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Abstract

Dendritic Cells (DC) represent a key lung immune cell population, which play a critical role in the antigen presenting process
and initiation of the adaptive immune response. The study of DCs has largely benefited from the joint development of
fluorescence microscopy and knock-in technology, leading to several mouse strains with constitutively labeled DC subsets.
However, in the lung most transgenic mice do express fluorescent protein not only in DCs, but also in closely related cell
lineages such as monocytes and macrophages. As an example, in the lungs of CX3CR1

+/gfp mice the green fluorescent
protein is expressed mostly by both CD11b conventional DCs and resident monocytes. Despite this non-specific staining,
we show that a shape criterion can discriminate these two particular subsets. Implemented in a cell tracking code, this
quantified criterion allows us to analyze the specific behavior of DCs under inflammatory conditions mediated by
lipopolysaccharide on lung explants. Compared to monocytes, we show that DCs move slower and are more confined, while
both populations do not have any chemotactism-associated movement. We could generalize from these results that DCs
can be automatically discriminated from other round-shaped cells expressing the same fluorescent protein in various lung
inflammation models.
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Introduction

The lung immune system is very efficient: constantly exposed to

pathogens and pollutants, the lower respiratory airways are

nevertheless maintained sterile, while inflammation is kept at the

lowest level [1]. This tour de force is a result of strong evolutionary

constraints to maintain the delicate architecture of alveoli intact

and functional, allowing gas exchange at the alveolar-capillary

interface. The lung immune system is then formed by individual

cells dispersed along the surface of the respiratory tract [2]. The

dynamics of this system have been approached only recently at the

microscopic level by imaging technologies, mainly because the

lung movements in vivo or the drift ex vivo do not accommodate an

easy microscopic analysis [3].

Among the most important immune cells in the lungs are

monocytes, alveolar macrophages and dendritic cells (DCs) [1].

Structurally, macrophages are mostly residing on the external side

of the alveoli, while DCs lie in the interstitium [4]. Both alveolar

macrophages and DCs are resident cells. In contrast, monocytes

are mainly patrolling cells, forming in the case of infection an on-

site, ready to use, and rapidly mobilizable subset. They are also

known as precursors of macrophages and DCs in mouse lung [5].

To make the picture more accurate, DCs are not a unique

population. Classically DCs are categorized as plasmacytoid DCs

and conventional DCs [6]. In the lung at least two functionally

distinct subsets of conventional DCs have been described,

expressing either the integrins CD11b or CD103 [7,8]. Most

CD11b+ DCs are found in the submucosae, while CD103+ DCs

are intraepithelial. Functionally, CD103+ are related to CD8a+
DCs and specialize in capturing apoptotic cells as well as activating

CD8 T cells [9,10]. CD11b DCs are prone to activate CD4 T cells

and produce a wide array of chemokines [11,12]. The CD11b

subset will require a special attention here, because a majority of

them express CX3CR1 [13]. As a result, transgenic CX3CR1
+/gfp

mice form a good model for imaging a major DC population in

the lung [14]. Interestingly, initial description of the CX3CR1
+/gfp

mouse strain clearly showed that the enhanced Green Fluorescent

Protein (EGFP) is expressed in different organs in various myeloid

cells such as Küpfer cells in the liver, and glial cells in the brain.

Within lymphoid organs EGFP is expressed in different cell

subtypes including DCs, monocytes and NK cells [15]. In the lung,

two main subsets including resident Gr-1low monocytes [5,16,17]

and CD11b+ DCs express EGFP in CX3CR1
+/gfp mice [18].

Using this strain for imaging studies does not allow a systematic

discrimination of these two cell populations. So far, ex vivo

analysis of DCs subsets by two-photon microscopy have been

performed using MHCII-EGFP [19], and CD11c-YFP [20,21]
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knock-in mouse strains, in trachea and lung explant, respectively.

However the same issue about the discrimination of macrophages

and DCs arises with these two models, due to their shared marker

expression in the lung.

