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Abstract

Syncytiotrophoblast extracellular vesicles (STBEVs) are placenta derived particles that are

released into the maternal circulation during pregnancy. Abnormal levels of STBEVs have

been proposed to affect maternal vascular function. The lectin-like oxidized low-density lipo-

protein receptor-1 (LOX-1) is a multi-ligand scavenger receptor. Increased LOX-1 expres-

sion and activation has been proposed to contribute to endothelial dysfunction. As LOX-1

has various ligands, we hypothesized that, being essentially packages of lipoproteins,

STBEVs are able to activate the LOX-1 receptor thereby impairing vascular function via the

production of superoxide and decreased nitric oxide bioavailability. Uterine arteries were

obtained in late gestation from Sprague-Dawley rats and incubated for 24h with or without

human STBEVs (derived from a normal pregnant placenta) in the absence or presence of a

LOX-1 blocking antibody. Vascular function was assessed using wire myography. Endothe-

lium-dependent maximal vasodilation to methylcholine was impaired by STBEVs (MCh

Emax: 57.7±5.9% in STBEV-incubated arteries vs. 77.8±2.9% in controls, p<0.05). This was

prevented by co-incubation of STBEV-incubated arteries with LOX-1 blocking antibodies

(MCh Emax: 78.8±4.3%, p<0.05). Pre-incubation of the vessels with a nitric oxide synthase

inhibitor (L-NAME) demonstrated that the STBEV-induced impairment in vasodilation was

due to decreased nitric oxide contribution (ΔAUC 12.2±11.7 in STBEV-arteries vs. 86.5±20

in controls, p<0.05), which was abolished by LOX-1 blocking antibody (ΔAUC 98.9±17,

p<0.05). In STBEV-incubated vessels, LOX-1 inhibition resulted in an increased endothelial

nitric oxide synthase expression (p<0.05), to a level similar to control vessels. The oxidant

scavenger, superoxide dismutase, did not improve this impairment, nor were vascular

superoxide levels altered. Our data support an important role for STBEVs in impairment of

vascular function via activation of LOX-1 and reduced nitric oxide mediated vasodilation.

Moreover, we postulate that the LOX-1 pathway could be a potential therapeutic target in

pathologies associated with vascular dysfunction during pregnancy.
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Introduction

STBEVs are heterogeneous membranous vesicles released into the maternal circulation by the

multinucleated syncytiotrophoblast layer of the placenta. They are variable in size, ranging

from smaller exosomes and ectosomes (50–150 nm) to larger extracellular vesicles (100 nm—

1 μm) [1], and during pregnancy they are present from the second trimester onwards, reaching

their highest levels at the end of gestation [2, 3]. While STBEVs are naturally released during

pregnancy, increased concentrations of STBEVs have been suggested to contribute to potential

pathological states such as systemic inflammation and endothelial dysfunction [4]. Specifically,

STBEVs have been shown to activate peripheral blood monocytes and peripheral blood mono-

nuclear cells [2, 5], disrupt the monolayer architecture and reduce proliferation of endothelial

cells [6]. In addition, some ex vivo studies have shown that STBEVs affect vascular function [7]

while others did not observe any changes [8]. Although it has been suggested that the proteins

and the danger-associated molecular patterns (DAMPs) that STBEVs carry on their surface

(such as heat shock proteins) could mediate their own activity [1], the specific receptor(s) by

which STBEVs act and their exact mechanism(s) of downstream action are still unknown.

The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the main receptor

involved in the uptake of oxidized low-density lipoprotein (oxLDL) and it has been well-stud-

ied in cardiovascular diseases such as atherosclerosis [9] and has been shown to be increased

in preeclampsia [10–12], which is characterized by systemic endothelial dysfunction. Activa-

tion of LOX-1 by oxLDL impairs vascular function [13] via increased NADPH oxidase activa-

tion, and superoxide and peroxynitrite production [12]; leading to decreased nitric oxide

(NO) bioavailability [14–16]. In addition, oxLDL stimulation was shown to reduce endothelial

nitric oxide synthase (eNOS) expression in endothelial cells in vitro, which was LOX-1 depen-

dent [17, 18]. Further, previous studies from our group have shown that increased LOX-1

expression may be implicated in impaired endothelium-dependent vasodilation during preg-

nancy [12]. Moreover, in pregnant animals with reduced uterine perfusion pressure aortic

LOX-1 expression was increased and was suggested to play a role in the observed endothelial

dysfunction [11].

