vinelandii was grown at

30 uC in Burk’s nitrogen-free salts (Kennedy et al., 1986), supple-

mented with either sucrose at 2 % (BS medium), or 0.2 % n-butanol

(BB encystment medium). E. coli DH5a was grown on Luria–Bertani

(LB) medium (Miller, 1972) at 37 uC. Antibiotic concentrations used

for A. vinelandii and E. coli, respectively, were as follows: ampicillin,

not used and 200 mg ml21; gentamicin, 1.5 and 10 mg ml21;

kanamycin 6 mg ml21 and not used; tetracycline, 15 and 20 mg ml21.

Triparental matings were carried out as reported by Kennedy et al.

(1986). A. vinelandii transformation was carried out as described by

Page & von Tigerstrom (1978), as modified by Bali et al. (1992).

DNA techniques. DNA isolation, cloning, Southern blotting, and

nick translation procedures were carried out as described by

Sambrook et al. (1989).

Cloning of flhDC, fleQ, mucA and cydR genes. The A. vinelandii

fleQ and flhDC genes were amplified by PCR using ATCC 9046

chromosomal DNA as a template and the following oligonucleotides:

fleQ, upper primer 59-TTATGCCTTGCTGGGGTTGC-3; fleQ, lower

primer 59-TTCACCCGTTCGTAGGCATC-39; flhDC, upper primer

59-AATGCTTCCCAGGCGAGATC-39; and flhDC, lower primer 59-

GACAACGATGAGACC CAGAG-39. For mucA and cydR, oligonu-

cleotides mucA-1U 59-GAAATCGAGGCCACTGTG-39, mucA-1L 59-

CAACCAATTCTGCGCATC-39, cydRf 59-GTTCGTTCGATCTGCA-

TGC-39 and cydRr 59-TTACTGGAAGCGGACATGCG-39 were used.

Primers were designed on the basis of the OP strain draft genome

sequence available at http://img.jgi.doe.gov/cgi-bin/pub/main.cgi.

The resulting 2157 (fleQ), 1667 (flhDC), 910 (mucA) and 1173

(cydR) bp PCR products were cloned in pMOSBlue, producing

plasmids pLRQ, pLRDC, pMUC and pMCYDR, respectively (Table 1).

Restriction mapping and partial sequencing confirmed the identity of

the inserts (data not shown).

Construction of fleQ : : Gm, flhC : : Tc, mucA : : Km and

cydR : : Gm mutations. Plasmid pLRQ was digested with XhoI to

eliminate a 230 bp XhoI internal fleQ fragment. The 0.8 kb XhoI

fragment containing a gentamicin-resistance cassette isolated from

plasmid pBSL141 (Alexeyev et al., 1995) was ligated into the pLRQ

XhoI-digested plasmid. Plasmid pLRQ30, containing the fleQ : : Gm

mutation was isolated. For inactivation of the flhC gene, a 2.0 kb

SmaI fragment, containing a tetracycline-resistance cassette isolated

from plasmid pHP45V-Tc (Fellay et al., 1987), was inserted into the

StuI site within gene flhC in plasmid pLRDC. Plasmid pLRDC50

containing the flhC : : Tc insertion was isolated. A kanamycin-

resistance cassette from plasmid pBSL99 (Alexeyev et al., 1995) was

introduced into the XhoI site of mucA in plasmid pMUC, producing

plasmid pSRA4. For inactivation of cydR, a 3.0 kb ClaI fragment,

containing a gentamicin-resistance cassette from plasmid pMS40

(Peralta-Gı́l et al., 2002), was introduced into the ClaI site present

within cydR in pMCYDR, producing plasmid pMCYDR-Gm

Plasmids pLRQ30 and pLRDC50, which are unable to replicate in A.

vinelandii, were used to introduce the fleQ : : Tc and flhC : : Gm

mutations into strain ATCC 9046. Transformants were selected using

the corresponding antibiotic, and confirmed by Southern blot analysis

to carry the desired mutations (data not shown). Plasmid pSRA4 was

transformed into strain ATCC 9046 to generate strain SRA4. The

presence of the mucA : : Km mutation in strain SRA4 was confirmed

by PCR analysis. Plasmid pMCYDR-Gm was introduced into strains

ATCC 9046 and SRA4. A gentamicin-resistant transformant derived

from ATCC 9046 was isolated, and named ATCR. No gentamicin

transformants derived from strain SRA4 were obtained in three

different experiments. The cydR : : Gm gene replacement in ATCR was

confirmed by PCR analysis (data not shown).