The aim of the present study is to show how to overcome the

non-discrimination of different subsets sharing the same fluores-

cent tag expression in dynamic studies. Here, we demonstrate the

feasibility of an automated discrimination of two main CX3CR1-

positive cell populations using a criterion based on the cell shape:

the roundness. In order to separate Round-shaped cells (RSCs)

and Dendritic-shaped Cells (DSCs), we suggest to introduce two

novel coefficients: the Instantaneous Roundness Coefficient (IRC)

measured in each frame and the Mean Roundness Coefficient

(MRC) calculated as the mean of the IRC on the total tracking

time for each cells. Using this strategy implemented in a cell

tracking code, we show that different behaviour can be observed

between the Round-shaped Cell (RSCs) and Dendritic-shaped

Cell (DSCs) subsets. This novel approach may be generalized to

other transgenic animal strains (e.g. MHCII-EGFP and CD11c-

YFP knock in mice). This could lead to a better understanding of

DC behaviour and a better analysis of the lung immune system

during infection.

Methods

Ethics Statement
All experimental procedures were performed in accordance

with the French Government guidelines for the care and use of

laboratory animals and were approved by the Institut de Recherche

Biomédicale des Armées ethics committee (approval number: 2010/

28.0).

Figure 1. Schematic representation of the drift correction strategy. A: Maximum intensity projection of a lung slice z-stack. Pulmonary
CX3CR1-GFP cells (green) and alveolar collagen mesh detected by collection of SHG signal (gray). Two-photon excitation wavelength = 896 nm. B:
Dashed red squares show the optic field imaged by the microscope (CX3CR1-GFP in green and SHG in grey). The realignment phase consists in
calculating the tissue drift using the maximization of SHG signal cross-correlation.
doi:10.1371/journal.pone.0039831.g001

Shape-Based Immune Cell Subsets Discrimination
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Animal Care Guidelines
CX3CR1

+/gfp mice (further referred as CX3CR1 mice) were

maintained under specific pathogen-free conditions at the Plate-

Forme de Haute Technologie Animale (Institut Jean Roget, La Tronche,

France). Mice were kept under anesthesia during all manipulations

using ketamine-xylazine and all efforts were made to minimize

suffering. The working solution is composed of 20% Ketamine

1000 (Vibrac) and 5% Rompun (Bayer Healthcare) diluted in PBS

and was injected by intraperitoneal route (i.p.). To mimic the

effects of Gram-negative bacteria lung infection, 120 mg of

lipopolysaccharide (LPS) from Escherichia coli (LPS-EB ultrapure,

InvivoGen) in a total volume of 55 mL diluted in PBS were

delivered by intratracheal route (i.t.). Control mice received an

equivalent volume of PBS.

Sample Preparation for microscopy
Mice were euthanized either 30 minutes (‘early stage’ group) or

4 hours (‘late stage’ group) post administration of PBS or LPS. Left

lobes of lung explants were cut in the middle with a vibratome

(Leica). The bottom of lung lobes was carefully glued on a Petri

dish filled up with phenol-red free RPMI medium (RPMI 1640,

PAN Biotech GmBH) at 37uC. Medium was refreshed every hour.

Explants were kept for one hour at 37uC in a 5% CO2

environment before imaging and kept at 37uC during the whole

experiment. This phase was aimed to stabilize the explant by

emptying out most of the air from the alveoli.

Flow Cytometry
Lungs were harvested after mouse euthanasia, mechanically

disrupted using gentleMACSTM Dissociator (Miltenyi Biotec)

according to manufacturer instructions, enzymatically digested

with 1 mg/mL Collagenase I (Worthington) for 30 min at 37uC in

50U/mL DNase I (Sigma)-containing DMEM. Then, the solution

was filtered with 70 mm cell strainers (Becton Dickinson) to obtain

single-cell suspensions.

