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Abstract: Despite extensive research on air pollution estimation/prediction, inter-country models
for estimating air pollutant concentrations in Southeast Asia have not yet been fully developed and
validated owing to the lack of air quality (AQ), emission inventory and meteorological data from
different countries in the region. The purpose of this study is to develop and evaluate two machine
learning (ML)-based models (i.e., analysis of covariance (ANCOVA) and random forest regression
(RFR)) for estimating daily PM2.5 and PM10 concentrations in Brunei Darussalam. These models
were first derived from past AQ and meteorological measurements in Singapore and then tested with
AQ and meteorological data from Brunei Darussalam. The results show that the ANCOVA model
(R2 = 0.94 and RMSE = 0.05 µg/m3 for PM2.5, and R2 = 0.72 and RMSE = 0.09 µg/m3 for PM10) could
describe daily PM concentrations over 18 µg/m3 in Brunei Darussalam much better than the RFR
model (R2 = 0.92 and RMSE = 0.04 µg/m3 for PM2.5, and R2 = 0.86 and RMSE = 0.08 µg/m3 for PM10).
In conclusion, the derived models provide a satisfactory estimation of PM concentrations for both
countries despite some limitations. This study shows the potential of the models for inter-country
PM estimations in Southeast Asia.

Keywords: PM2.5; PM10; statistical modelling; machine learning; Brunei Darussalam; Singapore

1. Introduction

Atmospheric air pollution has been a concern globally for decades [1] because it is
a major environmental risk to health. In 2016, ambient air pollution was estimated to
cause 4.2 million worldwide deaths annually due to stroke, heart disease, lung cancer
as well as acute and chronic respiratory diseases, including asthma [2]. Air pollution
exposes people to particulate matter (PM) and other air pollutants such as ground-level
ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2). These air pollutants
have strong evidence of health effects [3]. Air pollution can also cause various harmful
environmental effects such as global warming, climate change, acid rain, eutrophication,
haze, ozone depletion as well as crop and forest damage [4]. According to the World Health
Organization (WHO), air pollution in the Southeast Asia region is among the highest in
the world [5]. The air quality in Southeast Asian countries including Brunei Darussalam
and Singapore have been seasonally affected by transboundary smoke haze due to land
and forest fires in the region [6–8], normally from August to October during the Southwest
monsoon period [9]. Precautionary measures to minimize the exposure of air pollutants
on individuals could be taken if the air quality and the air pollutant concentrations in the
region were known to the community. However, not all countries have long-term regular
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air quality monitoring data of desired spatial and temporal density-frequency to sufficiently
communicate, alert and protect the public. This shows that there is a need to estimate
the air pollutant concentrations in regions or countries that do not have the monitoring
data. To address these needs, this study will focus on PM, one of the major air pollutants
worldwide and a dominant air pollutant during smoke haze with 94% of airborne particles
affected by burning smoke of sizes ≤ 2.5 µm (PM2.5) [10].

With complex factors of varied emission strength, composition of sources and change-
able meteorological conditions, a promising effective way to estimate air pollutant concen-
trations is by using statistical models based on machine learning (ML) techniques. This
approach could overcome the limitation of traditional deterministic models by accounting
for the non-linear relationship between air pollutant concentrations and their sources of
emission and dispersion [11]. A general class of statistical models such as analysis of
covariance (ANCOVA) models have been proven to be effective for analyzing observational
data because it considers the confounding effects and complex interactions among the vari-
ables. The ANCOVA model provides relatively clean estimates of the association between
explanatory X variables (quantitative and qualitative) and dependent Y variable/outcome
(quantitative) [12]. The ANCOVA method has been used to examine the association be-
tween long-term exposure to atmospheric PM and neurocognitive outcomes and brain
volumes of older women in the United States [13]. However, the study found no evidence
of increased risks of mild cognitive impairment and dementia associated with long-term
PM exposure.

One of the most popular ML models that can be used to solve regression and clas-
sification problems is the random forest model. Compared to other ML models (such as
neural networks and support vector machines), the advantages of the random forest model
are (1) high estimation accuracy, (2) unlikely to overfit, (3) easy data preparation (ability
to handle missing values and no requirements for normalization and scaling), (4) able to
handle non-linearity and high-order interactions between explanatory variables, and (5) so-
phisticated output with variable importance [14,15]. The main disadvantage of the random
forest model is that it can be slow in estimation when the number of trees is large although
the model is more robust [16,17]. Random forest models have been applied to estimate air
pollutant concentrations in various countries. For example, a random forest model has been
applied to estimate daily PM2.5, PM2.5–10 (2.5 µm ≤ PM ≤ 10 µm) and PM10 (PM ≤ 10 µm)
concentrations from the year 2013 to 2015 (3 years) in Italy in 2019 [15]. Their models were
able to capture about 75% to 80% of PM2.5 and PM10 variability. However, their model for
PM2.5–10 performed poorly, and this was due to the limited availability of PM2.5 monitors
and missing data. Another recent study has applied a random forest approach to estimate
daily PM2.5, PM2.5–10, PM10, NO2 and O3 concentrations from 2005 to 2016 (12 years) in
Sweden in 2020 [18]. Although their models were able to describe the variability of 69%
for PM2.5, 65% for PM2.5–10, 64% for PM10, 74% for NO2 and 78% for O3, there was high
collinearity among several covariates being added as predictors/explanatory variables in
their model.

Meteorological parameters such as wind speed, wind direction, rainfall and air temper-
ature are known to influence air pollutant dispersion and they can be included in the model
as explanatory variables. In 2017, a classification model for estimating PM2.5 concentration
between June 2007 and July 2013 (6 years) in Ecuador had been developed by the ML ap-
proach from daily meteorological data of wind speed, wind direction and rainfall [19]. That
model could only estimate PM2.5 concentration up to 20 µg/m3. Additional parameters
such as daily air temperature, solar radiation and air pressure might need to be included in
the model to be able to estimate PM2.5 concentration above 20 µg/m3. In 2015, a study was
conducted to estimate the NO2 concentration in Romania from 2009 to 2013 (5 years) by
multiple linear regression (MLR) and artificial neural networks (ANNs), focusing on the de-
pendence between meteorological parameters (such as air temperature, air pressure, wind
speed, wind direction, solar radiation, rainfall and relative humidity) and their influence on
measured NO2 concentration [20]. Their results show that meteorological parameters have
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an impact on the NO2 concentration although their estimation models have relatively low
accuracy, which could have resulted from the measurement errors of the meteorological
parameters.

Many studies have developed models to estimate and/or predict air pollutant concen-
trations within a country but the use of those models to another country of interest has been
scarcely explored and it has been a challenge because of the lack of air quality, emission
inventory and meteorological data from different countries. Nevertheless, cross-country
models, when developed, can enhance the capability of cross-border surveillance of air
quality with cost-effective monitoring plans. Hence, the present study aimed to develop
and evaluate ML-based models that could estimate daily PM2.5 and PM10 concentrations in
Brunei Darussalam from January 2009 to December 2019 (11 years) using models developed
from air quality and meteorological data in Singapore from March 2016 to February 2018
(2 years) and meteorological data from Brunei Darussalam. The performance of the esti-
mation models was evaluated for overall air quality as well as for good and moderate air
quality at different seasons against observed PM concentrations in each country. Although
the duration of available data sets in individual countries varies significantly involving
respective influences exerted by changes in social and economic patterns, this study in-
tends to demonstrate that employing selected variables through ML is possible to develop
correlations for inter-country estimations despite insufficient information (for example,
anthropogenic and natural emissions data). The study has three objectives, which are:

1. To generate ML-based ANCOVA and random forest regression (RFR) models from
Singapore’s air quality and meteorological data for estimating daily PM2.5 and PM10
concentrations in Singapore and to assess the models’ estimation performance;

2. To determine the most important explanatory variable that influenced the model
outcome;

3. To apply and assess the performance of the derived models for estimating daily PM2.5
and PM10 concentrations in Brunei Darussalam.

