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Abstract

Introduction Hyperglycaemia is common in critical illness and
associated with poor outcome. Glycaemic control using insulin
may decrease morbidity and mortality. Many questions remain
about the cause of critical illness hyperglycaemia (CIH). Our
objective was to investigate the endocrinological basis of
paediatric CIH.

Methods C-peptide and blood glucose (BG) levels were
assessed in 41 children aged 2 to 18 years old who were
admitted to our paediatric intensive care unit (PICU). Patients
who developed CIH, defined as persistent BG above 7.7 mmol/
L, were treated with insulin infusion to achieve BG levels
between 4.4 and 7.7 mmol/L. C-peptide levels were compared
with respect to CIH development and degree of organ failure in
all patients. Respiratory and cardiovascular failure were defined
as need for mechanical ventilation and need for vasoactive
infusions, respectively. Clinical and laboratory parameters,
including c-peptide levels, were assessed.

Results Of 41 children enrolled, 18 had respiratory failure only,
11 had both respiratory and cardiovascular failure, and 12 had
neither respiratory or cardiovascular failure. Nine patients with

respiratory failure only, 10 with both respiratory and
cardiovascular failure, and none with no respiratory or
cardiovascular failure developed CIH. Patients with CIH and
respiratory and cardiovascular failure (n = 10) had very low c-
peptide levels (4.4 ng/mL) despite significantly elevated mean
BG levels (10.8 mmol/L), while those with CIH and respiratory
failure only had very high c-peptide levels (11.5 ng/mL) with
mean BG of 9.9 mmol/L. Low endogenous insulin production in
those with respiratory and cardiovascular failure was associated
with rapid onset of CIH, illness severity, higher insulin
requirement and longer mechanical ventilation days, PICU
length of stay and CIH duration.

Conclusions Primary beta-cell dysfunction as defined by low
endogenous c-peptide production appears to be prevalent in
critically ill children with both respiratory and cardiovascular
failure who develop CIH, whereas elevated insulin resistance
appears to be the prominent cause of CIH in children with
respiratory failure only. Our finding that beta-cell dysfunction is
present in a subset of critically ill children with CIH challenges
the assertion from adult studies that CIH is primarily the result of
elevated insulin resistance.

Introduction
Over the past several years critical illness hyperglycaemia
(CIH) and glycaemic control have emerged as prominent
issues in critical care [1-14]. In addition to determining the
impact of hyperglycaemia and glycaemic control on patient
outcome, many questions remain regarding CIH, including a
clear understanding of its basic pathogenesis. Persistent
hyperglycaemia of any aetiology represents a state of meta-

bolic dysregulation resulting from an imbalance of insulin pro-
duction and insulin sensitivity in target tissues. Type 1 and 2
diabetes mellitus (DM) represent extremes of this aetiological
spectrum in chronic disease. Although both have similar clini-
cal phenotypes and adverse sequelae, they have different aeti-
ologies – autoimmune-induced beta-cell destruction in type 1
DM versus peripheral insulin resistance in type 2 DM. Under-
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standing the aetiology of DM significantly impacts disease
course and therapeutic approach.

CIH is often considered an extreme form of 'stress' hypergly-
caemia resulting from a surge of endogenous counter-regula-
tory hormones, but other diabetogenic factors are likely to
contribute to CIH, and differentiate it from a pure sympathoad-
renal 'fight or flight' response [1,4-6]. Critical illness is associ-
ated not only with increased endogenous counter-regulatory
hormones, but with pro-inflammatory mediators, oxidative
stress and therapeutic interventions, all of which interfere with
insulin receptor signalling and/or insulin-regulated glucose
channels, and directly interfere with proper glucose transport
and utilisation in peripheral cells [6,15-27].