In addition to oxLDL, many other factors have been shown to be ligands for LOX-1 such

as: other modified lipoproteins, activated platelets, apoptotic cells and even bacteria [19, 20].

As LOX-1 is a scavenger receptor and STBEVs are, in essence, packages of lipoproteins, we

propose that STBEVs contribute to endothelial dysfunction during pregnancy by activating

the LOX-1 receptor. In the current study, we have investigated whether syncytiotrophoblast-

derived particles such as STBEVs are able to induce endothelial dysfunction in pregnant rat

uterine arteries and whether this is LOX-1 dependent. We hypothesized that STBEVs impair

vascular function in pregnancy via activation of LOX-1 and increased superoxide production,

which leads to decreased NO bioavailability.

Methods

Ethics approval

All animal experiments were conducted at the University of Alberta, Canada, and were

approved by the University of Alberta Health Sciences Animal Policy and Welfare Committee

in accordance with the Canadian Council on Animal Care Guidelines (AUP #242). The study

protocol for human placentae was approved by the Oxfordshire Research Ethics Committee C

and STBEV isolations were conducted in Prof. Ian Sargent’s laboratory at Oxford University,

U.K. STBEVs were derived from the placenta according to their standard methods described

in detail in the manuscript by Dragovic et al. [21]. In short, the placenta was collected from an
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uncomplicated nulliparous singleton pregnant woman directly after caesarian section (elec-

tive) (age 24; 39+1 weeks of gestation; BP 120/80 mmHg; no urinary protein) and, within 20

minutes, an intact lobule was perfused for 3h. The maternal perfusate was collected and centri-

fuged at high speed (150,000 g) to collect the STBEVs. To confirm the placental origin and

normal size distribution of the STBEVs, flow cytometry and Nanoparticle Tracking Analysis

were used as described previously [21]. Pellets were diluted in PBS to 1 mg protein ml-1 and

frozen until their use in experiments. Written informed consent was obtained.

Animals and experimental design

Three-month-old female Sprague Dawley rats were housed under a standard day:night cycle

(10:14 hours) with ad libitum access to food and water. The presence of sperm in a vaginal

smear following overnight mating with a male rat was designated as gestational day 0 of preg-

nancy. On gestational day 20, rats were sacrificed by exsanguination under inhaled isoflurane

anesthesia. Main branch uterine arteries were isolated and cut into 2 mm pieces without side

branches. Multiple 2 mm uterine artery segments were incubated for 24 hours at 4˚C (as

adapted from similar experiments published by others [22]) in each of the following groups: 1)

physiologic salt solution (PSS) as a control, 2) PSS with LOX-1 blocking antibodies (TS20,

10 μg ml-1), 3) STBEVs (200 μg ml-1 in PSS), or 4) STBEVs (200 μg ml-1 in PSS) together with

LOX-1 blocking antibodies (TS20, 10 μg ml-1). The STBEV concentration was based on previ-

ous studies [7]. There was no visible difference between the uterine artery segments; therefore

each segment was randomly assigned to one of the experimental groups. Two of the incubated

segments from each group were then used to assess arterial function using wire myography

while the remaining segments (one to two segments per group) were snap frozen for subse-

quent analyses. LOX-1 blocking antibodies (TS20) were developed by Prof. Sawamura’s

laboratory.

Wire myography protocols

After 24 hours of incubation, segments of uterine artery were mounted on a wire myograph

(DMT, Copenhagen, Denmark). Arteries were twice exposed to phenylephrine (10 μmol L-1,

Sigma-Aldrich; with washout between doses) and once to methylcholine (MCh) (3 μmol L-1,