2. Materials and Methods
2.1. Study Areas

The study will examine the concentrations of PM in two Southeast Asian countries,
namely Brunei Darussalam (4.5353◦ N, 114.7277◦ E) and Singapore (1.3521◦ N, 103.8198◦ E),
as examples. These two countries often encounter transboundary smoke haze events.
Brunei Darussalam has a population of 453,600 (as of June 2020) [21] with a total land
area of 5765 square kilometers [22] and Singapore has a population of 5.69 million (as
of June 2020) [23] with a total land area of 728 square kilometers (as of June 2020) [24].
Both countries have a tropical equatorial climate with warm and uniform air temperatures
(mean daily air temperature range: 18 ◦C to 38 ◦C in Brunei Darussalam and 24 ◦C to
32 ◦C in Singapore), low wind speed (mean wind speed: <0.5 m/s in Brunei Darussalam
and <2.5 m/s in Singapore), winds mostly blowing from the south direction in Brunei
Darussalam and from the northeast and the south direction in Singapore, and heavy
rainfall (mean annual rainfall total: >2300 mm in Brunei Darussalam and >2100 mm in
Singapore) over the year [25,26]. These meteorological parameters do not show large
monthly variations, but they show prominent daily variations due to the strong relation
with solar heating [26].

The air quality in the four districts (i.e., Belait, Tutong, Brunei-Muara and Temburong)
of Brunei Darussalam was assessed through 4 air quality monitoring stations (1 in each
district) and the meteorological monitoring station is located at the Brunei International
Airport in Brunei-Muara district (Figure 1). In Singapore, there are 22 air quality monitor-
ing stations (18 monitor general ambient air quality and 4 monitor roadside air quality)
installed in different parts across its five air quality regions (north, south, east, west and cen-
tral) [27], and the meteorological monitoring station is located at the rooftop of the Faculty
of Engineering’s building of the National University Singapore (NUS) (Figure 2) [28].
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2.2. Data Collection and Preparation

To develop PM estimation models, air quality and meteorological data from Singapore
between March 2016 and February 2018 (2 years) were collected. The air quality monitoring
data were from five regions (north, south, east, west and central) in Singapore and they
were downloaded from online data provided by the National Environment Agency (NEA)
of Singapore (https://www.haze.gov.sg/resources/pollutant-concentrations; accessed on
15 January 2020). The meteorological data were observed from the National University
Singapore (NUS) weather station, and they were obtained from a weather portal (https:
//www.nusurbanclimate.com/weather-portal; accessed on 17 February 2020, courtesy
of Professor Matthias Roth, Department of Geography, NUS). The collected air quality
monitoring data from Singapore comprises of 1-h average hourly PM2.5 concentration
(µg/m3), 24-h average hourly PM10 concentration (µg/m3) and air quality condition (good,
moderate or unhealthy), and the corresponding meteorological data comprise of hourly
measurements of air temperature (◦C), wind speed (m/s), wind direction (◦) and rainfall
(mm). Air quality is considered in good condition when the Pollutant Standards Index (PSI)
value is between 0 and 50, moderate condition when the PSI is between 51 and 100 and
unhealthy condition when the PSI is between 101 and 200 [29].

To test the applicability of the derived PM estimation models to another country in
the same region, air quality and meteorological data from Brunei Darussalam between
January 2009 and December 2019 (11 years) were collected. The daily air quality monitoring
data were from four districts (Belait, Tutong, Brunei-Muara and Temburong) in Brunei
Darussalam and they were provided by the Department of Environment, Parks and Recre-
ation (JASTRe). The meteorological data were observed from a meteorological station in
Brunei-Muara district, and they were provided by the Brunei Darussalam Meteorological
Department (BDMD). The collected air quality monitoring data from Brunei Darussalam
include daily average PM10 concentration (µg/m3) and air quality condition (good, moder-
ate or unhealthy), and its meteorological data include daily average measurements of air
temperature (◦C), wind speed (m/s), wind direction (◦) and rainfall (mm). Based on the ap-
proach described by the WHO Air Quality Guidelines [30], the (unavailable) daily average
PM2.5 concentration (known as ‘theoretical’ PM2.5 concentration in this study) in Brunei
Darussalam was estimated by multiplying the daily average PM10 concentration with the
average factor of PM2.5 over PM10 (PM2.5/PM10) in Brunei Darussalam, which was 0.43.
The value of this average factor of PM2.5/PM10 was considered close to the typical value
of 0.5 for developing country urban areas stated in the WHO Air Quality Guidelines [30]
and it was determined from the PM2.5 concentration data reported by the Organisation
for Economic Co-operation and Development (OECD) [31] and the corresponding PM10
concentration data provided by JASTRe between 2010 and 2019 for Brunei Darussalam.

Time parameters such as day, month, year and monsoon season were also considered
as variables affecting the PM concentration in the region. The monsoon seasons of both
countries are north-east (NE) monsoon (from December to March), Inter-monsoon 1 (from
April to May), south-west (SW) monsoon (from June to September) and Inter-monsoon 2
(from October to November) [26]. The collected data were grouped into 716 daily average
observations of PM concentrations from five regions in Singapore and 4015 daily average
observations of PM concentrations from four districts in Brunei Darussalam with their
corresponding air quality condition, meteorological data and monsoon season for analysis
using XLSTAT software. The data used in this study were restricted to observations during
good and moderate conditions due to the limited availability of data during unhealthy air
quality conditions in both countries. The models’ inputs for both countries consist of 10
explanatory variables, in which 8 of the variables were quantitative in nature and 2 of the
variables were qualitative in nature. For PM2.5 concentration estimation, the models’ inputs
were day, month, year, monsoon season, daily PM10 concentration, air temperature, wind
speed, wind direction, rainfall and air quality condition. For PM10 concentration estimation,
the models’ inputs were day, month, year, monsoon season, daily PM2.5 concentration, air
temperature, wind speed, wind direction, rainfall and air quality condition.

https://www.haze.gov.sg/resources/pollutant-concentrations
https://www.nusurbanclimate.com/weather-portal
https://www.nusurbanclimate.com/weather-portal
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2.3. Machine Learning (ML) Techniques

Based on the nature of the dependent variable Y to estimate and the nature of the
explanatory X variables, two regression models were explored, namely: (i) analysis of
covariance (ANCOVA) and (ii) random forest regression (RFR). The data were randomly
separated into two samples in which 80% of the observations were used for model learn-
ing/training and 20% of the remaining observations were used for model validation [32].
First, these two models were trained, validated and tested with air quality and meteo-
rological data in Singapore. Then, these derived models for estimating daily PM2.5 and
PM10 concentrations were applied to new observations with data from Brunei Darussalam.
The performance of the ANCOVA and RFR models in estimating daily PM2.5 and PM10
concentrations for overall air quality as well as for good and moderate air quality conditions
during different monsoon seasons in both countries was evaluated based on statistical
indicators such as the determination coefficient (R2) and root mean square of the error
(RMSE).

2.3.1. Analysis of Covariance (ANCOVA) Model

ANCOVA analysis was implemented, considering the interactions between the quanti-
tative and qualitative explanatory variables. The interaction between explanatory variables
A and B (also known as an interaction variable) was represented by the notation “A × B”,
which is the product of the explanatory variables A and B [33]. The maximum interaction
level of the model was 2. The stepwise variables selection method with an entry probability
of 0.05 and a removal probability of 0.10 was chosen for the model. A multiple comparison
test was applied to all factors (qualitative variables including the interactions between
qualitative variables) to determine if the parameters for the various qualitative variables
of a factor differ significantly or not. The comparisons were made between all pairs of
qualitative variables with a control variable based on the mean squared error (MSE) that
was associated with an interaction term in the model [32].