CIH is prevalent in paediatric intensive care units (PICUs) and
is an independent risk factor for morbidity and mortality [28-
38]. We routinely screen for and treat hyperglycaemia with
insulin in our PICU, and have reported that about 20% of all
our admissions develop CIH [35]. In comparing our approach
in children with published adult studies, we find substantial dif-
ferences in glycaemic management, including higher insulin
requirements and shorter duration of treatment in children
[35]. These disparities led us to question whether there were
other differences between paediatric and adult CIH such as
metabolic aetiology. The objective of this study was to investi-
gate the endocrinological aetiology of CIH in subsets of chil-
dren with critical illness and determine clinical factors
associated with this condition. Herein we report that primary
beta-cell dysfunction and resultant absolute insulin deficiency
may contribute to the development of CIH in select critically ill
children, contrasting the current dogma in adults that CIH is
primarily due to elevations in resistance of peripheral tissues to
insulin.

Materials and methods
Study site
The PICU at the Children's Healthcare of Atlanta at Egleston
is a quaternary 30-bed multidisciplinary unit with high acuity
medical and surgical conditions that cares for patients from
infancy to 21 years of age.

CIH – definition, assessment and management
Our standard care physician-initiated, nurse-driven protocol
was used to screen for and treat CIH in our PICU [35].
Patients with respiratory failure requiring mechanical ventila-
tion and those with cardiovascular failure requiring vasoactive
infusions are considered at high risk for hyperglycaemia in our
PICU and are routinely screened for CIH by twice daily bed-
side glucometry (Accucheck Inform, Baltimore, MD, USA).
Patients younger than six months old, weighing less than 5 kg,
or with hepatic failure or type 1 DM are excluded from CIH
screening and treatment. CIH is defined as a blood glucose
(BG) level above 7.7 mmol/L on two occasions one to two
hours apart, and infused insulin (Novalin R, Princeton, NJ,

USA) is automatically initiated and titrated to achieve a BG
level of 4.4 and 7.7 mmol/L via our nurse-driven algorithm in
patients with CIH.

Research design and patient selection
An Institutional Review Board-approved prospective observa-
tional study was conducted and consent was obtained for all
patients before study enrollment. Patients admitted to our
PICU aged 2 to 18 years old without severe hepatic insuffi-
ciency or failure, known DM or requiring continuous renal
replacement therapy were eligible for enrollment. Patients
admitted to our PICU were screened by study staff for possi-
ble inclusion into the study, and those meeting our inclusion
criteria were enrolled after informed consent was obtained.
Patients for consideration were those admitted sequentially to
our PICU, and only those that did not meet enrollment criteria
or did not consent to enrollment were excluded. We enrolled
12 patients without respiratory or cardiovascular failure, and
29 patients with respiratory failure and/or cardiovascular fail-
ure. Serum samples from all participants were analysed for BG
and c-peptide levels (ARUP laboratories; Salt Lake City, Utah,
USA), where control fasting c-peptide levels are reported to
be 0.8 to 4 ng/mL. In patients who developed CIH, samples
were drawn after CIH diagnosis but before initiation of exoge-
nous insulin treatment. In those at high risk for hyperglycaemia
who did not develop CIH, samples were drawn within 48
hours of intubation or initiation of vasoactive infusions. In those
without respiratory or cardiovascular failure, samples were
drawn within 48 hours of PICU admission.

Demographic and clinical data
Baseline characteristics and other clinical information were
obtained on all patients. Illness severity and organ dysfunction
were quantified using paediatric logistic organ dysfunction
(PELOD) scoring [39]. We adapted and expanded the vaso-
pressor score devised by Hatherill and colleagues to quantify
vasopressors/inotrope use [40]. Scores were additive and
assigned as follows: 1 = dopamine less than 10 μg/kg/minute;
2 = dopamine 10 μg/kg/minute or above; 2 = noradrenaline or
adrenaline less than 0.5 μg/kg/minute; 3 = noradrenaline or
adrenaline 0.5 μcg/kg/minute or above; 1 = milrinone less
than 0.5 μg/kg/minute; 2 = milrinone 0.5 μg/kg/minute or
above; 3 = vasopressin less than 4 mU/kg/minute; 4 = vaso-
pressin 4 mU/kg/minute or above. When available, creatinine
levels drawn as part of routine management were evaluated.
Levels were available in 6 of 12 patients not at high risk for
CIH, and were available for analysis in all patients at high risk
for CIH. All creatinine levels were drawn between 12 hours
before or after c-peptide levels were drawn.