Sigma-Aldrich) following the second phenylephrine dose, to ensure intact endothelial and

smooth muscle function. To assess the NO contribution to vasodilation, arteries from each

experimental group were pre-incubated for 30 minutes with or without N-nitro-l-arginine

methyl ester hydrochloride (n = 12; L-NAME, 100 μmol L-1, Sigma-Aldrich). To assess the

influence of superoxide production on vascular function, control and STBEV incubated arter-

ies were pre-incubated for 30 minutes with or without superoxide dismutase (n = 8; polyethyl-

ene glycol SOD, 50 U mL-1, Sigma-Aldrich). Following incubation, arteries were pre-

constricted with phenylephrine (3 μmol L-1) and vasodilator responses to MCh (0.1 nmol L-1

to 100 μmol L-1) were measured. Finally, to investigate endothelium-independent vasodilator

function, arteries were pre-constricted with phenylephrine (3 μmol L-1) and responses to the

exogenous NO donor sodium nitroprusside (n = 8; SNP, 0.1 nmol L-1 to 10 μmol L-1, Sigma-

Aldrich) were assessed.

Superoxide detection

Frozen sections of uterine artery (n = 8) were cut into 9 μm sections and stained for the pres-

ence of superoxide using dihydroethidium (DHE, Biotum, Inc. Hayward, CA, USA) staining.

DHE reacts with superoxide to produce ethidium, which generates a red fluorescence that can

be quantified. In short, arterial sections were thawed to room temperature for one minute and
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washed three times with Hanks’ Balanced Salt Solution (HBSS, Life Technologies, Burlington,

ON, Canada) for 2 minutes each. Sections were then incubated with HBSS for 10 minutes at

37˚C; which was then removed and diluted DHE solution (4 μmol L-1) was added for 30 min-

utes at 37˚C. Afterwards, sections were washed thrice with HBSS (2 minutes each), covered

with a coverslip, and fluorescent images were taken immediately.

Endothelial nitric oxide synthase expression, nitrotyrosine levels and

LOX-1 expression

Endothelial nitric oxide synthase (eNOS) expression, nitrotyrosine levels and LOX-1 expres-

sion in frozen uterine artery sections (9 μm) were measured using immunofluorescent stain-

ing. In short, sections were fixed in ice-cold acetone (-20˚C) for 10 minutes and allowed to dry

for another 10 minutes. Sections were washed 3 times for 5 minutes with phosphate buffered

salt solution (PBS, pH 7.4) and incubated with blocking solution (2% BSA in PBS) for 60 min-

utes at room temperature. Subsequently, the blocking solution was aspirated and sections were

incubated with anti-eNOS antibodies (NOS3, rabbit-anti-rat, 1:200, Santa Cruz Biotechnolo-

gies), anti-nitrotyrosine antibodies (rabbit-anti-nitrotyrosine, 1:50, Life Technologies) or anti-

LOX-1 antibodies (rabbit-anti-rat, 1:50, Santa Cruz Biotechnologies) in 2% BSA in PBS over-

night at 4˚C. The next day, sections were washed with PBS 3 times for 5 minutes and incubated

with secondary goat-anti-rabbit Alexa Fluor 546 (Cy3 wavelength) labeled antibodies (1:250;

Molecular Probes/Thermo Fisher Scientific) in 2% BSA in PBS for 60 minutes at room temper-

ature in the dark. Sections were then washed with PBS 3 times for 5 minutes, mounting

medium with DAPI (nuclear staining, Vector Laboratories) was added and sections were cov-

ered and allowed to dry. Images were taken on the following day.

Image analysis

Images of DHE, eNOS, nitrotyrosine and LOX-1 stained sections of uterine artery were taken

using an Olympus IX81 fluorescence microscope with cellSens Dimensions software (Olym-

pus). DHE eNOS, nitrotyrosine and LOX-1 mean staining intensity of the whole vessel was

analyzed using ImageJ software. When two arterial segments were present in a sample, an

average of the two mean intensities was taken.