2.3.2. Random Forest Regression (RFR) Model

Estimation models for daily PM2.5 and PM10 concentrations can also be developed by
the RFR method with bootstrap aggregating (known as bagging). This method aggregates
a group of explanatory variables in the form of classification and regression trees (CART)
from different bootstrap samples to obtain a more efficient final explanatory variable. The
forest sampling method used in this study was random with replacement. The desired
number of trees in the forest was 100 and the depth of the maximum tree was 20. The
performance of the RFR model was evaluated by the MSE of the validation sample. The
importance of a given variable was measured by the mean increase error (MIE) of a tree
when the observed values of this variable were randomly exchanged in the out-of-bag
(OOB) samples (i.e., data that were not included in the bootstrap samples at each iteration
of the forest). The higher the MIE value, the greater the importance of the variable for the
model would be [32].

3. Results and Discussion
3.1. Data Summary

The descriptive statistics of the measured quantitative variables (i.e., PM2.5 and PM10
concentrations, air temperature, wind speed, wind direction and rainfall) from all monitor-
ing areas in Singapore and Brunei Darussalam are summarized in Table 1. The overall mean
daily PM concentrations in Singapore from March 2016 to February 2018 were 14.46 µg/m3

for PM2.5 and 26 µg/m3 for PM10, and those in Brunei Darussalam from January 2009 to
December 2019 were 7.67 µg/m3 for PM2.5 and 18.02 µg/m3 for PM10. The overall mean
daily concentrations of PM in these two countries were within the WHO air quality guide-
line limits for PM, in which the 24-h mean guideline values are 25 µg/m3 for PM2.5 and
50 µg/m3 for PM10 [30]. No large daily mean variation was observed for air temperature,
wind speed and rainfall in these two countries. Due to different geographical locations,
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the prevailing winds were from the south-southeast direction (15% of the observations)
in Singapore and from the north-northeast direction (96% of the observations) in Brunei
Darussalam. In the selected time periods, the overall air quality in Singapore was fre-
quently in moderate condition (52% of the observations) and good condition (48% of the
observations), whereas the overall air quality in Brunei Darussalam was often in good
condition (99% of the observations) and occasionally in moderate condition (1% of the
observations).

Table 1. Descriptive statistics of measured quantitative variables from all monitoring areas.

Country Period Variable Minimum Maximum Mean Standard
Deviation

Singapore
March 2016 to
February 2018

(2 years)

Observed PM2.5 (µg/m3) 4.38 63.84 14.46 5.39
Observed PM10 (µg/m3) 11.38 54.80 26.00 6.71
Air temperature, T (◦C) 22.51 30.27 27.53 1.16
Wind speed, WS (m/s) 0.50 5.98 2.21 0.85
Wind direction, WD (◦) 17.63 332.85 140.39 67.13

Rainfall, R (mm) 0 5.32 0.32 0.66

Brunei
Darussalam

January 2009 to
December 2019

(11 years)

Theoretical PM2.5 (µg/m3) 2.45 42.93 7.67 3.73
Observed PM10 (µg/m3) 5.75 100.90 18.02 8.76
Air temperature, T (◦C) 23.20 31.00 27.79 1.03
Wind speed, WS (m/s) 1.05 7.05 2.35 0.62
Wind direction, WD (◦) 1.96 33.13 20.43 3.59

Rainfall, R (mm) 0 11.46 0.37 0.79

Figure 3 shows the box plots of observed PM2.5 and PM10 concentrations in Singapore
from March 2016 to February 2018 during good and moderate air quality conditions in
different monsoon seasons. Daily PM2.5 concentration in Singapore was ranged from
4.38 µg/m3 to 17.06 µg/m3 during good air quality condition and from 7.95 µg/m3 to
63.84 µg/m3 during moderate air quality condition. The highest daily PM2.5 concentration
was found to be 63.84 µg/m3 and it was observed during SW monsoon season. This was
mainly attributed by smoke haze from large-scale forest and peatland biomass burning
in Sumatra and Kalimantan (islands in Indonesia) that had been blown by the prevailing
southwest winds towards Singapore [34]. As for the daily PM10 concentration in Singapore,
it was ranged from 11.38 µg/m3 to 32.25 µg/m3 during good air quality condition and from
22.18 µg/m3 to 54.80 µg/m3 during moderate air quality condition. The highest daily PM10
concentration was found to be 54.80 µg/m3 and it was observed during NE monsoon season
mainly due to forest, shrubland and grassland biomass burning in Mainland Southeast
Asia [35–37].

The PM10 concentration was not recorded at the highest concentration and the value
was lower than PM2.5 during the SW monsoon season because of the difference in types of
biomasses burnt [38] during SW and NE monsoon seasons in the region. Generally, PM2.5
emissions were higher during forest and peatland biomass burning while PM10 emissions
were higher during shrubland, crop residual and grassland biomass burning [38,39]. There
were several outliers (values that fall outside 1.5 times the interquartile range (IQR) of the
third quartile (Q3); Q3 + 1.5IQR) and extreme outliers (values that fall outside 3 times the
IQR of the Q3; Q3 + 3IQR) seen in Figure 3. This indicates that Singapore experienced high
and extreme particulate events that led to increased PM2.5 and PM10 concentrations.
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The box plots of theoretical PM2.5 and observed PM10 concentrations in Brunei Darus-
salam from January 2009 to December 2019 during good and moderate air quality con-
ditions in different monsoon seasons are shown in Figure 4. In Brunei Darussalam, the
range of theoretical daily PM2.5 concentration was from 2.45 µg/m3 to 23.19 µg/m3 during
good air quality conditions and from 22.13 µg/m3 to 42.93 µg/m3 during moderate air
quality conditions. The highest theoretical daily PM2.5 concentration was expected during
SW monsoon season with a value of 42.93 µg/m3 as a result of transboundary smoke haze
events caused by biomass burning in the region. The range of observed PM10 concentra-
tion in Brunei Darussalam was from 5.75 µg/m3 to 54.50 µg/m3 during good air quality
conditions and from 52 µg/m3 to 100.90 µg/m3 during moderate air quality conditions.
The highest daily PM10 concentration was found to be 100.90 µg/m3 and it was observed
during SW monsoon season due to smoke haze from hotspots in the Borneo region that
had been blown by the prevailing southwest winds to Brunei Darussalam [40]. Numerous
outliers and extreme outliers were seen in Figure 4, indicating that Brunei Darussalam also
experienced high and extreme particulate events that contributed to the increase in the
concentrations of PM.

3.2. Estimation Models for PM2.5 Concentration

Figure 5 shows the scatter plots of estimated daily PM2.5 concentration against ob-
served daily PM2.5 concentration by ANCOVA and RFR models based on air quality and
meteorological data in Singapore from March 2016 to February 2018 with learning and
validation samples. Evaluation of both models’ performances in model learning and vali-
dation showed that the ANCOVA model produced better fitting and accuracy (R2 = 0.72
and RMSE = 2.73 µg/m3 for model learning; R2 = 0.81 and RMSE = 2.65 µg/m3 for model
validation) than the RFR model (R2 = 0.66 and RMSE = 3.16 µg/m3 for model learning;
R2 = 0.73 and RMSE = 3.21 µg/m3 for model validation) in estimating daily PM2.5 con-
centration in Singapore. Eight variables (i.e., (day × air quality condition), (year × air
quality condition), (PM10 concentration × air quality condition), (year × wind speed), (air
temperature × wind speed), (air temperature × wind direction), (air temperature × PM10
concentration), (wind direction × PM10 concentration)) were retained in the ANCOVA
model when the stepwise variables selection method was employed.

