
sampling and measurement will allow progress in
development of methods to minimise personal expo-
sure to aeroallergen.
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Endotoxin and its purified derivative lipopolysac-
charide (LPS) are Gram-negative bacterial potent pro-
inflammatory constituents continuously shed into
the environment.1 A number of different Gram-
negative bacteria inhabits the normal body surfaces
including the skin, oral cavity, respiratory tract,
gastrointestinal tract, vagina and urinary tract.
Humans can be exposed to endotoxin via several
ways. In addition to the septic shock frequently



caused by translocation of Gram-negative micro-
organisms normally present in the gut of the host to
the circulation, there is continuous exposure to
airborne endotoxin. The release of endotoxin from
Gram-negative bacteria that colonise the respiratory
tract in the majority of patients with chronic bron-
chitis can contribute to the lung function decrease
by initiating release of inflammatory mediators from
bronchial epithelial cells.2 High levels of airborne
(up to 1 mg/m3 ) endotoxin have been reported from
a variety of occupational environments (e.g. swine
confinement, poultry farm, cotton mill, brewery,
waste processing).1 A number of cross-sectional
studies reports an association between exposure to
endotoxin measured in the dust from those occupa-
tional settings and the risk to develop non-atopic
chronic obstructive pulmonary diseases,3 –6 toxic
pneumonitis and systemic effects.7,8 In the domestic
environment, there is also endotoxin contaminating
house dust9 –12 that, by itself or in association with
allergen exposure, could be an important determi-
nant of asthma severity.9,10 Recently, Hasday et al.
reported that high levels of endotoxin are produced
by cigarette smoke.13

Inhalation of pure endotoxin may elicit, in some
individuals, dyspnea, chest tightness, myalgia, shivers,
fatigue and malaise associated or not with fever.14,15 A
similar clinical response is observed after exposure to
dust containing endotoxin such as grain handlers,16

cotton workers,5 fibre-glass manufacturing employ-
ees,8 or animal farmers.17 A large inter-individual
variability in the sensitivity to endotoxin has been
reported.18 –20 In humans, inhalation of pure endo-
toxin is associated with bronchoconstric-
tion,14,15,18 – 21 change in the level of non-specific
airways responsiveness,14,20,21 and reduction in alveo-
lar-capillary diffusion.22 Compared with asthmatics, in
normal subjects a higher dose of pure endotoxin is
required to produce bronchoconstriction.14,15,18,19,23

Although the endotoxin response is reproducible in a
given subject,19 there is a large between-subjects
variability14,18,19,20 at least partially related to the
airways inflammatory status24 and to the level of non-
specific airways responsiveness.25

Local and systemic inflammatory responses have
been measured after endotoxin inhalation in normal
and asthmatic subjects. Significant blood leukocytosis
and neutrophilia were observed 4–8 h after inhalation
of endotoxin both in normal14 –16,18,22,26 and asth-
matic subjects.21,27 This neutrophilia was not related
with the change in lung function.21,27 In vitro, small
amounts of endotoxin (< 1 ng/ml) activate human
airways macrophages, releasing several pro-inflamma-
tory cytokines (tumour necrosis factor-a (TNF-a),
interleukin (IL)-1, IL-6) and metabolites of arachidonic
acid. The presence of LPS-binding protein and the
soluble fraction of CD14 receptor (sCD14) in the
airways24 may increase the macrophage activation by

endotoxin.24,28 Six hours after an inhalation of
endotoxin-contaminated dust, high concentrations of
IL-1, IL-1 RA, IL-6, IL-8 and TNF-a and their specific
mRNAs were measured in the bronchoalveolar lav-
age.29 These cytokines are potential activators of the
hepatic acute-phase protein response, consistent with
the rise in the blood concentration of the C-reactive
protein (CRP) 24 h after endotoxin inhala-
tion.13,17,21,26 We speculate that cytokines produced
into the airways are released in the blood and
stimulate the hepatocytes.

Airway inflammation characterized by neutrophil
recruitment in broncho alveolar lavage (BAL) was
observed after bronchial challenge with endotoxin-
contaminated dusts like allergen extracts,30 grain
dust29 and swine dust,17 while in normal subjects 100
mg of inhaled pure endotoxin induced a 100-fold
increase in neutrophils from BAL.31 A significant
increase in neutrophils measured in the induced
sputum occurred after 515,32 to 60 mg33 endotoxin.
The sputum concentrations in myeloperoxidase
(MPO) (from neutrophils), eosinophil cationic pro-
tein (ECP) (from eosinophils) and TNF-a rose sig-
nificantly 6 h after endotoxin.15

There are some published data suggesting that
environmental endotoxin could be a synergic factor
on the amplitude of immunoglobulin E-mediated
response. On one hand, in allergic mild asthmatics,
an exposure to air containing low levels of endo-
toxin (250 ng/m3 ) for 4 h before bronchial challenge
with allergen increases significantly both bronchial
reactivity and antigen-induced airway eosinophilia.34

The airways cellular inflammation to inhaled allergen
is modified by endotoxin contamination of the
allergen extract. Indeed, while detoxified pure aller-
gen extract results in bronchial eosinophil recruit-
ment, endotoxin contamination (1 ng/ml) causes
neutrophilia.30 On the other hand, inhalation of
allergen in sensitized subjects leads to airways
plasma exsudation including extravasation of sCD14
and lipopolysaccharide-binding protein (LBP).24