Statistical analyses

Statistical analyses were performed using GraphPad Prism software 6.0f (GraphPad software

Inc., La Jolla, CA, U.S.). All data were tested for normality using the Shapiro-Wilk normality

test. Myography data were summarized as percent maximal vasodilation or area under curve

(AUC) and presented as mean ± standard error of the mean. Statistical analysis was performed

for comparisons between control arteries and arteries exposed to STBEVs in the absence or

presence of the LOX-1 blocking antibody or pegSOD using a two-way ANOVA with Bonfer-

roni multiple comparisons post hoc test. The contribution of NO to endothelial vasodilation

was quantified by calculating the delta change in AUC between arteries exposed to L-NAME

and the controls and compared between the groups using a one-way ANOVA and Dunnet’s

post hoc test. Comparisons of DHE staining between control arteries and arteries exposed to

STBEVs or STBEVs + LOX-1 blocking antibody were analyzed using a nonparametric Krus-

kal-Wallis test with Dunn’s post hoc analysis. Comparisons of vascular responses to SNP and

eNOS expression between control arteries and arteries exposed to STBEVs or STBEVs + LOX-

1 blocking antibody were analyzed using a one-way ANOVA with Dunnet’s post hoc test. For

all statistical tests, differences were considered significant if p<0.05.
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Materials

All drugs used for myography protocols were purchased from Sigma-Aldrich (St. Louis, MO,

USA). The STBEVs were collected in Prof. Ian Sargent’s laboratory and were derived accord-

ing to their standard methods. The LOX-1 blocking antibodies (TS20) were developed and

supplied by Prof. Sawamura’s laboratory. DHE was purchased at Biotum, Inc. Hayward (CA,

USA). HBSS was purchased from Life Technologies (Burlington, ON, Canada). The eNOS

antibodies were obtained from Santa Cruz Biotechnologies, and the secondary goat-anti-rabbit

Alexa Fluor 546-labeled antibodies from Molecular Probes/Thermo Fisher Scientific (Burling-

ton, ON, Canada).

Results

STBEVs impaired MCh-mediated vasodilation in uterine arteries

Maximal MCh-induced vasodilation was reduced in STBEV-incubated uterine arteries (Fig

1A and 1B). The addition of LOX-1 blocking antibodies to arteries exposed to STBEVs resulted

in an increased responsiveness to MCh back to responses comparable with controls (Fig 1A

and 1B). The LOX-1 blocking antibodies had no effect on vasodilation in control vessels (Fig

1A and 1B).

NO contribution to vasodilation was reduced in STBEV-incubated

uterine arteries

Inhibition of nitric oxide synthase (NOS) by L-NAME reduced maximal vasodilation to MCh

in both control and STBEV-exposed (in the absence or presence of LOX-1 blocking antibod-

ies) vessels (Fig 2A and 2B). The contribution of NO to vasodilation, as assessed by delta AUC,

was decreased in STBEV-incubated vessels compared with controls; while incubation with the

LOX-1 blocking antibody increased the NO contribution to vasodilation in STBEV-incubated

vessels (Fig 2B). In addition to the production of superoxide [14], LOX-1 activation has also

been shown to decrease eNOS expression [17, 18]. Compared to controls, exposure to STBEVs

did not significantly alter eNOS expression; however, the inhibition of LOX-1 increased eNOS

expression in STBEV-exposed arteries (Fig 2C and 2D). The LOX-1 blocking antibody did not

alter eNOS expression in control arteries (mean ± SEM: 28.8 ± 11.2 a.u. control vs. 28.6 ± 7.4

a.u. control + LOX-1 antibody).

To distinguish whether the effects of STBEVs on NO-mediated vasodilation was the result

of effects on altered endothelial or vascular smooth muscle function, we analyzed vascular

responses to SNP, an exogenous NO donor. We found that vascular (smooth muscle)

responses to SNP were not significantly different between control arteries and those exposed

to STBEVs, or STBEVs in the presence of LOX-1 inhibition (Fig 3A and 3B).

STBEV-induced impaired vasodilation is not mediated by superoxide

anions

LOX-1 receptor activation has been shown to increase superoxide production in diseased vas-

culature [12, 14]. Contrary to our hypothesis that STBEVs would activate LOX-1 and this

would induce superoxide production, incubation with pegSOD did not improve MCh-

induced vasodilation in STBEV-exposed arteries (Fig 4A and 4B). In addition, sections of uter-

ine arteries were assessed for superoxide production using DHE staining and no differences

were found between the groups (Fig 4C). This suggests that the STBEV-induced impairment

in endothelial vasodilation was mediated via LOX-1 activation but not associated with

increased superoxide production after 24 hours of exposure. Peroxynitrite is an oxidant
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formed by the reaction of superoxide with nitric oxide that affects vascular function [23].