Construction of plasmid pLRGm-DC. Plasmid pJB3Km1 (Blatny

et al., 1997), which was able to replicate in A. vinelandii, was digested

with HindIII and BamHI restriction enzymes to remove a 1 kb

fragment that included the kanamycin-resistance gene. This fragment

was replaced by a 1.6 kb BamHI–HindIII fragment containing the

flhDC genes, including their promoter sequences. A 0.8 kb BamHI

fragment encoding the gentamicin-resistance gene was introduced

into the plasmid to produce plasmid pLRGm-DC, which was

transferred by conjugation into strain AC30 in a triparental mating

using plasmid pRK2013.
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Motility assay. To test the motility of A. vinelandii, bacterial strains were

grown on BS medium at 30 uC until exponential phase. Samples of the

cells were then transferred to BS or BB encystment medium, containing

0.3 % agar. These plates were incubated at 30 uC for 36 or 48 h.

Electron microscopy. Transmission electron microscopy to visualize

flagella was carried out as previously reported (Gaona et al., 2004)

Quantitative RT-PCR (qRT-PCR). qRT-PCR was performed as

reported (Noguez et al., 2008). For RNA extraction, the cultures were

grown in BS liquid medium. Cells were collected at the exponential

phase of growth for flhC, and at 37 h for cydR. The sequences of the

primers used for the qRT-PCR assays were: for cydR, 59-GGC

TGTCGAGACCGTATCC-39 and 59-ATTCGACGGGATTGAGAATG

-39; for flhDC, 59-GAACATCCATTCCTCGCTGT-39 and 59-ATAG-

AGCCGGAAAGCCTTGA-39.

RESULTS

AlgU activity causes loss of flagella in A.vinelandii

In P. aeruginosa, AlgU has a negative effect on transcription
of the flagella regulon by downregulating fleQ. To

determine whether AlgU affected flagella synthesis in A.
vinelandii, we performed motility assays in BS medium for
strains ATCC 9046, SMU88 (algU mutant derivative of
ATCC 9046) and JRA4, a derivative carrying a mucA
mutation that results in high AlgU activity (Núñez et al.,
2000). As shown in Fig. 1(a), the mucA mutant strain was
non-motile, as indicated by the absence of a motility zone.
In contrast, the algU mutant produced a motility zone
larger than that produced by the wild-type strain. When
observed under the light microscope, cells of the wild-type
strain ATCC 9046 growing on BB encystment medium
were non-motile. Therefore, swimming assays were also
performed in BB encystment medium for the wild-type,
and the mucA and algU mutants (Fig. 1b). No swimming
was observed for the wild-type and mucA strains, whereas
the algU mutant produced a swimming zone. Using
transmission electron microscopy, we examined the mucA
and algU strains harvested from cultures growing expo-
nentially on BS medium to determine the presence of
flagella. In agreement with the swimming phenotype, no
flagella were present for the mucA strain, whereas the algU

Table 1. Bacterial strains and plasmids used in this work

Strain or plasmid Relevant characteristics Source or reference

A. vinelandii

ATCC 9046 Wild-type ATCC

SMU88 ATCC 9046 with an algU : : Km mutation Moreno et al. (1998)

JRA4 ATCC 9046 with mucA : : Gm mutation Núñez et al. (2000)