Inhibition of nonantigen-specific binding of immunoglobulins to

Fc receptors was performed using a rat antimouse CD16/CD32

antibody (2.4G2 BD Biosciences). Cells were subsequently stained

for 30 min at 4uC with the following monoclonal antibodies: Alexa

Fluor 700 conjugated anti-CD45 (30-F11; Biolegend), PE-Cy7

conjugated anti-CD11b (M1/70; eBioscience), APC conjugated

anti-CD11c (HL3; BD Biosciences), PE conjugated anti-NK1.1

(PK136; BD Biosciences), PercPCy5.5 anti-CD3e (145-2C11;

eBioscience), Alexa Fluor 700 conjugated anti-MHC II (MC-

114-15.2; eBioscience), PercPCy5.5 anti-F4/80 (BM8; Biolegend),

PE conjugated anti-CD80 (16-10A1; BD Biosciences), PE conju-

gated anti-CD103 (2E7; eBioscience).

Dead cells were excluded by staining for 30 min at 4uC with

Blue LIVE/DEADH Fixable Dead Cell Stains (Invitrogen)

following the manufacturer instructions.

Cells were then fixed with Cellfix (BD Biosciences). Cell

acquisition was directly performed with an LSR-II machine using

FACSDiva software (BD Biosciences) and the data were analysed

with FlowJo software (TreeStar). Cell doublets were excluded

using FSC-A and FSC-H.

Microscopy Setup
Both second-harmonic generation (SHG) and two-photon

excitation fluorescence (TPEF) imaging were performed on a Zeiss

LSM 710 microscope equipped with a W Plan-Apochromat 206
NA 1.0 DIC M27 75mm water immersion objective (Zeiss). Two-

photon excitation was produced at 896 nm by a femtosecond Ti:

Sa laser (Chameleon Ultra, Coherent). SHG and EGFP signals

were both epidetected by two dedicated non-descanned detector,

one is coupled with a 500–550 nm band-pass system for EGFP

and the other with a 448 nm620 nm band-pass filter for SHG. Z-

stacks were acquired every two minutes during one hour. Images

size was 512 by 512 pixels, corresponding to a field of view of 280

by 280 mm.

Cell Tracking
Data processing was performed under Matlab using a multiple

particle tracking code by Blair and Dufresne (available on http://

physics.georgetown.edu/matlab/).

Statistical analysis
For the four experimental conditions (mixing early/late stage

and PBS/LPS delivery), results from three mice were pooled.

Comparisons between groups were performed using Mann-

Whitney test, using GraphPad Prism Software (GraphPad

Software, Inc.).

Results

Drift Correction
Sample drift due to the presence of air in the lung is a major

issue [22], as shown by the common use of trachea, a more rigid

tissue used as an alternative to lung tissues. In other organs, the

drift may be negligible compared to cell speed, but in the lung it

has the same range. We used the collagen SHG signal as a spatial

reference to correct this drift. The realignment of 2D-projected

Figure 2. Parameters used for individual cell analysis. A: Edge
detection of two CX3CR1+ pulmonary cells and their roundness
coefficient. Scale bar = 10 mm. B: The relevant parameters used in this
work are: i) the Mean Roundness Coefficient (MRC), calculated for each
cell by meaning Instantaneous Roundness Coefficient (IRC) at each
consecutive observable time; ii) the Maximal Distance (MD) of a cell (red
arrow) is the longest distance covered from the first position; iii) the
Meandering Index (MI) is the final distance from the first position Dn

divided by the total length covered.
doi:10.1371/journal.pone.0039831.g002

Shape-Based Immune Cell Subsets Discrimination
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Figure 3. Phenotype of CX3CR1-GFP cell subsets in the lung. A: Total lung cells of CX3CR1
+/gfp mice were gated on CX3CR1 and analyzed for