Nitrotyrosine is one of the reaction products of peroxynitrite. Nitrotyrosine levels in uterine

artery sections were not affected by STBEV stimulation (see Online Data Supplement, S1 Fig).

LOX-1 expression after STBEV incubation in uterine arteries

LOX-1 staining was performed on uterine artery sections to check whether STBEV stimulation

had any effect on LOX-1 expression. No changes were observed in LOX-1 expression between

the experimental groups (see Online Data Supplement, S2 Fig).

All raw data is provided in S1 File.

Discussion

In the current study, we have shown that STBEVs impaired endothelium-dependent vasodila-

tion in uterine arteries, which appeared to be LOX-1 receptor mediated. We also demonstrated

that arteries exposed to STBEVs exhibited an increased LOX-1 contribution to impaired NO-

mediated vasodilation. However, vascular superoxide production was unaltered by exposure

to STBEVs. Inhibition of LOX-1 in STBEV-incubated vessels increased eNOS expression.

These data support our hypothesis that STBEVs can play a role in vascular dysfunction

through the activation of LOX-1.

Our data have shown that STBEVs can increase LOX-1 mediated vascular activation and

dysfunction. Endothelium-dependent vasodilation in uterine arteries was significantly inhib-

ited by incubation with STBEVs and restored by the presence of LOX-1 blocking antibodies.

To our knowledge, we are the first to show that this STBEV-induced endothelial impairment

could potentially be mediated via the LOX-1 receptor. LOX-1 activation has previously been

suggested to play a role in the endothelial dysfunction commonly seen in cardiovascular dis-

eases, for example, atherosclerosis [19] and during pregnancy [10, 12]. Previous literature has

Fig 1. The effect of STBEV incubation on vascular responses to methylcholine. (A) Arteries exposed to STBEVs (solid squares, solid line)

exhibited impaired vasodilation compared with control arteries (solid circles, solid line). Inhibition of LOX-1 restored endothelial responses in

STBEV-exposed arteries (open squares, dashed line) to a level comparable with controls. LOX-1 inhibition had no effect in control arteries (open

circles, dashed line). (B) Summary of myography data as percent maximal vasodilation. Data are presented as means ± SEM; two-way ANOVA, ‘a’

denotes statistical difference from ‘b’, p<0.05; n = 11–18/group.

https://doi.org/10.1371/journal.pone.0180364.g001
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examined the effects of STBEVs on vascular function, but has resulted in conflicting reports.

In line with our findings, Cockell et al. have shown that STBEVs impair endothelial-dependent

vasodilation in human omental fat arteries [7]. In contrast, while using a similar vascular bed

as the current study, Van Wijk et al. did not find any effect of STBEVs in human myometrial

arteries [8]. However, this difference could be attributed either to their use of lower STBEV

concentrations (i.e. not sufficient to activate LOX-1) or the use of vessels from a different spe-

cies. By utilizing a pregnant rat model, we obtained uterine arteries for our experiments

because they constitute the most important vascular bed supplying the growth and develop-

ment of the uterus, placenta and fetus during pregnancy.

Fig 2. Changes in nitric oxide contribution to vasodilation after STBEV incubation. (A) Arteries exposed to STBEVs exhibited impaired

vasodilation to methylcholine that was associated with reduced NO bioavailability (squares). Inhibition of LOX-1 improved NOS-mediated vascular

responses in STBEV-exposed arteries (triangles) to a level comparable with controls (circles). (B) Quantitative summary of the NO contribution to

endothelial vasodilation assessed as delta area under curve (arbitrary units). (C) Endothelial nitric oxide synthase (eNOS) expression in uterine arteries

after 24-hour exposure in the absence (control) or presence of STBEVs, with or without a LOX-1 blocking antibody. The expression of eNOS was not

significantly altered by exposure to STBEVs (solid bar) as compared with controls (open bars). Inhibition of LOX-1 in STBEV-treated arteries significantly

increased eNOS expression (dashed bar). (D) Representative images of eNOS staining. Data are presented as means ± SEM; one-way ANOVA, ‘a’

denotes statistical difference from ‘b’, p<0.05; n = 6–12/group.