SRA4 ATCC 9046 with a mucA : : Km mutation This work

AQ 20 ATCC 9046 with a fleQ : : Gm mutation This work

AC 30 ATCC 9046 with a flhC : : Tc mutation This work

ATCR ATCC 9046 with a cydR : : Gm mutation This work

E. coli

DH5a supE44 lacU169 hsdR17 recA1 endA1 gyrA96 thi1 relA1 Gibco-BRL

Plasmids

pMOSBlue Plasmid used for cloning PCR products Amersham

pLRQ pMOSBlue derivative carrying a 2.1 kb DNA fragment containing A. vinelandii

fleQ gene amplified by PCR

This work

pLRDC pMOSBlue derivative carrying a 1.6 kb DNA fragment containing A. vinelandii

flhCD genes amplified by PCR

This work

pLRQ30 pLRQ derivative containing a fleQ : : Gm mutation This work

pLRDC50 pLRDC derivative containing a flhC : : Tc mutation This work

pMUC pMOSBlue derivative carrying a 0.91 kb DNA fragment containing A. vinelandii

mucA gene amplified by PCR

This work

pSRA4 pMUC derivative containing a mucA : : Km mutation This work

pMCYDR pMOSBlue derivative carrying a 1.17 kb DNA fragment containing A. vinelandii

cydR gene amplified by PCR

This work

pMCYDR-Gm pCYDR derivative containing a cydR : : Gm mutation This work

pJB3Km1 Blatny et al. (1997)

pRK2013 Hedges & Baumberg (1973)

pHP45V-Tc Source of the Tcr cassette Fellay et al. (1987)

pBSL141 Source of the Gmr cassette Alexeyev et al. (1995)

pBSL99 Source of the Kmr cassette Alexeyev et al. (1995)

pSM40 Source of the Gmr cassette Peralta-Gı́l et al. (2002)

pLRGm-DC pJB3Km1 derivative carrying a 1.6 kb DNA fragment containing A. vinelandii flhCD

genes and the Gmrh gene from pBSL14

This work

flhDC regulates flagella biogenesis in A. vinelandii

http://mic.sgmjournals.org 1721



mutant, similar to the wild-type, produced numerous
flagella (Fig. 1c).

Flagella and motility genes found in the
A. vinelandii genome

The flagella gene system of E. coli is one of the best studied,
and is composed of over 50 genes for flagella assembly and
function (Kutsukake & Nambu, 2000; Macnab, 1996). In
order to identify A. vinelandii genes involved in flagella
biogenesis and motility, and the possible targets for the
AlgU-negative effect, we carried out an in silico analysis to
search the draft genome sequence of A. vinelandii OP for
genes homologous to bacterial flagella and motility genes.
The A. vinelandii genome sequence data were obtained
from http://img.jgi.doe.gov/cgi-bin/pub/main.cgi. Putative
flagella and motility genes were identified by TBLASTN

searches using E. coli genes. Because of the close
phylogenetic relationship between Azotobacter and
Pseudomonas species (Rediers et al., 2004), we also used
P. aeruginosa genes in the analysis.

Three regions containing putative flagella and motility
genes were identified in the A. vinelandii genome. These
genes and the putative proteins they encode are listed in
supplementary Table S1 (available with the online version
of this paper). The genes include homologues of the flhDC
master regulators in E. coli, and the Pseudomonas master
regulator fleQ and its anti-activator fleN. In contrast to
Pseudomonas spp., where these genes are present in the
neighbourhoods of other flagella genes, the A. vinelandii

fleQ and fleN genes are not linked to flagella genes. A
representation of the regions, as well as the position and
orientation of these genes in the A. vinelandii genome, is
presented in Fig. 2. Region 1 consists of 39 717 bp, and
contains 42 genes. Region 2 harbours four genes, including
fliC, and region 3 consists of 12 genes.

A BLAST search of A. vinelandii FlhDC proteins revealed the
absence of homologues in Pseudomonas spp. A summary of
flagella genes present or absent in A. vinelandii, P.
aeruginosa and E. coli is presented in supplementary
Table S2 (available with the online version of this paper).
Most A. vinelandii flagella genes showed the highest
identity to genes from Chromohalobacter salexigens and
Cupriavidus necator (Table S1). C. salexigens is a gamma
proteobacterium that is closely related to Pseudomonas spp.
and E. coli. Motility in Chromohalobacter occurs by means
of peritrichous flagella (Holt et al., 1994).