Based on the sum of squares of the errors (SSE) analysis on the ANCOVA model
(refer Table 2), variables (day × air quality condition), (year × air quality condition) and
(PM10 concentration × air quality condition) bring significant information to explain the
variability of the dependent variable PM2.5 concentration. The most influential variable
among the explanatory variables was the interaction variable (PM10 concentration ∗ air
quality condition) because it has the highest MSE value (171.98 µg/m3) with a relatively
low probability associated with the F value (2 × 10−6) when this variable was removed
from the ANCOVA model (Table 2). This can be explained by the fact that PM2.5 is a subset
of PM10 and that PM10 is one of the determining factors of air quality condition.
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Table 2. Results of sum of squares of the errors (SSE) analysis on the ANCOVA model for estimating
daily PM2.5 concentration in Singapore from March 2016 to February 2018 for selected explanatory
variables.

Explanatory Variable
Degree of
Freedom

(DF)

Sum of Squares of
the

Errors (SSE) (µg/m3)

Mean Squared
Error (MSE)

(µg/m3)
F Value Probability >

F Value

Day × Air quality condition 2 52.54 26.27 3.53 0.03
Year × Wind speed 1 6.32 6.32 0.85 0.36

Year × Air quality condition 2 193.05 96.53 12.95 3.16 × 10−6

Air temperature × Wind speed 1 3.79 3.79 0.51 0.48
Air temperature × Wind direction 1 0 0 <0.0001 1

Air temperature × PM10 1 16.59 16.59 2.23 0.14
Wind direction × PM10 1 0 0 <0.0001 1

PM10 × Air quality condition 1 171.98 171.98 23.08 2.00 × 10−6

The equation of the best ANCOVA model for estimating daily PM2.5 concentration
(µg/m3) with significant explanatory variables is provided in Equation (1):

PM2.5 = 6.11 +
[(

4.79 × 10−2
)
(D × AQModerate)

]
−
[(

3.65 × 10−3
)
(Y × AQModerate)

]
+ 0.29(PM10 × AQModerate) (1)

where D is the day, Y is the year, PM10 represents the observed daily PM10 concentration
(µg/m3) and AQModerate represents moderate air quality condition. Equation (1) indicates that
daily PM2.5 concentration could be estimated if the corresponding day, year and PM10 concen-
tration during moderate air quality were available. The order of variable importance based
on MIE for estimating daily PM2.5 concentration by RFR model was (from high to low): PM10
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(MIE = 28.05 µg/m3), air quality condition (MIE = 3.64 µg/m3), rainfall (MIE = 1.89 µg/m3),
air temperature (MIE = 1.11 µg/m3), wind direction (MIE = 0.62 µg/m3), month
(MIE = 0.32 µg/m3), day (MIE = 0.01 µg/m3), wind speed (MIE = −0.50 µg/m3), year
(MIE = −0.62 µg/m3) and monsoon season (MIE = −1.18 µg/m3). This shows that the most
important variable for estimating daily PM2.5 concentration in Singapore by the RFR model was
PM10 concentration.

When the ANCOVA and RFR models were tested using all the observational data in
Singapore from March 2016 to February 2018, both models yielded higher accuracy (in
terms of RMSE) compared to when they were trained and validated with the corresponding
datasets. During model testing, the ANCOVA model showed poorer fitting and accuracy
(R2 = 0.75 and RMSE = 0.10 µg/m3) than the RFR model (R2 = 0.89 and RMSE = 0.07 µg/m3)
in estimating daily PM2.5 concentration in Singapore, in general (Figure 6). Due to these
reasons, the difference between the estimated and observed daily PM2.5 concentrations
in Singapore was larger for the ANCOVA model (underestimation by 11% on 48% of the
observations and overestimation by 15% on 52% of the observations) compared to the RFR
model (underestimation by 6% on 47% of the observations and overestimation by 9% on
53% of the observations). The best estimation (i.e., the intersection point between the best
fit line/trendline and the diagonal (y = x) line) of PM2.5 concentration in Singapore was
at 15.05 µg/m3 for the ANCOVA model and 15.75 µg/m3 for the RFR model. Besides
the meteorological parameters, other air pollutants (such as carbon monoxide (CO) and
nitrogen oxides (NOx)) concentration data could be added to the model in the future as
explanatory variables to further improve the model performance for estimating daily PM2.5
concentration since they were found to be associated with PM2.5 concentrations in São
Paulo, Brazil for CO [41] and in Fresno, California, USA for NOx [42].
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The models’ performances during good and moderate air quality conditions in differ-
ent monsoon seasons in Singapore from March 2016 to February 2018 were also evaluated.
Figure 7 showed that the accuracy of the ANCOVA model was reduced (as indicated by
an increment in the RMSE value from 1.78 µg/m3 to 3.13 µg/m3, on average) when the
air quality condition changed from good to moderate despite having better data fitting
(as indicated by an increment in the R2 value from 0.39 to 0.62, on average). This implies
that the ANCOVA model may not be able to handle increased PM2.5 concentration well.
The R2 value of the ANCOVA model for estimating daily PM2.5 concentration in different
monsoon seasons in Singapore was ranged between 0.20 and 0.61 during good air quality
and between 0.50 and 0.78 during moderate air quality (Table 3). The RMSE value of the
ANCOVA model for estimating daily PM2.5 concentration in different monsoon seasons in
Singapore was ranged between 1.58 µg/m3 and 1.95 µg/m3 during good air quality and
between 2.43 µg/m3 and 4.08 µg/m3 during moderate air quality (Table 3). The highest
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RMSE value (4.08 µg/m3) was attained during SW monsoon season when the air quality
was moderate, and this was because of the large variation in daily PM2.5 concentration (as
indicated by the outliers and extreme outliers in Figure 3a), as a result of the smoke haze
event that often occurs in this season. The ANCOVA model exhibited the best performance
for daily PM2.5 concentration estimation during NE monsoon season when the air quality
was good with R2 value of 0.61 and RMSE value of 1.58 µg/m3.

Table 3. Comparison of determination coefficient (R2 ) and root mean square of the errors (RMSE)
of the ANCOVA and RFR models for estimating daily PM2.5 and PM10 concentrations during good
and moderate air quality conditions in different monsoon seasons in Singapore from March 2016 to
February 2018.