Caloric delivery and make-up was evaluated for all patients
with respiratory failure at the time BG and c-peptide levels
were drawn. Because most patients without respiratory failure
were on oral feeds, detailed caloric data was not available.
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Caloric goals were determined by Schoefield and White for-
mulas for all patients by a certified PICU nutritionist.

Statistical analysis
BG and c-peptide levels were compared using Student's two-
tailed t tests, where a p < 0.05 was considered statistically
significant. Other results in different groups were compared
either by Student's t test for normally distributed data, Mann-
Whitney U tests for non-normally distributed data, or chi
squared tests for comparison of proportions. Statistical testing
was performed using SPSS 15.0, (Chicago, IL, USA).

Results
Patient baseline characteristics
We assessed BG and c-peptide levels in 12 PICU patients
without respiratory or cardiovascular failure, 18 patients with
respiratory failure only, and 11 patients with respiratory and
cardiovascular failure. No patient without respiratory or cardi-
ovascular failure developed CIH. Patients with respiratory and/
or cardiovascular failure were split into two groups: those who
did not develop CIH (persistent BG of more than 7.7 mmol/L)
and those that did develop CIH. For those with respiratory fail-
ure, only 9 of the 18 developed CIH, and 10 of the 11 with
both respiratory and cardiovascular failure developed CIH. No
significant differences in age, gender or ethnicity were appar-
ent between any groups (Table 1). No patient was hypergly-

caemic requiring insulin at PICU discharge. No patient had
clinical or laboratory evidence of renal failure or chronic DM
(Table 1).

In general, patients with CIH had significantly higher PICU
lengths of stay, mechanical ventilation days and PELOD
scores compared with those without CIH (Table 1). In patients
with CIH, those with both respiratory and cardiovascular fail-
ure had longer PICU lengths of stay (13.1 days), mechanical
ventilation days (8.3 days) and PELOD scores (21.5) com-
pared with those with CIH with respiratory failure only (11.4
days, 7 days and 11.4, respectively) (Table 1).

BG and c-peptide levels
Blood glucose and c-peptide levels in patients without respi-
ratory or cardiovascular failure, and those in patients with res-
piratory failure but without CIH were not statistically different
(5.8 mmol/L versus 6.1 mmol/L, and 2.3 ng/mL versus 5.3 nl/
mL, respectively; Figures 1a and 1b). In patients that devel-
oped CIH, BG and c-peptide levels were drawn at time of CIH
diagnosis. Although CIH patients with both respiratory and
cardiovascular failure had higher BG levels compared with
CIH patients with respiratory failure only (10.8 mmol/L versus
9.9 mmol/L; p < 0.05), they had significantly lower c-peptide
levels (4.4 ng/mL versus 11.5 ng/mL; p < 0.05; Figures 1a
and 1b).

Table 1

Baseline characteristics of all groups included in the study

Patients with CIH Patients without CIH

Respiratory failure only
(n = 9)

Respiratory and CV failure
(n = 10)

No organ failure
(n = 12)

Respiratory failure only
(n = 9)

Male
gender

67% (6) 50% (5) 67% (8) 55% (5)

Mean age (years) 8.4 (6 to 12) 10 (3 to 18) 6.2 (2–12) 7.8 (4 to 14)

Ethnicity Cauc = 5
AA = 3

Hisp = 1

Cauc = 7
AA = 3

Hisp = 0

Cauc = 8
AA = 3

Hisp = 1

Cauc = 6
AA = 2

Hisp = 1

Mean PICU
LOS (days)

11.4 (5 to 14) 13.1 (10 to 17) 3.8 (2 to 6) 5.2 (3 to 7)

Mean MV days 7 (4 to 12) 8.3 (6 to 14) 0 3.2 (1 to 6)

Mean PELOD score
at study entry

11.4 (1 to 21) 21.5 (11 to 30) 1.8 (0 to 10) 5.4 (1 to 11)

IV steroids 44% (4) 100% (10) 50% (6) 44% (4)

Average creatinine level
(mg/dL)