These proteins may enhance the capacity of inhaled
endotoxin to activate an inflammatory cascade that
may amplify the inflammatory response to inhaled
antigen in some asthmatics, as was suggested by
several field studies.9,10,35 In the home environment,
the amount of endotoxin in house dust has been
related to the severity of asthma both in atopic9,10

and non-atopic subjects.35 In dust-mite-sensitized
subjects, the level of exposure to mite allergen was
higher in subjects with asthma than in those with
rhinitis, while the severity of the asthmatic disease
was significantly associated with a low forced expira-
tory volume in 1 sec (FEV1) and FEV1/forced vital
capacity, and the daily need for oral and topical
corticosteroid, as well as with the asthma score.9

More recently, Douwes et al.36 did not find an
association between endotoxin exposure and peak
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expiratory flow (PEF) variability in a group of
children defined by asthma symptoms. However, the
daily PEF variability was very low (6.4%), suggesting
asthma was intermittent or doubtful. Therefore,
endotoxin should be considered as an enhancing
rather than inducing factor in asthma.

We recently challenged 15 normal subjects with
inhaled endotoxin (0.5, 5, 50 mg).18 Subjects who
developed significant increase in body temperature
had a larger increase in the systemic inflammatory
response (blood neutrophilia and blood concentra-
tions of CRP and LBP), while subjects who developed
a significant increase in airways responsiveness had
an increase in the sputum concentration of ECP. The
amplitude of the systemic response and decrease in
FEV1 were inversely associated with the atopic status,
suggesting a link between atopy and LPS responsive-
ness. This observation reinforces the hypothesis for a
mechanism linking the macrophage susceptibility to
LPS stimulation with the increase in macrophage
production of cytokines that inhibits the T helper cell
(Th)-2 response and, consequently, the risk to
become atopic. Environmental exposure to LPS and
other bacterial wall products, present in house
dust9 –12,35,36 and/or from the intestinal tract,37 could
be a necessary step for maturation the immune
system and the development of a Th1-like response
through the presentation of antigen in conjunction
with IL-12.38 –40 In mice, endotoxin sensitivity is
genetically determined, involving mutation in the Toll-
like receptor-4 (TLR4) gene,41 a co-receptor essential
for the LPS signalling. In human, recent data suggest
that polymorphisms in the genes encoding the TLR442

or the LPS receptor CD1443 may be related to
symptoms and diseases.
exposure to endotoxin in early life could be
protective for the risk of atopy, while in sympto-
matic asthma it could be a risk factor of a severe
disease.

Finally, available data on the protective effect of
anti-asthmatic drugs on the endotoxin-induced
response are quite limited. An acute pre-treatment
with sodium cromoglycate44 or with short or long
acting B2-agonists completely prevents the broncho-
constriction induced by an acute exposure to LPS45

while, given in a single dose, an inhaled corticoste-
roid does not prevent the endotoxin-induced blood
inflammation. 45 Studies are in progress to evaluate
the possible protective effect of chronic treatment
with oral corticosteroids on the response to
endotoxin.
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The past three decades have seen an increase in
reported asthma and allergic diseases from many
studies around the world, recently described as an
epidemic.1 While many hypotheses have been devel-
oped to explain these changes, the hygiene hypoth-
esis has for the past decade encompassed an
expanding link between the epidemiology and
immunology of both atopic sensitisation and atopic

diseases. These associations and the utility of the
hypothesis have recently been reviewed by David
Strachan,2 who first reported the associations
between birth order and hayfever, and articulated
the hygiene hypothesis as an explanation.3 Inverse
relationships between atopic and infectious disease
was first raised a decade earlier by Gerrard et al. in
a comparison of atopic disease amongst the Metis
(native Indian) and white communities of northern
Saskatchewan.4 The immunological basis for the
hypothesis rests on the concept of immune devia-
tion in early life towards T helper cell (Th)1 immune
responses induced by microbial exposure, with Th1
responses suppressing Th2 responses and immuno-
globulin E (IgE) production. The hypothesis there-
fore refers to IgE-mediated diseases such as hayfever
but is less applicable to asthma, where atopy plays
an important but not exclusive role.

The relationships between asthma, bronchial
hyperresponsiveness (BHR) and atopy have recently
been examined among 20- to 44-year-old adults, in
five Spanish centres involved in the European Com-
munity Respiratory Health Survey. The adjusted pro-
portion of BHR attributable to atopy was 21% and the
proportion of asthma symptoms and BHR attributable
to atopy was 42%.5 Factors associated with the
hygiene hypothesis such as birth order or specific
infections will vary in their strength of association
with asthma depending on the proportion of asthma
attributable to atopy. An important feature of any
useful hypothesis is that it should unify disparate
observations. The hygiene hypothesis does this, sug-
gesting explanations for socio-economic variations in
atopic disease both within and between countries,
and a plausible explanation of some of the long-term
upward trends in prevalence. Studies of the relation-
ship between infection or microbial exposures and
atopic disease also tend to support the hygiene
hypothesis.

The influence of antibiotics on these associations
has recently been studied. Farooqi et al. found a
twofold risk of doctor-diagnosed atopic diseases
with antibiotic treatment in the first 2 years of life,
among a general practice birth cohort.6 The
increased risk was apparent for all classes of anti-
biotics, although greater for cephalosporins and
macrolides; it was independent of the underlying
condition being treated, and was similar for those
with and without a history of maternal atopy.
Antibiotic exposure was the strongest predictor of
atopic disease in this study.

The other two studies have examined antibiotic
use among children in Sweden and New Zealand,
whose families have some association with an
anthroposophic lifestyle. Families embracing this
lifestyle, whose tenets were set out by Rudolph
Steiner in the nineteenth century, tend to minimise
their involvement with conventional medical
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