Air Quality
Condition|Monsoon Season

Statistical
Indicator

PM2.5 PM10

ANCOVA
Model RFR Model ANCOVA

Model RFR Model

Overall
R2 0.75 0.89 0.81 0.93

RMSE (µg/m3) 0.10 0.07 0.11 0.07

Good|Inter-Monsoon 1
R2 0.20 0.74 0.18 0.76

RMSE (µg/m3) 1.95 1.13 2.19 1.09

Good|Inter-Monsoon 2
R2 0.39 0.88 0.38 0.90

RMSE (µg/m3) 1.95 0.96 2.20 1.00

Good|NE Monsoon
R2 0.61 0.85 0.63 0.89

RMSE (µg/m3) 1.58 1.02 2.65 1.45

Good|SW Monsoon
R2 0.35 0.76 0.38 0.82

RMSE (µg/m3) 1.65 1.01 1.93 1.06

Moderate|Inter-Monsoon 1
R2 0.61 0.72 0.56 0.84

RMSE (µg/m3) 3.19 2.85 3.98 2.59

Moderate|Inter-Monsoon 2
R2 0.78 0.85 0.76 0.87

RMSE (µg/m3) 2.43 2.15 2.86 2.15

Moderate|NE Monsoon
R2 0.57 0.77 0.61 0.87

RMSE (µg/m3) 2.83 2.05 3.46 2.03

Moderate|SW Monsoon
R2 0.50 0.87 0.53 0.84

RMSE (µg/m3) 4.08 2.09 3.38 2.05

Figure 8 shows the scatter plots of observed and estimated daily PM2.5 concentrations
by the RFR model for good and moderate air quality conditions during different monsoon
seasons in Singapore from March 2016 to February 2018. It can be seen that the accuracy
of the RFR model was reduced (as indicated by an increment in the RMSE value from
1.03 µg/m3 to 2.29 µg/m3, on average) and the data fitting was slightly affected (as
indicated by a very small decrement in the R2 value from 0.81 to 0.80, on average) when
the air quality condition changed from good to moderate. This implies that the RFR
model may have a limitation in handling increased PM2.5 concentration. The ranges of
R2 value of the RFR model for estimating daily PM2.5 concentration in different monsoon
seasons in Singapore were between 0.74 and 0.88 during good air quality and between
0.72 and 0.87 during moderate air quality. The ranges of RMSE value of the RFR model
for estimating daily PM2.5 concentration in different monsoon seasons in Singapore was
between 0.96 µg/m3 and 1.13 µg/m3 during good air quality and between 2.05 µg/m3 and
2.85 µg/m3 during moderate air quality. Comparison of the ANCOVA and RFR models’
performance for daily PM2.5 concentration estimation during good and moderate air quality
in different monsoon seasons in Singapore showed that the RFR model was more accurate
with better data fitting (R2 = 0.81 and RMSE = 1.66 µg/m3, on average) than the ANCOVA
model (R2 = 0.50 and RMSE = 2.46 µg/m3, on average) (Table 3).
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3.3. Estimation Models for PM10 Concentration

Scatter plots of estimated daily PM10 concentration against observed daily PM10
concentration by ANCOVA and RFR models based on air quality and meteorological
data in Singapore from March 2016 to February 2018 with learning and validation sam-
ples are illustrated in Figure 9. Both models’ performances in model learning and val-
idation were evaluated and the results show that the ANCOVA model has compara-
ble data fitting and accuracy (R2 = 0.79 and RMSE = 2.82 µg/m3) to the RFR model
(R2 = 0.80 and RMSE = 2.87 µg/m3) in model learning and the RFR model has compa-
rable data fitting and accuracy (R2 = 0.83 and RMSE = 3.29 µg/m3) to the ANCOVA
model (R2 = 0.82 and RMSE = 3.71 µg/m3) in model validation. Using the stepwise vari-
ables selection method, ten variables (i.e., (year × wind speed), (year × PM2.5 concen-
tration), (air temperature × PM2.5 concentration), (wind speed × PM2.5 concentration),
(wind speed × air quality condition), (wind direction × PM2.5 concentration), (wind
direction × air quality condition), (PM2.5 concentration × monsoon season), (year × air
temperature), and (air temperature × wind speed)) were retained in the ANCOVA model.
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learning and validation samples.

Results of the sum of squares of the errors (SSE) analysis on the ANCOVA model
(Table 4), indicates that variables (year × wind speed), (year × PM2.5 concentration), (air
temperature × PM2.5 concentration), (wind speed × PM2.5 concentration), (wind speed × air
quality condition), (wind direction × PM2.5 concentration), (wind direction × air quality
condition) and (PM2.5 concentration × monsoon season) bring significant information to
explain the variability of the dependent variable PM10 concentration. Among the explanatory
variables, the interaction variable (wind direction × air quality condition) was the most
influential because it has the lowest probability associated with the F value (3.58 ×10−6),
highest SSE value (204.49 µg/m3) and relatively high MSE value (102.25 µg/m3) when this
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variable was removed from the ANCOVA model (see Table 4). This could be due to the effect
of wind direction on PM10 concentration in the area [43] and the fact that PM10 is one of the
determining factors of air quality condition.

Table 4. Results of sum of squares of the errors (SSE) analysis on the ANCOVA model for estimating
daily PM2.5 concentration in Singapore from March 2016 to February 2018 for selected explanatory
variables.

Explanatory Variable Degree of
Freedom (DF)

Sum of
Squares of the

Errors (SSE)
(µg/m3)

Mean Squared
Error (MSE)

(µg/m3)
F Value Probability > F

Year × Air temperature 1 0 0 <0.0001 1
Year × Wind speed 1 82.77 82.77 10.38 1.35 × 10−3

Year × PM2.5 1 38.96 38.96 4.89 0.03
Air temperature × Wind speed 1 2.08 2.08 0.26 0.61

Air temperature × PM2.5 1 145.60 145.60 18.26 2.26 × 10−5

Wind speed × PM2.5 1 62.66 62.66 7.86 5.23 × 10−3

Wind speed × Air quality condition 2 182.57 91.29 11.45 1.34 × 10−5

Wind direction × PM2.5 1 156.94 156.94 19.69 1.10 × 10−5

Wind direction × Air quality
condition 2 204.49 102.25 12.83 3.58 × 10−6

PM2.5 × Monsoon season 3 97.09 32.36 4.06 7.19 × 10−3

The equation of the best ANCOVA model for estimating daily PM10 concentration
(µg/m3) with significant explanatory variables is provided in Equation (2):

PM10 = −39.43 +
[(

8.68 × 10−4)(Y × T)
]
+
[(

5.10 × 10−3)(Y × WS)
]
+
[(

1.85 × 10−3)(Y × PM2.5)
]
− 0.31(T × WS)

−
[(

9.24 × 10−2)(T × PM2.5)
]
−
[(

7.25 × 10−2)(WS PM2.5)
]
+ 0.84(WS × AQModerate)

−
[(

1.15 × 10−3)(WD × PM2.5)
]
+
[(

1.44 × 10−2)(WD × AQModerate)
]
− 0.05(PM2.5 ××MIM2)

−
[(

8.45 × 10−2)(PM2.5 × MNE)
]
−
[(

7.41 × 10−2)(PM2.5 × MSW)
] (2)

where Y is the year, T is the air temperature (◦C), WS is the wind speed (m/s), WD is
the wind direction (◦), PM2.5 represents the observed daily PM2.5 concentration (µg/m3),
AQModerate represents moderate air quality condition, MIM2 is the inter-monsoon 2 season,
MNE is the NE monsoon season and MSW is the SW monsoon season. Equation (2) indicates
that the daily PM10 concentration could be estimated if the corresponding year, temperature,
wind speed, wind direction, PM2.5 concentration during moderate air quality in NE, SW
and inter-monsoon 2 seasons were available. The order of variable importance based
on MIE for estimating daily PM10 concentration by RFR model was (from high to low):
air quality condition (MIE = 51.35 µg/m3), PM2.5 (MIE = 46.78 µg/m3), wind direction
(MIE = 11.59 µg/m3), wind speed (MIE = 7.01 µg/m3), air temperature (MIE = 4.32 µg/m3),
year (MIE = 3.72 µg/m3), month (MIE = 3.35 µg/m3), day (MIE = 2.99 µg/m3), rainfall
(MIE = 1.45 µg/m3) and monsoon season (MIE = −2.68 µg/m3). This shows that air quality
condition was the most important variable of RFR model for daily PM10 concentration
estimation in Singapore.