We also carried out a search for AlgU-, RpoD- and FliA-
recognized consensus sequences within intergenic
sequences of flagella genes larger than 80 nt. For putative
RpoD (sigma 70)-recognized promoters, we used BPROM

(http://www.softberry.com/berry.phtml), which is a pro-
gram for the prediction of bacterial RpoD promoters that
has an accuracy of about 80 %. The search for putative FliA
and AlgU promoters was carried out by ocular inspection.
The results are presented in supplementary Table S3
(available with the online version of this paper) and Fig. 2.
The AlgU GAACTT-16/17 bp-TCTgA-recognized sequence
(Gaona et al., 2004) was not identified. The FliA-
recognized sequence CTAA-15 bp-GCCGATAG was found

Fig. 1. Motility phenotype of algU and mucA

mutants. Swimming assays of A. vinelandii

wild-type strain ATCC 9046 (WT), algU

mutant SMU88, and mucA mutant JRA4,
carried out on motility agar plates with BS
medium (a) and BB encystment medium (b).
(c) Electron micrographs of negatively stained
preparations of strains ATCC 9046, SMU88
and JRA4. Bars, 1.0 mm. Cells for transmission
electron microscopy were harvested from
cultures growing exponentially on BS medium.
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upstream of eight putative operons. Twelve genes,
including the master operon flhDC, were found to possess
putative RpoD promoters The putative cheM–mcp–mcp–
cheR operon, and the flaG gene, were found to possess both
FliA and RpoD consensus sequences.

Inactivation of the flhDC genes, but not fleQ,
impairs motility

In contrast to E. coli and Pseudomonas spp., A. vinelandii
was found to possess flhDC and fleQ regulatory genes. To
determine the functionality of the flhDC and fleQ
homologues, which are located in the top hierarchy of
flagella gene regulation in E. coli and P. aeruginosa,
respectively, we constructed, as described in Methods,
strain AC30 carrying a flhC : : Tc mutation, and strain
AQ20 carrying a fleQ : : Gm mutation. The AC30 and AQ20
mutants were tested for their swimming phenotype. As
shown in Fig. 3(a), inactivation of flhC completely
inhibited motility. In contrast, the mutant carrying the
fleQ mutation showed a motility phenotype similar to the
wild-type strain. Electron microscopy revealed the absence
of flagella in the flhC mutant, but not in the fleQ mutant
(Fig. 3b). These results indicate that flhDC positively
controls flagella synthesis and motility in A. vinelandii.

Motility is restored by complementation with the
flhDC genes

The flhD and flhC genes overlap by 1 nt, and they are
separated from the downstream motAB genes by an
intergenic region containing a consensus FliA-recognized
sequence (Fig. 2, Supplementary Table S3). Thus, the flhDC

genes appear to constitute a bicistronic operon, and the flhC
mutation was not expected to affect motAB transcription. To
confirm that the swimming defect in strain AC30 was caused
by the lack of the FlhC protein, and not by polar effects on
downstream genes, and to confirm functionality of the
flhDC genes, plasmid pLRGm-DC, containing only the
flhDC genes including the promoter sequences, was
introduced into strain AC30 by conjugation. The resultant
strain AC30/pLRGm-DC showed a swimming phenotype
similar to that of the wild-type strain (Fig. 3a).

Effect of AlgU on expression of flhDC

To determine whether AlgU affected flagella synthesis by
downregulation of the master operon flhDC, we carried out
qRT-PCR analysis to quantify the levels of flhDC mRNA in
cells of mutant SMU88 lacking AlgU activity, and in the
mucA mutant JRA4, in which the absence of the anti-AlgU
protein MucA results in high AlgU activity (Núñez et al.,
2000) (Fig. 4). RNA was isolated from cultures of the A.
vinelandii strains grown exponentially on BS medium. In
the SMU88 algU mutant strain, flhDC mRNA was 40 %
higher than in the wild-type. In contrast, flhDC mRNA
levels were very low in the non-motile mucA strain JRA4.
Based on these results, we conclude that the expression of
the master flhDC operon is under the negative control of
AlgU, although this control might not be direct.

CydR is under AlgU control, and is likely to be a
repressor of flhDC expression

We inspected the 228 nt flhDC promoter region for the
presence of putative binding sites for known regulators.