NK1.1, CD3e, CD11c, and CD11b expressions. B: Autofluorescence, CD80 and MHCII expressions on gate G1, G2 and G3 of panel A. Black histogram,
isotype control; grey histogram, positive staining. C: Total lung cells were pre-gated on CD11c+ low autofluorecent cells and analyzed for the
expression of CD11b and CD103. The expression of CX3CR1 is shown on the left panel for gate G4 (CD11b2CD103+ DCs, grey histogram) and for gate
G5 (CD11b+CD1032 DCs, black line). D: Total cells were pre-gated on CD45 cells and analyzed for the expression of F4/80 and CD11c. Expression of
CX3CR1 and CD11b is shown on the left panels for gate G6 (CD11clowF4/80high), G7 (CD11chighF4/80high) and G8 (CD11chighF4/80low).Data from flow

Shape-Based Immune Cell Subsets Discrimination
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frames was based on maximization of the spatial cross-correlation

function of SHG signal using a custom made Matlab (MathWorks)

code (Figure 1A and 1B).

Cell tracking strategy
The Matlab code was implemented with an edge detection

custom-made routine aimed to determine the roundness co-

efficient of each cell. Instantaneous Roundness Coefficient (IRC) is

defined as follow:

IRC~
4p Area

Perimeter2

The IRC indicates the index of circularity of any object: from

0 (line-shaped) to 1 (round-shaped) (Figure 2A). Because the IRC

of a particular cell changes along its displacement in pulmonary

tissue all over the experiment, we suggested to use the Mean

Roundness Coefficient (MRC) attributed to the cell according to

the following formula (Figure 2B) where n is the number of

consecutive frames on which the cell is observed:

MRC~
1

n

Xn

i~1

IRCT(i)

The Meandering Index (MI) yields information about the

directionality of the cell movement [22] and is defined as the

cytometry, performed on one CX3CR1
+/gfp mouse lung harvested 30 minutes after intratracheal PBS injection. Data are representative of two distinct

experiments.
doi:10.1371/journal.pone.0039831.g003

Figure 4. Discrimination of two CX3CR1-GFP cell subsets using flow cytometry or roundness. A: Expression of CX3CR1 vs CD45 receptors
in pulmonary cells and CD11c vs CD11b by CX3CR1

high cells. Data from flow cytometry, performed on one CX3CR1
+/gfp mouse lung harvested

30 minutes after intratracheal PBS injection. Data representative of two distinct experiments. B: Frequency distribution of Mean Roundness
Coefficients (MRC) over 1h of CX3CR1+ pulmonary cells in lung slices harvested from 6 mice, 1h30 (3 mice) and 5h (3 mice) after PBS injection. N= 406.
Cells are followed for a mean time of 32 minutes, corresponding to 16 frames. Dashed line: sum of two Gaussian fitting the histogram. R2 = 0.89.
doi:10.1371/journal.pone.0039831.g004

Shape-Based Immune Cell Subsets Discrimination
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following (Figure 2B):

MI~
Dn

Pn{1

i~1

di

This parameter being inappropriate to fully characterize

a random walk path [23], we also used the Maximal Distance

(MD), which is for a cell the highest distance reached from its first

position, to improve the cell confinement description (Figure 2B):

MD~max Di ; i~1:::nf g

Discrimination of lung CX3CR1
+ Round-shaped Cells and

Dendritic-shaped Cells subpopulations
First, we assessed the different lung phagocyte subpopulations

by flow cytometry analysis (Figure 3). Initially, we demonstrated

that CX3CR1 is expressed at high level within a subset of NK1.1

cells, CD3e cells, CD11b+CD11c2 monocytes, and

CD11c+CD11b+ DCs (Figure 3A). However, this expression was

not observed on CD11chighCD11b2 macrophages (Figure 3B, gate

G1), as the CX3CR1 intermediate levels of fluorescence corre-

spond to autofluorescence. As two main subsets of DCs have been

described in the lung, we also demonstrated that CX3CR1 is

expressed in a subset of CD11b+CD1032-DCs, but not in the

CD11b2CD103+ population (Figure 3C). Utilizing F4/80 in

conjunction with CD11c we were able to confirm that DC defined

as CD11c+F4/802 cells express various level of CX3CR1 as

previously shown (Figure 3D) [24]. F4/80+CD11c2 myeloid cells

expressed low level of CX3CR1 while CD11chighF4/80high

alveolar macrophages did not expressed CX3CR1 as expected.