0.5 (0.4 to 0.9) 0.7 (0.4 to 1.7) 0.4 (0.3 to 0.7) 0.4 (0.3 to 0.8)

PICU survival 100% (9) 90% (9) 100% (12) 100% (9)

Patients requiring insulin at PICU 
discharge

0% (0) 0% (0) 0% (0) 0% (0)

There were no significant differences in gender, age, ethnicity or creatinine levels in any group. CIH patients with respiratory failure and 
cardiovascular failure had significantly higher PELOD scores and mean PICU LOS compared with all other groups. AA = African American; Cauc 
= caucasian; CIH = critical illness hyperglycaemia; CV = cardiovascular; Hisp = Hispanic; IV = intravenous; LOS = length of stay; MV = 
mechanical ventilation; PELOD = paediatric logistic organ dysfunction score; PICU = paediatric intensive care unit.
Results are shown as means, with ranges in parentheses.
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C-peptide: blood glucose ratios
In patients with functional beta-cells, increased insulin resist-
ance correlates with higher c-peptide:BG ratios. Patients with-
out respiratory or cardiovascular failure, those with respiratory
failure without CIH, and those with respiratory failure and CIH
had a linear increase in c-peptide:BG ratios (0.015, 0.038 and
0.08, respectively) consistent with increasing elevations in
insulin resistance (Figure 1c). Patients with CIH with respira-
tory and cardiovascular failure had significantly lower c-pep-
tide:BG ratio compared with those with CIH and respiratory

failure only (p < 0.05), highlighting the functional deficiency of
beta-cells in these patients during hyperglycaemia (Figure 1c).

CIH duration and severity
All patients with CIH were treated with exogenous insulin after
CIH diagnosis until resolution. Patients with respiratory and
cardiovascular failure developed CIH on average on PICU day
0.7 versus PICU day 3.1 for those with respiratory failure only
(p < 0.05), almost five times more rapidly (Table 2). Those with
respiratory and cardiovascular failure were hyperglycaemic
60% longer than those with respiratory failure only, 8.7 versus

Figure 1

Blood glucose levels, C-peptide levels and c-peptide:blood glucose ratios in all patientsBlood glucose levels, C-peptide levels and c-peptide:blood glucose ratios in all patients. (a) Blood glucose levels, (b) c-peptide levels and (c) c-
peptide:blood glucose ratios in all patients. Circled characters denote means for particular groups. Critical illness hyperglycaemia (CIH) patients 
with respiratory and cardiovascular (CV) failure had significantly higher blood glucose levels but significantly lower c-peptide levels compared with 
those with CIH with respiratory failure only († p < 0.05). Patients without any organ failure, those with respiratory failure without CIH and those with 
respiratory failure with CIH had c-peptide:blood glucose ratios that increased linearly. Patients with CIH with respiratory and cardiovascular failure 
had a drastic decline in c-peptide:blood glucose ratio, reflecting that this analysis assumes functional beta-cells able to generate more endogenous 
insulin for greater degree of hyperglycaemia.
Page 4 of 9
(page number not for citation purposes)



Available online http://ccforum.com/content/13/1/R27
5.8 days (p < 0.05), and had higher peak insulin requirements
(0.19 U/kg/hour versus 0.13 U/kg/hour; Table 2). All patients
with CIH either started their hospital admission in the PICU or
were transferred to the PICU within 24 hours of hospital
admission.

Nutritional considerations
In an attempt to prevent or treat hyperglycaemia in critical care
settings some practitioners withhold nutrition. Additionally,
some CIH studies in adults have been criticised because of
the concern that proactive nutritional supplementation 'uncov-
ers' CIH [1,2]. The stress of critical illness substantially
increases metabolic demands and, further, children have up to
three to four times higher relative basal metabolic needs than
adults. We therefore did not attempt to prevent CIH or modify
BG levels by adjusting nutrition in our PICU. Because BG lev-
els and endogenous insulin production are related to exoge-
nous calorie and glucose input, we assessed patients for total
caloric delivery and intravenous glucose infusion rates (GIR) at
the time BG and c-peptide levels were drawn. Patients without
respiratory or cardiovascular failure could not be assessed for
specific caloric intake as all were receiving an ad libitum age-
specific oral diet, and those on intravenous fluids were receiv-
ing no more than 5% dextrose at maintenance rates. Precise
supplementation was determined in all patients with respira-
tory and/or cardiovascular failure, as all received a combina-
tion of quantifiable enteral (via nasogastric tube) and
intravenous supplementation. There was no difference in total
calories delivered, caloric composition or GIR in any group
with respiratory and/or cardiovascular failure, with or without
CIH, suggesting against a critical role of the amount or type of
calorie delivery in the development of CIH (Figures 2a and 2b).