The ANCOVA and RFR models for daily PM10 concentration estimation were tested
on all the observational data in Singapore from March 2016 to February 2018 and the
results show improvement in accuracy (in terms of RMSE) for both models and data fitting,
particularly for the RFR model, compared to model learning and validation. The best
model for overall estimation of PM10 concentration in Singapore was the RFR model as it
showed better data fitting and higher accuracy (R2 = 0.93 and RMSE = 0.07 µg/m3) than
the ANCOVA model (R2 = 0.81 and RMSE = 0.11 µg/m3) (Figure 10). It was found that the
ANCOVA model underestimated daily PM10 concentration in Singapore by 8% (48% of the
observations) and overestimated by 9% (52% of the observations) whereas the RFR model
underestimated daily PM10 concentration in Singapore by 4% (46% of the observations) and
overestimated by 5% (54% of the observations). The best estimation of PM10 concentration
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in Singapore was at 25.32 µg/m3 for the ANCOVA model and 25.92 µg/m3 for the RFR
model (Figure 10). Both ANCOVA and RFR models developed in this study for daily PM10
concentration estimation outperformed the multiple non-linear regression (MNLR) model
(R2 = 0.36 and RMSE = 20.30 µg/m3, on average) for estimating daily PM10 concentration
in three cities (Budapest, Miskolc and Pécs) in Hungary [44]. This could be due to more
explanatory variables being used in the model development of this study compared to
their study, which only has three explanatory variables (i.e., temperature, wind speed and
boundary layer height).

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 20 of 34 
 

 

concentration in Singapore was at 25.32 µg/m3 for the ANCOVA model and 25.92 µg/m3 
for the RFR model (Figure 10). Both ANCOVA and RFR models developed in this study 
for daily PM10 concentration estimation outperformed the multiple non-linear regression 
(MNLR) model (𝑅  = 0.36 and RMSE = 20.30 µg/m3, on average) for estimating daily PM10 
concentration in three cities (Budapest, Miskolc and Pécs) in Hungary [44]. This could be 
due to more explanatory variables being used in the model development of this study 
compared to their study, which only has three explanatory variables (i.e., temperature, 
wind speed and boundary layer height). 

  

Figure 10. Scatter plots of estimated daily PM10 concentration against observed daily PM10 concen-
tration by (a) ANCOVA and (b) RFR models for overall air quality in Singapore from March 2016 
to February 2018. 

Figure 11 shows the observed and estimated daily PM10 concentrations by the AN-
COVA model for good and moderate air quality conditions during different monsoon 
seasons in Singapore from March 2016 to February 2018. Although the model has better 
data fitting (as indicated by an increment in the 𝑅  value from 0.39 to 0.62, on average), 
its accuracy was reduced (as indicated by an increment in the RMSE value from 2.24 µg/m3 
to 3.42 µg/m3, on average) when the good air quality condition became moderate. This 
shows that the ANCOVA model may not have good capability of handling increased PM10 
concentration as well as PM2.5 concentration (as mentioned earlier in Section 3.2). A pos-
sible reason for this could be the low interaction level of the ANCOVA model used in this 
study, which may not be enough to account for the confounding effects between the input 
parameters of the model to describe the complex reality of atmospheric pollution. There-
fore, it was suggested to use a higher interaction level for the ANCOVA model in future 
studies. 

  

Figure 10. Scatter plots of estimated daily PM10 concentration against observed daily PM10 concen-
tration by (a) ANCOVA and (b) RFR models for overall air quality in Singapore from March 2016 to
February 2018.

Figure 11 shows the observed and estimated daily PM10 concentrations by the AN-
COVA model for good and moderate air quality conditions during different monsoon
seasons in Singapore from March 2016 to February 2018. Although the model has better
data fitting (as indicated by an increment in the R2 value from 0.39 to 0.62, on average), its
accuracy was reduced (as indicated by an increment in the RMSE value from 2.24 µg/m3

to 3.42 µg/m3, on average) when the good air quality condition became moderate. This
shows that the ANCOVA model may not have good capability of handling increased
PM10 concentration as well as PM2.5 concentration (as mentioned earlier in Section 3.2). A
possible reason for this could be the low interaction level of the ANCOVA model used in
this study, which may not be enough to account for the confounding effects between the
input parameters of the model to describe the complex reality of atmospheric pollution.
Therefore, it was suggested to use a higher interaction level for the ANCOVA model in
future studies.

As shown in Table 3, the ANCOVA model for estimating daily PM10 concentration
in different monsoon seasons in Singapore has R2 value ranging between 0.18 and 0.63
during good air quality and between 0.53 and 0.76 during moderate air quality, and
RMSE value ranging between 1.93 µg/m3 and 2.65 µg/m3 during good air quality and
between 2.86 µg/m3 and 3.98 µg/m3 during moderate air quality. The highest RMSE value
(3.98 µg/m3) was attained during moderate air quality in inter-monsoon 1 season, and this
could be due to large variation in daily PM10 concentration (as indicated by the outliers
in Figure 4b) as a result of the prolonged smoke haze event from the NE monsoon season,
which limited the dispersion of PM10 by the meteorological parameters (for examples, wind
speed, wind direction and rainfall) [45]. The ANCOVA model for daily PM10 concentration
estimation in Singapore showed the best performance during good air quality in SW
monsoon because it has the highest estimation accuracy with an RMSE value of 1.93 g/m3

although it has a low R2 value of 0.38.
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Scatter plots of the observed and estimated daily PM10 concentrations by the RFR
model for good and moderate air quality conditions during different monsoon seasons in
Singapore from March 2016 to February 2018 are shown in Figure 12. As the air quality
changed from good to moderate, the fitting of data on the RFR model was improved
(as indicated by an increment in the R2 value from 0.84 to 0.86, on average) but the
accuracy of the model was reduced (as indicated by an increment in the RMSE value from
1.15 µg/m3 to 2.21 µg/m3, on average). The accuracy of the RFR model can possibly be
increased by increasing the number of trees in future studies. The RFR model for daily
PM10 concentration estimation in different monsoon seasons in Singapore has an R2 value
ranging between 0.76 and 0.90 during good air quality and between 0.84 and 0.87 during
moderate air quality with RMSE value ranging between 1.00 µg/m3 and 1.45 µg/m3 during
good air quality and between 2.03 µg/m3 and 2.59 µg/m3 during moderate air quality. The
performances of the ANCOVA and RFR models for daily PM10 concentration estimation
during good and moderate air quality in different monsoon seasons in Singapore were
compared in Table 3 and the results show that the RFR model was more accurate with
better data fitting (R2 = 0.85 and RMSE = 1.68 µg/m3, on average) than the ANCOVA
model (R2 = 0.50 and RMSE = 2.83 µg/m3, on average).

3.4. Application of the Derived Models for Estimating PM2.5 and PM10 Concentrations in Brunei
Darussalam

To test the applicability of the derived models as cross-country models for estimating
PM2.5 and PM10 concentrations in Southeast Asia, they were tested with air quality and
meteorological data from Brunei Darussalam from January 2009 to December 2019 as an
example. The results for PM2.5 and PM10 concentrations estimations in Brunei Darussalam
were provided and discussed separately in the following sections.