In the microscopy analysis, we focused on the CX3CR1
high

population, excluding CX3CR1
int population that contains

macrophages. In accordance with previous studies, CX3CR1
+

population represents about 6% of total CD45+ lung cells [13]

(Figure 4A). Using classical double CD11b/CD11c staining we

could differentiate in CX3CR1-positive cells, two subpopulations

expressing either CD11b only (mostly monocytes, about 77%), or

CD11b and CD11c (DCs, about 19.5%).

To validate our imaging analysis approach, we first looked at

the representation of distribution frequency of MRC at homeo-

stasis (Figure 4B). Interestingly, we could observe two populations.

We applied a double Gaussian fit on the distribution, which

exhibited a local minimum, splitting the total population into two

subpopulations for a MRC threshold at 0.35. The dendritiform

cells (MRC,0.35) will be further mentioned as Dendritic-shaped

Cells (DSCs), (about 16% of the total CX3CR1 population), and

the round cells (MRC.0.35) will be further mentioned as Round-

Figure 5. Velocity of CX3CR1-GFP positive pulmonary Dendritic-shaped and Round-shaped cells. A: Dendritic-shaped cells and B:
Round-shaped cells at an early stage (average values from 1h30 to 2h30 post injection, closed symbols) and a late stage (average values from 5h to
6h post injection, open symbols) after injection of PBS (rounds) or LPS (squares). Three mice in each group, one symbol by cell. * for p,0.05; ** for
p,0.01; *** for p,0.0001; ns for not significant.
doi:10.1371/journal.pone.0039831.g005
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shaped Cells (RSCs) (about 84% of the total CX3CR1 population,

including primarily monocytes, but also NK and T cells).

Therefore, subpopulations of DC and monocytes in flow

cytometry were in the same range as DSC and RSC in

microscopic analysis. We decided to set the MRC threshold to

0.35 for the rest of the analysis.

LPS differentially increases RSCs and DSCs velocity
Previous studies by two-photon excited fluorescence (TPEF)

showed that LPS could activate tracheal DCs [19]. In accordance,

in our model, intratracheal injection of LPS induced at the early

stage a very significant increase of the velocity of both DSCs and

Figure 6. Maximal Distance of CX3CR1-GFP positive pulmonary Dendritic-shaped and Round-shaped cells. A: Dendritic-shaped cells
and B: Round-shaped cells at an early stage (average values from 1h30 to 2h30 post injection, closed symbols) and a late stage (average values from
5h to 6h post injection, open symbols) after injection of PBS (rounds) or LPS (squares). Three mice in each group, one symbol by cell. C, D: Overlay of
Round-shaped cell tracks after late PBS (C) and LPS injection (D), after aligning their first coordinates. One color by track. Values of black circle radii in
mm, equal to average cell Maximal Distance, are indicated 6 standard deviation. * for p,0.05; ** for p,0.01; *** for p,0.0001; ns for not significant.
doi:10.1371/journal.pone.0039831.g006

Shape-Based Immune Cell Subsets Discrimination
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RSCs (p,0.0001), as compared to PBS injection (Figure 5A

and 5B). At the late stage we observed an increase of velocity more

significant for RSCs (p,0.0001) than for the DSCs (p = 0.0416).

LPS differentially modifies the confinement of RSCs and
DSCs
The Maximal Distance (MD) of DSCs was not affected by LPS

(Figure 6A). In contrast, RSC’s MD is increased and seems to be

stage-dependent, from p= 0.0259 up to p= 0.0018 (Figure 6B).

The maximum effect is observed for RSC at the late stage, with

a 12% increase of MD after LPS that after PBS delivery (Figure 6C

and Figure 6D).