Discussion
Consistent with our previous work, about two-thirds of chil-
dren in our PICU requiring mechanical ventilation developed
CIH, and more than 90% of patients with both respiratory and
cardiovascular failure developed CIH [35]. Patients with respi-

ratory and cardiovascular failure with CIH had evidence of
severe primary beta-cell dysfunction, as evidenced by very low
c-peptide levels in the face of significant hyperglycaemia. This
finding supports the proposition that many factors commonly
elevated in critical illness, including pro-inflammatory
cytokines, catecholamines and glucocorticoids, may directly
suppress beta-cell function and insulin secretion [4,6,15-23].
Yet severe beta-cell dysfunction did not occur in all of our
patients with CIH, as those with respiratory failure only had
high c-peptide levels, yet were still hyperglycaemic, and
required about 0.1 U/kg/hour of exogenous insulin to maintain
BG levels between 4.4 and 7.7 mmol/L. This amount of exog-
enous insulin is about one to two times the basal insulin
requirements for euglycaemia. These patients therefore had
substantial insulin resistance in the absence of absolute beta-
cell dysfunction. Although insulin resistance appears to be the
predominant cause of hyperglycaemia in these patients, our
data does not allow the differentiation between hepatic insulin
resistance and peripheral (muscle and adipose) insulin resist-
ance. Even though these patients produce high levels of insu-
lin, it is not enough to correct hyperglycaemia, and therefore
they too display some evidence of relative beta-cell dysfunc-
tion.

C-peptide is produced on an equimolar basis with endog-
enous insulin, is renally excreted, and is the most reliable sur-
rogate of endogenous insulin production in the face of normal
kidney function [27]. This study excluded patients with renal
failure. Only one patient in our study with CIH had evidence of
mild renal insufficiency, and this was in a patient with respira-
tory and cardiovascular failure with low c-peptide levels. This
supports our interpretations that differences in c-peptide lev-
els were a reflection of endogenous, native beta-cell function
and not an epiphenomenon of differences in renal function.

In addition to the different metabolic aetiologies of CIH in
patients with both respiratory and cardiovascular failure (low c-
peptide and beta-cell dysfunction) versus those with respira-

Table 2

Characteristics of critical illness hyperglycaemia

Respiratory failure only
(n = 9)

Respiratory and CV failure
(n = 10)

Mean CIH days 5.8 (2 to 12) 8.7 (5 to 13)*

Mean days to CIH development 3.1(0.25 to 6) 0.7 (0 to 3)*

Insulin requirement 24 hours after CIH diagnosis (U/kg/hour) 0.1 (0.05 to 0.12) 0.12 (0.05 to 0.16)

Peak insulin requirement (U/kg/hour) 0.13 (0.06 to 0.2) 0.19 (0.16 to 0.2)*

24-hour insulin dose:
C-peptide ratio

0.008 (0.005 to 0.04) 0.02 (0.015 to 0.07)*

Patients with cardiorespiratory failure have more severe CIH compared with those with respiratory failure only. Ranges are in parentheses.
CIH = critical illness hyperglycaemia; CV = cardiovascular.
Asterisks show p < 0.05 compared to respiratory failure only group.
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tory failure only (high c-peptide and insulin resistance), other
important distinctions were noteworthy. Patients with respira-
tory and cardiovascular failure appear to have more severe
CIH compared with those with respiratory failure only, as evi-
denced by more rapid onset of CIH, higher degree of hyperg-
lycaemia, longer duration and higher insulin needs to restore
normal glycaemic levels. By PICU discharge, CIH resolved in
all patients and all were able to maintain normal glycaemic lev-
els without exogenous insulin. Therefore, no participant had a
pre-existing diagnosis or post-ICU diagnosis of DM (type 1 or
type 2). None of the variables known to be associated with glu-
cose intolerance, including older age, increased body weight
and ethnicity, appeared to be associated with the aetiology of
CIH in our patients [41-44]. Of caution, the sample size in this

study was small, and differences may become apparent with
larger studies.