Fig. 2. Schematic representation of the A.

vinelandii flagellar and motility regulon. Filled
and open circles represent the presence of
FliA- and RpoD-recognized consensus
sequences, respectively. Genes in region 1
are contiguous. In region 2, motD is located
408 kb downstream of cheR. The fliC gene in
region 2 is separated from flaG by 15.3 kb.
fleQ and fleN are not linked to flagella genes.

flhDC regulates flagella biogenesis in A. vinelandii
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A. vinelandii CydR is an Fnr homologue that represses
transcription of the oxidase genes cydAB by binding at the
CydR boxes located in the cydAB promoter region (Wu et
al., 2000). A sequence highly similar to the CydR boxes is
present in the flhDC promoter region, and it overlaps the
putative –35 sequence (Fig. 5). The presence of a putative
CydR box within the flhDC putative promoter led us to
hypothesize that CydR might mediate repression of flhDC
by AlgU. In order to determine whether cydR transcription
was dependent on AlgU, we carried out qRT-PCR analysis
to determine the levels of cydR mRNA in cells of the wild-
type, the algU mutant SMU88, and the mucA mutant JR4.
RNA was isolated from cultures of the A. vinelandii strains
grown on BS medium. As shown in Fig. 4(b), in the algU
mutant strain, the cydR mRNA level is significantly reduced
compared to the wild-type, whereas the levels in the mucA
mutant are threefold higher, indicating that AlgU is indeed
required for CydR expression. Based on this result, and on
the presence of CydR boxes in the flhD promoter,
inactivation of cydR was expected to produce a hyper-
motility phenotype similar to that of the algU mutant, and
to restore the motility phenotype in the mucA mutant. We
constructed, as described in Methods, strain ATCR, which
is an ATCC 9046 derivative carrying a cydR mutation.
Strain ATCR grew very poorly on Burk’s medium (data not
shown), but produced a motility zone larger than that
produced by the algU mutant (Fig. 5c). The swimming of
ATCR on BB encystment medium was similar to that of the
algU mutant (Fig. 5d). Efforts to construct a mucA–cydR

Fig. 3. Motility phenotype of flhC and fleQ

mutants. (a) Swimming plate assay carried out
in BS medium for: ATCC 9046 (WT), flhC

mutant AC30, fleQ mutant AQ20, and AC30/
pLRGm-DC. (b) Electron micrographs of
AC30 and AQ20 mutants. Bars, 1.0 mm.

Fig. 4. Effect of AlgU on expression of flhDC and cydR. qRT-PCR
analysis of flhDC (a), and cydR (b) gene expression from BS
cultures of the wild-type strain ATCC 9046, the algU mutant
SMU88 and the mucA mutant JRA4. The level of flhDC and cydR

transcripts was normalized according to the levels of gyrA mRNA,
and data are presented as -fold changes of mRNA levels of
SMU88 and JRA4 mutant strains relative to those of the wild-type
ATCC 9046.
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double mutant strain were unsuccessful, probably because
of the detrimental effects on growth caused by the cydR
mutation, and also because of the effects of the mucA
mutation, which reduces the growth rate due to alginate
overproduction (Núñez et al., 2000). Taken together, these
results indicate that AlgU exerts a positive control on CydR,
and that this in turn is a repressor of flhD expression.

DISCUSSION

A. vinelandii undergoes differentiation to form a metabo-
lically dormant cyst resistant to desiccation. A mature cyst
consists of a contracted cell known as the central body,
which is surrounded by a capsule containing a high
proportion of alginate (Page & Sadoff, 1975). Encystment
can be induced in laboratory conditions by transferring
vegetative motile cells grown in liquid BS medium to
Burk’s medium supplemented with 0.2 % n-butanol or b-
hydroxybutyrate as the sole carbon source. This induction
results in loss of flagella (Sadoff, 1975).

The alternative sigma factor AlgU is required for
expression of the alginate biosynthesis genes in A.
vinelandii (Gaona et al., 2004; Moreno et al., 1998).
Alginate is essential for the formation of mature cysts, and
mutations in the alginate biosynthesis genes, or in algU,
impair alginate synthesis and encystment (Campos et al.,

1996; Mejı́a-Ruı́z et al., 1997; Moreno et al., 1998). A link
between alginate synthesis and flagellum expression, which
are inversely regulated by the alternative sigma factor AlgU,
has been shown in P. aeruginosa (Tart et al., 2005, 2006),
which is a close relative of A. vinelandii.