https://doi.org/10.1371/journal.pone.0180364.g002
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LOX-1 associated impairment of vasodilation after STBEV stimulation may have several

intracellular causes. We have shown that the overall endothelial NO contribution to vasodila-

tion was lower in STBEV incubated arteries as compared with controls. In addition, no change

in SNP-induced vasodilation was observed after STBEV stimulation; therefore, smooth muscle

cell responses to NO appear unchanged and the STBEV-induced effects appear to be endothe-

lium specific. Activation of LOX-1 by oxLDL has been shown to induce activation of Rho

kinase A which may liberate arginase from the mitochondria and increase catabolism of L-

arginine, the primary substrate for NOS [24]. In addition, oxLDL has also been shown to

decrease eNOS activity in bovine aortic endothelial cells by dephosphorylation, a process that

was LOX-1 mediated [25]. Hence, the impaired NO contribution to vasodilation by STBEVs

could be mediated via 1) a reduction in NO production by NOS as a result of a LOX-1-induced

increase in arginase production and decreased L-arginine availability; or 2) a lack of NO pro-

duction due to changes in eNOS phosphorylation/activation [26] and/or intracellular localiza-

tion [27], aspects which could be investigated in further studies.

While previous studies have shown that LOX-1 activation can decrease eNOS expression

[17, 18, 28], and our functional data demonstrated that LOX-1 activation by STBEVs reduced

NO-mediated relaxation, no changes in vascular eNOS expression were observed after STBEV

exposure. Our eNOS measurements included both endothelial and smooth muscle cells. It has

been previously demonstrated that all three NOS isoforms are strongly expressed in smooth

muscle cells of various types of blood vessels, and specifically in small arterioles [29]. In addi-

tion, eNOS has been shown to be expressed in uterine artery vascular smooth muscle cells

[30]. Interestingly, there appears to be a regulatory relationship between LOX-1 and eNOS

expression as we found that blocking the LOX-1 receptor increased vascular eNOS expression

in STBEV-stimulated vessels, while LOX-1 blocking on its own had no effect. In line with

these findings, other investigators have shown that eNOS expression can be decreased by

LOX-1 activation and returned to control levels after blocking the LOX-1 receptor [17, 18, 28].

LOX-1 activation induces NADPH oxidase dependent superoxide production in bovine

aortic and human umbilical vein endothelial cells [14, 31, 32]. Superoxide is then able to

Fig 3. Intrinsic vascular smooth muscle cell function is not affected by STBEV incubation. (A) Vascular smooth muscle cell responses to the

exogenous NO donor sodium nitroprusside (SNP) were not significantly different between controls (circles) or arteries exposed to STBEVs, with (open

squares) or without (solid squares) a LOX-1 blocking antibody. (B) Summary of myography data as percent maximal vasodilation (Emax). Data are

presented as means ± SEM; one-way ANOVA; n = 6–8/group.

https://doi.org/10.1371/journal.pone.0180364.g003
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scavenge NO, thus reducing NO bioavailability and leading to peroxynitrite formation [14, 31,

32], both of which result in impaired vascular function. In an ex vivo setting, oxLDL-induced

impairment of NO mediated vasodilation of mice coronary arterioles was also shown to be

LOX-1 and NAPDH oxidase dependent [33]. Interestingly, even though LOX-1 activation was

apparent, we did not observe increased superoxide or peroxynitrite (nitrotyrosine) production

in sections of STBEV-incubated rat uterine arteries; nor did we observe an improvement of

vascular function after adding pegSOD to STBEV-exposed vessels. However, as reactive oxy-

gen species, including superoxide, are short-lived [34], this finding might not have captured

an STBEV-induced production of superoxide at an earlier phase of stimulation. Hence, it is

Fig 4. The effect of STBEVs on superoxide production in uterine arteries. (A) Vascular responses to methylcholine, an endothelium-dependent

vasodilator, were impaired after overnight incubation with STBEVs (solid squares, solid line) as compared with controls (solid circles, solid line). However,

scavenging of superoxide (pegSOD) did not significantly alter endothelial vasodilation in either control (open circles, dashed line) or STBEV exposed

arteries (open squares, dashed line). (B) Summary of myography data as percent maximal vasodilation (Emax). Data in A and B are presented as

means ± SEM; two-way ANOVA, ‘a’ denotes statistical difference from ‘b’, ns = not significant; p<0.05. (C) Dihydroethidium (DHE) staining was not

significantly different between control, STBEV, and STBEV + anti-LOX-1 antibody exposed arteries. Data in C are presented as median (range); Kruskal-

Wallis test. n = 6–8/group.

https://doi.org/10.1371/journal.pone.0180364.g004
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possible that superoxide or peroxynitrite may be produced at earlier stages, which activates

other signaling pathways that continue to influence vasodilation after 24 hours.