It is noteworthy that certain pharmaceutical interventions com-
monly employed in critically ill patients can directly contribute
to the development of hyperglycaemia. For example, it is well-
known that catecholamines, both endogenous and exoge-
nous, may directly suppress beta-cell function and insulin
secretion [4,6,15-23]. Although we were not able to directly
correlate degree of beta-cell dysfunction with any one particu-
lar vasopressor used in our patients, we were able to quantify
vasopressor scores for our patients based on a modified scor-
ing system developed by Hatherill and colleagues [40]. As
described above, this scoring system is based on the number
and amount of vasopressors required by a patient. We did find

Figure 2

Caloric goals, make-up and glucose infusion rates in patients with respiratory and/or cardiovascular failureCaloric goals, make-up and glucose infusion rates in patients with respiratory and/or cardiovascular failure. (a) Caloric goals, make-up and (b) glu-
cose infusion rates in patients with respiratory and/or cardiovascular (CV) failure. Percentage and make-up of caloric delivery did not differ signifi-
cantly in patients in with or without critical illness hyperglycaemia (CIH). Because endogenous insulin and c-peptide production can be specifically 
related to glucose infusion rates, it is notable that glucose infusion rates in these groups and subgroups did not differ significantly either.
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that vasopressor score was inversely correlated with c-pep-
tide level, and thus beta-cell dysfunction. It will be important for
future studies in this field to more specifically assess whether
one particular vasopressor or inotrope may have a more signif-
icant impact on beta-cell insulin secretion compared with oth-
ers, or if this dysfunction is more closely related to number of
vasopressors required, or perhaps length of need for vaso-
pressors.

Recent studies in adults suggest that CIH is primarily due to
insulin resistance in the face of supra-normal beta-cell function
[19,20,24-27]. Yet studies from the 1970s and 1980s sug-
gest that in times of severe stress or trauma, such as that dur-
ing severe (i.e. military) trauma or sepsis, beta-cell dysfunction
is present in hyperglycaemic patients [45-47]. A case series
from 2006 of children with meningococcal disease fits with
our more generalisable observations [48]. In this report, chil-
dren with meningococcal sepsis had higher peak BG levels
and low insulin levels compared with children with meningo-
coccal bacteraemia without sepsis. The authors suggest that
the hyperglycaemia and beta-cell dysfunction they observed
was due to a unique attribute of severe Neisseria meningitidis
disease [48]. Our data indicate that the contribution of beta-
cell dysfunction to hyperglycaemia in patients with severe ill-
ness is not a rare or disease-specific phenomenon. At least in
children, this is not a condition limited to meningococcal dis-
ease, severe trauma or sepsis, and can occur in those suffer-
ing from severe critical illness due to many conditions.

Our findings suggest that CIH can be categorised based on
clinical and aetiological factors. For example, CIH in children
occurs rapidly and is associated with low c-peptide levels,
suggestive of beta-cell dysfunction; or more gradually and is
associated with increased c-peptide levels suggestive of insu-
lin resistance. In either case children require substantial
amounts of exogenous insulin to achieve normal glycaemic lev-
els, and CIH resolves with resolution of critical illness. These
characteristics differ substantially compared with adult CIH.
Of note, most adult CIH studies evaluate patients aged about
70 years old, essentially representing findings in a geriatric
population [1,2,11,14,27]. Adult, or perhaps more aptly,
senescent CIH develops rapidly, primarily results from ele-
vated insulin resistance, requires less insulin for glycaemic
control and resolves more gradually [1,2,27]. Further studies
are needed to determine the aetiological cause of CIH in
younger and middle-aged adults.