3.4.1. Estimation of PM2.5 Concentration in Brunei Darussalam

Figure 13 shows that there was no major difference in terms of data fitting and accuracy
between the ANCOVA (R2 = 0.94 and RMSE = 0.05 µg/m3) and RFR models (R2 = 0.92
and RMSE = 0.04 µg/m3) when they were used to estimate daily PM2.5 concentration in
Brunei Darussalam. Both models yielded better data fitting and accuracy for estimating
daily PM2.5 concentration in Brunei Darussalam (R2 = 0.93 and RMSE = 0.05 µg/m3,
averaged between both models) compared to Singapore (R2 = 0.82 and RMSE = 0.09 µg/m3,
averaged between both models). Based on the RMSE value, both ANCOVA and RFR
models for estimating daily PM2.5 concentration from March 2016 to February 2018 (2 years)
in Singapore (RMSE = 0.10 µg/m3 for the ANCOVA model and 0.07 µg/m3 for the RFR
model) and from 2009 to 2019 (11 years) in Brunei Darussalam (RMSE = 0.05 µg/m3 for the
ANCOVA model and 0.04 µg/m3 for the RFR model) presented in this study outperformed
the long short-term memory (LSTM) model (RMSE = 8.91 µg/m3) for estimating 48-h PM2.5
concentration from 2013 to 2016 (4 years) in Iran in 2019 [46] and the gradient boosting
model (RMSE = 7.06 µg/m3) for estimating 24-h PM2.5 concentration for the year 2017
(1 year) in Taiwan in 2020 [47]. These could be attributed to more homogeneous topography
(mainly basins) in Singapore and Brunei Darussalam compared to complicated topography
in Iran and Taiwan (with mountainous layouts), leading to the simpler dispersal of air
pollutants.
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A stagnant pattern of PM2.5 concentration at theoretical values beyond 18 µg/m3 was
seen in Figure 13b and this shows that the derived RFR model was not able to accurately
estimate daily PM2.5 concentration in Brunei Darussalam beyond this concentration. This
could be due to insufficient explanatory variables [21,48] to describe the increase in PM2.5
concentration in Brunei Darussalam that could be attributed to the occurrence of smoke
haze. A possible explanatory variable that could be added to the proposed models is
wildfires information because the occurrence of intense wildfires will lead to a heatwave
and high PM2.5 concentrations that may be transported thousands of kilometers away from
their source areas [48,49], affecting the air quality in the nearby regions. For example, long-
ranged transported PM pollution episodes caused by wildfires in eastern Europe (Russia,
Belarus, Ukraine and the Baltic countries) are common in Finland [50]. The study found that
the ANCOVA model underestimated by 17% (17% of the observations) and overestimated
by 32% (83% of the observations) on the daily PM2.5 concentration in Brunei Darussalam.
Meanwhile, the RFR model tends to overestimate the daily PM2.5 concentration in Brunei
Darussalam by 30% (99.7% of the observations) and underestimated by 8% (0.3% of the
observations). The best estimation for PM2.5 concentration in Brunei Darussalam was at
4.08 µg/m3 for the ANCOVA model but that could not be determined for the RFR model
(Figure 13).

There are no scatter plots presented in this section to show the estimation results of the
derived ANCOVA and RFR models for moderate air quality in NE and both inter-monsoon
seasons in Brunei Darussalam because of the limited availability of theoretical PM2.5 and
observed PM10 concentrations data during these air quality conditions and monsoon sea-
sons. The estimation results of the derived ANCOVA model for daily PM2.5 concentration
for good and moderate air quality conditions during other monsoon seasons in Brunei
Darussalam from January 2009 to December 2019 are shown in Figure 14. When the good
air quality became moderate, the accuracy of the model was worsened (as indicated by
a significant increment in the RMSE value from 2.88 µg/m3 to 13.24 µg/m3, on average)
despite improvement in data fitting (as indicated by an increment in the R2 value from 0.85
to 0.96, on average). This could possibly be due to the inadequate interaction level among
the model’s input parameters being accounted for by the derived ANCOVA model. Table 5
shows that the R2 value of the ANCOVA model for estimating daily PM2.5 concentration
in different monsoon seasons in Brunei Darussalam was ranged between 0.78 and 0.94
during good air quality and 0.96 during moderate air quality, and the RMSE value was
ranged between 2.49 µg/m3 and 3.76 µg/m3 during good air quality and 13.24 µg/m3

during moderate air quality. The highest RMSE value (13.24 µg/m3) was obtained during
moderate air quality in SW monsoon season, and this could be due to the large variation in
daily PM2.5 concentration (see Figure 4a) that was likely to be contributed by the smoke
haze event occurring in this season. The ANCOVA model for daily PM2.5 concentration in
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Brunei Darussalam showed the best performance during NE monsoon season at good air
quality condition by having the highest estimation accuracy (RMSE = 2.49 µg/m3) despite
having a trade-off with the fitting of the data (as indicated by the lowest R2 value of 0.78).
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Table 5. Comparison of determination coefficient (R2 ) and root mean square of the errors (RMSE) of
the ANCOVA and RFR models for estimating daily PM2.5 and PM10 concentrations during good and
moderate air quality conditions in different monsoon seasons in Brunei Darussalam from January
2009 to December 2019.

Air Quality
Condition|Monsoon Season

Statistical
Indicator

PM2.5 PM10

ANCOVA
Model RFR Model ANCOVA

Model RFR Model

Overall
R2 0.94 0.92 0.72 0.86

RMSE (µg/m3) 0.05 0.04 0.09 0.08

Good|Inter-Monsoon 1
R2 0.84 0.94 0.49 0.87

RMSE (µg/m3) 2.56 2.11 4.54 2.25

Good|Inter-Monsoon 2
R2 0.85 0.90 0.49 0.80

RMSE (µg/m3) 2.72 2.29 4.66 2.93

Good|NE Monsoon
R2 0.78 0.93 0.57 0.85

RMSE (µg/m3) 2.49 1.91 3.70 2.13

Good|SW Monsoon
R2 0.94 0.91 0.68 0.81

RMSE (µg/m3) 3.76 3.04 6.16 5.17

Moderate|SW Monsoon
R2 0.96 0.07 0.78 0.69

RMSE (µg/m3) 13.24 6.55 32.55 30.55

Figure 15 shows the estimation results of the derived RFR model for daily PM2.5
concentration for good and moderate air quality conditions during different monsoon
seasons in Brunei Darussalam from January 2009 to December 2019. The fitting of data on
the RFR model was worsened (as indicated by a major drop in the R2 value from 0.92 to 0.07,
on average) and the accuracy of the model was decreased (as indicated by an increment in
the RMSE value from 2.34 µg/m3 to 6.55 µg/m3, on average) when the air quality changed
from good to moderate. The ranges of R2 value of the RFR model for estimating daily PM2.5
concentration in different monsoon seasons in Brunei Darussalam were between 0.90 and
0.94 during good air quality and 0.07 during moderate air quality, and the ranges of RMSE
value of the RFR model were between 1.99 µg/m3 and 3.04 µg/m3 during good air quality
and 6.55 µg/m3 during moderate air quality. The comparison of the performances of both
models for daily PM2.5 concentration estimation during good and moderate air quality
conditions in different monsoon seasons in Brunei Darussalam are shown in Table 5 and
the results show that the derived ANCOVA model generally gave better fitting on the data
although it has a slightly lower accuracy (R2 = 0.87 and RMSE = 4.95 µg/m3, on average)
than the RFR model (R2 = 0.75 and RMSE = 3.18 µg/m3, on average). However, having
said that, both derived models show limitations in handling high PM2.5 concentrations
when tested on the datasets from both countries; therefore, further studies to improve these
models are necessary before they can be used as cross-country models.
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from good to moderate. The ranges of 𝑅  value of the RFR model for estimating daily 
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0.90 and 0.94 during good air quality and 0.07 during moderate air quality, and the ranges 
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air quality and 6.55 µg/m3 during moderate air quality. The comparison of the perfor-
mances of both models for daily PM2.5 concentration estimation during good and moder-
ate air quality conditions in different monsoon seasons in Brunei Darussalam are shown 
in Table 5 and the results show that the derived ANCOVA model generally gave better 
fitting on the data although it has a slightly lower accuracy (𝑅  = 0.87 and RMSE = 4.95 
µg/m3, on average) than the RFR model (𝑅  = 0.75 and RMSE = 3.18 µg/m3, on average). 
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3.4.2. Estimation of PM10 Concentration in Brunei Darussalam