A diverse range of LOX-1 receptor ligands have been described [35] and, because STBEVs

are essentially packages of lipoproteins, we proposed that the LOX-1 scavenger receptor might

also be activated by STBEVs. In the current study we are, to our knowledge, the first to show

that STBEVs could indeed be LOX-1 ligands. Since this study was conducted as an initial

proof-of- principle investigation to determine whether syncytiotrophoblast derived particles

per se could activate LOX-1, we used a single STBEV-sample that contained a heterogeneous

population of extracellular vesicles. The biological relevance of the presented data remains to

be further investigated, however, our data suggest that STBEVs are indeed able to activate

LOX-1. Interestingly, women with the preeclampsia present with vascular endothelial dysfunc-

tion while at the same time this pregnancy disorder has been associated with increased STBEV

concentrations [3, 36] in combination with higher LOX-1 expression [12]. Together with our

findings, this could suggest that STBEV-induced LOX-1 mediated vascular dysfunction could

potentially play a role in this syndrome. This would be of interest in future studies using

STBEVs derived from pregnancies complicated by preeclampsia.

During pregnancy, the maternal vasculature is constantly exposed to circulating STBEVs

over several months of gestation. The concentrations of STBEVs measured in plasma from

pregnant (and preeclamptic) women (20–100 ng ml-1) [36–38] are lower than the STBEV con-

centration of 200 μg ml-1 that we utilized in our current experiments. This higher concentra-

tion of STBEVs for a shorter (24 hours) duration of exposure was used to enable us to assess

the possible role of LOX-1 in an ex vivo bioassay and is in-line with other previous studies [7].

We used overnight incubation (similar to the study by van Wijk et al. [22]) to ensure there was

enough time for potential interaction, and we have not observed any obvious differences in

basal vascular function between overnight-incubated and freshly isolated arteries.

As STBEVs are heterogeneous [1], it may be speculated that mainly vesicles that contain

oxidized lipids are able to bind LOX-1. In addition, it has been shown that phosphatidylserine

can bind and activate the LOX-1 receptor [39], and these lipoproteins have also been shown to

be present on STBEVs [40]. Whether STBEVs are internalized by endocytosis upon LOX-1

activation and have subsequent intracellular effects, which is a general feature of scavenger

receptors [35], remains to be studied. Scavenger receptors play an important role in distin-

guishing self from non-self and in the inflammatory response [35]. Thus it is tempting to spec-

ulate from our results that activation of monocytes and peripheral blood mononuclear cells by

STBEVs [2, 5] could potentially also be LOX-1 receptor (or other scavenger receptor) depen-

dent. This remains to be investigated further but would greatly enhance the therapeutic poten-

tial of LOX-1 blocking.

From a clinical perspective, endothelial dysfunction is a key point of convergence underly-

ing many pathologies; however, the exact mechanism of how placental circulating factors affect

the maternal vasculature is still under investigation. In this study, we have provided evidence

that STBEVs play a role in the vascular dysfunction. STBEVs, containing vesicles and exo-

somes derived from placental syncytiotrophoblasts, impaired endothelial vasodilation and

were associated with reduced NO bioavailability via the LOX-1 receptor. Not only does this

increase our collective understanding of the vascular pathophysiology, but it also provides

insight into potential therapeutic strategies by targeting the LOX-1 pathway.
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S1 Fig. The effect of STBEVs on nitrotyrosine levels in uterine arteries. No differences in
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means ± SEM; two-way ANOVA. ns = not significant. n = 6–7/group.
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S2 Fig. LOX-1 expression in uterine arteries after incubation with STBEVs. No differences

in uterine artery LOX-1 expression were found between the experimental groups. Bars repre-

sent means ± SEM; two-way ANOVA. ns = not significant. n = 6–7/group.

(PDF)
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