We have shown here that loss of motility upon encystment
induction in A. vinelandii is caused by AlgU activity. Thus,
as in the case of P. aeruginosa, alginate synthesis and flagella
biogenesis, are inversely controlled by AlgU. In order to
identify possible targets for AlgU among the flagella genes,
we identified the A. vinelandii gene homologues of bacterial
flagella and motility genes. Most of these genes share the
highest identity with the genes of C. salexigens; this
bacterium is phylogenetically closely related to A. vinelandii,
since their 16S rRNA shares 90.86 % similarity, and this level
of identity is second only to Pseudomonas spp., for which the
similarity is around 95–96 %.

An important finding of this study was the presence in A.
vinelandii of fleQ and flhDC, which are the master regulators
of flagella biogenesis. flhDC, but not fleQ, is located in the
context of other flagella genes. Inactivation of the flhDC and
fleQ genes indicated that the FlhDC proteins are the master
regulators of flagella biogenesis in A. vinelandii.

The lack of FleQ involvement in flagella biogenesis is in
agreement with the absence of the fleRS genes (Table S2),

Fig. 5. Motility phenotype of cydR mutant. (a)
DNA sequence of the 59 region of flhDC. The
putative CydR-binding site is underlined. The –
10 and –35 regions are shown in bold. (b)
Sequence alignment of the CydR boxes. (c, d)
Swimming plate assay carried out in BS
medium (c), and BB encystment induction
medium (d), for ATCC 9046 (WT), and the
cydR (ATCR), and algU (SMU88) mutants.
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which are the targets of FleQ regulation in P. aeruginosa
(Dasgupta et al., 2003). It is possible that, in A. vinelandii,
FleQ participates in regulating the expression of other
genes that are not involved in flagella biogenesis.

This study showed that in A. vinelandii, AlgU activity
inhibits flagella synthesis in vegetative cells and under
encysting conditions. A negative effect of AlgU on
transcription of the flhDC operon was also shown here.
In P. aeruginosa, negative regulation of flagella synthesis by
AlgU is carried out by activating expression of the
transcriptional regulator AmrZ, which in turn represses
fleQ transcription (Tart et al., 2005, 2006). Interestingly,
binding sites for CydR (CydR boxes) within the flhDC
promoter region were identified, suggesting that CydR is a
repressor of flhDC expression. In agreement with this
proposal, inactivation of cydR conferred a hyper-swimming
capacity to the wild-type strain. In addition, we showed
that the levels of cydR mRNA are significantly reduced in
the algU mutant, indicating that AlgU is required for cydR
expression, and that CydR mediates the negative effect of
AlgU. Inactivation of cydR was therefore expected to
restore motility in the mucA mutant. Unfortunately, our
efforts to isolate a mucA–cydR double mutant were
unsuccessful.

CydR is a homologue of Fnr. In A. vinelandii, CydR has
been shown to act as a repressor of the cydAB genes
encoding cytochrome bd, which is required for aerotoler-
ant nitrogen fixation (Wu et al., 2000). The loss of flagella
and nitrogen fixation activity observed upon induction of
encystment (Sadoff, 1975; Hitchins & Sadoff, 1973) can
now be explained by the negative effect of CydR on
expression of the cydAB and flhDC genes. Taken together,

the results presented in this study indicate the existence of
this regulatory cascade consisting of AlgU upstream of
CydR, which in turn acts as a repressor of flhCD
expression. A model for the control of alginate synthesis,
motility, respiration and nitrogen fixation, upon encyst-
ment induction by the AlgU–CydR regulatory cascade in A.
vinelandii, is shown in Fig. 6.

This study also showed that the common feature in the
regulation of motility in both P. aeruginosa and A.
vinelandii is the negative effect of AlgU, but that there is
a difference in the repressor controlled by AlgU (AmrZ for
Pseudomonas, and CydR for Azotobacter), and the targets of
these repressors (fleQ for Pseudomonas, and flhDC for A.
vinelandii). These differences may be explained by the need
of A. vinelandii to coordinate loss of functions such as
motility, high respiration rate and nitrogen fixation that
occur upon encystment induction, which is a process not
carried out by Pseudomonas species.
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