Many factors in acute illness may cause beta-cell dysfunction,
including elevations in pro-inflammatory cytokines, cata-
cholamines and glucocorticoids [1,4,6,15-23,48-51]. We
hypothesise that beta-cells, known to be exquisitely sensitive
to rapid physiological changes, may become dysfunctional if
these changes acutely occur above a certain threshold. These
same changes occurring more gradually may allow beta-cells
to adapt and function at supraphysiological levels over time. It

may also require a fixed time for changes to occur in target tis-
sues which result in such elevated insulin resistance to cause
hyperglycaemia. Therefore, acute severe pathophysiological
alterations may predispose to beta-cell dysfunction, whereas
more gradual alterations may result in insulin resistance. Fur-
ther, all patients with beta-cell dysfunction had cardiovascular
failure requiring vasopressor infusions at the time of CIH devel-
opment. Although catecholamines can contribute to both
beta-cell dysfunction and insulin resistance, it may be that pro-
vision of exogenous catecholamines acutely may contribute
more to beta-cell dysfunction in children.

One explanation for the development and aetiology of CIH
could be differences in caloric and specifically intravenous
dextrose delivery. Yet we found no significant differences in
mode of caloric delivery or GIR at the time of c-peptide and
insulin evaluation in our patients, nor did we find differences in
those who had beta-cell dysfunction compared with those with
high c-peptide levels. This suggests that the amount and type
of caloric delivery was not critically important to either the
development of or the metabolic cause of CIH.

Although insulin has anabolic, lipogenic and anti-inflammatory
properties, some adult studies indicate the outcome benefit of
glycaemic control is due to glucose normalisation rather than
insulin supplementation [4,6,9,17,25,52,53]. Such conclu-
sions may not be applicable to PICU patients, as a substantial
subset of patients appear to have absolute insulin deficiency.
Those children may derive clinical benefit from insulin replace-
ment, analogous to using insulin to treat type 1 DM. Practition-
ers may need to rethink insulin administration and glycaemic
control measures if insulin therapy may be considered as sup-
plementing a deficient vital hormone.

Many interesting questions remain unanswered in this exciting
field. In addition to further studies to elucidate more exact con-
tribution of exogenous catecholamines to the development of
hyperglycaemia, other areas for future direction include more
directly discerning the contribution of insulin resistance to this
pathophysiology. For example, one limitation in our study is the
inability to accurately assess exact degree of insulin resistance
in patients with low c-peptide levels indicative of beta-cell dys-
function. Although low c-peptide levels in these patients does
indicate absolute insulin deficiency, it is likely that these
patients may experience increased insulin resistance as well,
even though it is likely to be to a lesser extent than those with
high c-peptide levels. Future studies may employ other meth-
ods to more directly assess insulin resistance in patients, such
as hyperinsulinaemic euglycaemic clamping techniques,
homeostasis model assessment-estimated insulin resistance
or the more recently developed quantitative insulin sensitivity
check index.
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Conclusions
We describe that transient beta-cell dysfunction is a contribu-
tor to CIH in children with respiratory and cardiovascular fail-
ure, and highlight differences in CIH in children compared with
adults. Understanding these differences and elucidating the
pathogenesis of CIH may assist in developing individualised
glycaemic goals and treatment strategies in children with life-
threatening illness or injury.
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Key messages

• CIH is highly prevalent in paediatric critical illness, par-
ticularly in those with respiratory or cardiovascular fail-
ure.

• The endocrinological basis of CIH may differ in children 
with different disease processes, which may be differ-
ent from the cause of CIH in adults with comparable 
disease states.

• Although CIH in adults is caused primarily by increased 
peripheral insulin resistance, primary beta-cell dysfunc-
tion appears to be a major cause of CIH in critically ill 
children with both respiratory and cardiovascular failure, 
whereas elevated peripheral insulin resistance appears 
to be the prominent cause of CIH in children with respi-
ratory failure only.

• Understanding the aetiology of CIH may significantly 
impact disease course and therapeutic approach.

• Further studies are needed to discern whether treat-
ment of CIH with insulin improves outcomes in critically 
ill children with peripheral insulin resistance and/or 
beta-cell dysfunction.
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