The testing results of the derived ANCOVA and RFR models to estimate daily PM10
concentrations in Brunei Darussalam from January 2009 to December 2019 are presented
in Figure 16. It was seen that the RFR model has comparable data fitting and accuracy
(R2 = 0.86 and RMSE = 0.08 µg/m3) compared to the ANCOVA model (R2 = 0.723 and
RMSE = 0.09 µg/m3) although the RFR model could not handle observed PM10 concen-
tration over 18 µg/m3 (as indicated by the stagnant estimated PM10 concentrations in
Figure 16b). Additional input parameters such as vehicular traffic and forest fires informa-
tion need to be considered to improve the estimation performance of the derived models.
Due to the low RMSE value of both derived models, the ANCOVA model underestimated
and overestimated the daily PM10 concentration in Brunei Darussalam by 1% (50% of the
observations) and the RFR model underestimated by 9% (54% of the observations) and
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overestimated by 14% (46% of the observations). The best estimation of PM10 concentration
in Brunei Darussalam was at 18.94 µg/m3 for the ANCOVA model and 16.40 µg/m3 for
the RFR model (Figure 16).
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Both ANCOVA and RFR models for estimating daily PM10 concentration from March
2016 to February 2018 (2 years) in Singapore (RMSE = 0.11 µg/m3 for the ANCOVA
model and 0.07 µg/m3 for the RFR model) and from January 2009 to December 2019
(11 years) in Brunei Darussalam (RMSE = 0.09 µg/m3 for the ANCOVA model and
0.08 µg/m3 for the RFR model) showed better estimation performance than the MLR
model (RMSE = 126.73 µg/m3) for estimating hourly PM10 concentration during trans-
boundary haze events from 2005 to 2014 (excluding the years from 2007 to 2009) (7 years)
in Sarawak and Peninsular Malaysia in 2020 [51]. This could be due to the spatial and
temporal variations of PM emissions from other major air pollution sources such as motor
vehicles and industrial activities as a result of different developments among countries in
Southeast Asia [52]. For example, in Singapore, motor vehicles account for about 50% of
the total PM2.5 emissions [53] and about 60% of the estimated total ground transportation
PM emissions [54]. In Malaysia, motor vehicles contributed to about 17% of the total PM
emissions in 2010 [55] and the highest mean monthly PM10 concentration (68.79 µg/m3)
between 1997 and 2015 was recorded in Port Klang, Malaysia [56] due to high traffic volume
and proportion of diesel vehicles [57].

Figure 17 shows the observed and estimated daily PM10 concentrations by the AN-
COVA model for good and moderate air quality conditions during different monsoon
seasons in Brunei Darussalam from January 2009 to December 2019. It can be seen that
the accuracy of the derived ANCOVA model was reduced (as indicated by an increment
in the RMSE value from 19.06 µg/m3 to 32.55 µg/m3, on average) despite better data
fitting on the model (as indicated by an increment in the R2 value from 0.56 to 0.78, on
average) when the air quality changed from good to moderate. This may imply that the
confounding effects between the input parameters of the model were not well described
by the model. To overcome this, the interaction level of the ANCOVA model should be
increased in future studies. Table 5 shows that the derived ANCOVA model for estimating
daily PM10 concentration in different monsoon seasons in Brunei Darussalam has R2 value
ranging between 0.49 and 0.68 during good air quality and 0.78 during moderate air quality
with RMSE value ranging between 3.70 µg/m3 and 6.16 µg/m3 during good air quality
and 32.55 µg/m3 during moderate air quality. The highest RMSE value (32.55 µg/m3) was
obtained during moderate air quality in SW monsoon season due to the large variation in
daily PM10 concentration (see Figure 4b) that could have resulted from the occurrence of
transported smoke haze in the region during this season.
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The performance of the derived RFR model for estimating daily PM10 concentration
for good and moderate air quality conditions during different monsoon seasons in Brunei
Darussalam from January 2009 to December 2019 are shown in Figure 18. As the air
quality became moderate, the data fitting and accuracy of the RFR model were reduced
(as indicated by the drop in the R2 value from 0.83 to 0.69, on average, and the increase
in the RMSE value from 3.12 µg/m3 to 30.55 µg/m3, on average). This showed that the
derived RFR model could not describe the increase in PM10 concentration well. When the
derived RFR model was used to estimate daily PM10 concentration estimation in different
monsoon seasons in Brunei Darussalam, it gave R2 value between 0.80 and 0.87 during
good air quality and 0.69 during moderate air quality with RMSE value between 2.13 µg/m3

and 5.17 µg/m3 during good air quality and 30.55 µg/m3 during moderate air quality.
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Although the derived ANCOVA model generally fits the data less well and it yielded lower
accuracy (R2 = 0.60 and RMSE = 10.32 µg/m3, on average) compared to the RFR model
(R2 = 0.80 and RMSE = 8.61 µg/m3, on average) (Table 5), the derived ANCOVA model
can handle increased PM10 concentration much better than the RFR model, particularly
during moderate air quality in SW monsoon season.
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4. Conclusions

This study explores the potential to estimate daily PM2.5 and PM10 concentrations in
Brunei Darussalam using ML-based statistical models (such as ANCOVA and RFR) derived
from air quality and meteorological data in Singapore with statistical assessments. The most
influential explanatory variables for estimating PM2.5 and PM10 concentrations in Singapore
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by the ANCOVA model were the interaction variables (PM10 concentration × air quality
condition) and (wind direction × air quality condition), respectively. Meanwhile, the most
important variables for estimating daily PM2.5 and PM10 concentrations in Singapore by the
RFR model were PM10 concentration and air quality condition, respectively. Both ANCOVA
(R2 = 0.75 and RMSE = 0.10 µg/m3 for PM2.5, and R2 = 0.81 and RMSE = 0.11 µg/m3 for
PM10) and RFR models (R2 = 0.89 and RMSE = 0.07 µg/m3 for PM2.5, and R2 = 0.93 and
RMSE = 0.07 µg/m3 for PM10) performed well when used to estimate daily PM2.5 and PM10
concentrations in Singapore. When these derived models were tested with air quality and
meteorological data from Brunei Darussalam to estimate its daily PM2.5 and PM10 concen-
trations, the ANCOVA model seems to perform better (R2 = 0.94 and RMSE = 0.05 µg/m3

for PM2.5, and R2 = 0.72 and RMSE = 0.09 µg/m3 for PM10) than the RFR model (R2 = 0.92
and RMSE = 0.04 µg/m3 for PM2.5, and R2 = 0.86 and RMSE = 0.08 µg/m3 for PM10)
because it can describes PM concentrations over 18 µg/m3 better than the RFR model.

The limitations of the models in this work are due to insufficient data for unique
incidents (for example, serious smoke haze leading to moderate or unhealthy air quality
condition), low interaction level among the ANCOVA model’s input parameters used in the
model development, low number of trees when developing the RFR model and insufficient
explanatory variables relating to atmospheric PM pollution (for examples, vehicular traffic
and forest fires information). These estimation models for PM concentrations can be
improved further in future studies by including more data recorded during moderate
and/or unhealthy air quality conditions, increasing the interaction level of the ANCOVA
model, increasing the number of trees for the RFR model, performing cross-validation
on the datasets and including major domestic anthropogenic emissions such as vehicular
traffic and/or forest fire information as the explanatory variables. Overall, the study
had demonstrated the potential of applying the models as cross-country models in the
Southeast Asia region although more actual/measured PM2.5 concentration data from
Brunei Darussalam in the future are needed to test the accuracy of the models and more
experimental on fine-tuning the models’ parameters to improve the model performance as
well as their capability in handling higher PM concentrations in the region.
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