Finally, we compared the Meandering Index (MI) of RSCs and

DSCs. Even though LPS increased MD for RSCs, neither of the

two populations presented a MI altered by LPS. Furthermore, MI

values for all groups were less than 0.4, suggesting that movements

observed were not directed by chemotactism [25] (data not

shown).

Discussion

In this study, we show for the first time that we could

systematically discriminate two cell populations present in an

organ explant and sharing the same staining, using a shape

criterion. This may be of paramount importance for the DC subset

analysis, as so far no fluorescent protein knock-in mouse strain

available is expressed only in a defined DC lineage. To our

knowledge the separation of different subsets expressing the same

fluorescent tag has been seldomly studied, although it can be

a major issue.

In a very recent report on lung exploration by TEPF of CD11c-

YFP mouse, Veres et al. noted that they could observe two

different populations: dendritiform for the DCs, and rounded for

presumably macrophages in this particular case [21]. In their

study, they could not discriminate those cell behaviors. Our

methods improve clearly the time-lapse analysis and could be

adapted to very general cases, when cells can be differentiated

according to their shape.

In fact, the shape is not a poorly defined character of a cell, as

stressed by the fact that DCs were identified and described for the

first time only by their shape [26,27,28,29]. The very specific hairy

DC shape has been for a very long time the only way to

characterize those ‘golden’ cells, before powerful flow cytometer

methodology was developed. We propose thus a renewed use for

this primordial character.

Thanks to that, we analyze here the effects of LPS instillation by

intra-tracheal route on cell motility. Intra-tracheal instillation was

chosen in spite of its invasivity (a consequence may be the increase

of velocity of DSCs at the early versus late stage in Figure 4) in

order to improve the reproducibility of injection compared to

nasal instillation (data not shown). However, every comparison

was performed between PBS and LPS groups in order to focus on

the specific effects of LPS, excluding effects of tracheotomy and/or

of a rather big volume of liquid injected in the lungs.

LPS is a Gram-negative outer membrane component known to

elicit strong immune responses via the Toll-like receptor (TLR) 4

[30]. A previous study, using TLR42/2 adoptive transfer has

shown that LPS stimulates indirectly lung DCs through the

activation of epithelial cells [19]. Interestingly, lung monocytes and

DCs also express TLR4 [31]. We then inferred that DCs and

monocytes would respond differentially to a LPS trigger. We have

shown here that LPS activation increased more significantly the

velocity of RSCs and induced them to go significantly farther. This

is consistent with what is known of lung monocyte and DC

biology. Lung monocytes are smaller, more mobile cells that

respond to an infection alarm. We show here, based on a shape

criterion, that RSCs respond very rapidly while DSCs with long,

hairy extensions are more prone to move in a very swift manner

[5]. The increase of velocity of both populations at the early stage

after LPS injection proves that both populations are strongly

activated by LPS. The difference between RSCs and DSCs occurs

at the late stage after LPS activation, where DSCs move slower

than RSCs. This difference of velocity may be due to functional

difference between monocytes and DCs: monocytes as circulating

cells recruited rapidly on inflammatory sites could benefit from an

increased velocity, when DCs including CX3CR1 are residing cells

involved in sampling task and do not need to migrate faster.

Our results prove the feasibility of the shape-based discrimina-

tion of two functionally distinct cell populations, monocytes and

DCs, both expressing EGFP via the promoter CX3CR1, under

LPS mediated inflammatory conditions. The results we present are

in accordance with the expected functionality of these two major

immune cell populations. DCs movements induced by LPS have

been already reported [19]. However, we show that LPS has

a stronger effect on RSCs than on DSCs. The shape-based

criterion herein described should be taken into account for

studying the behaviour in fluorescence microscopy of immune cells

subject to infection or inflammatory conditions using transgenic

mice expressing the same fluorescent protein in distinct popula-

tions.

The new imaging tool we have developed in this study more

accurately discriminates DC population from closely related

lineages. It could be more universally applied to improve our

knowledge of the lung immune system.
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