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Abstract: With the advancement of urbanization and the impact of industrial pollution, the issue
of urban ventilation has attracted increasing attention. Research on urban ventilation corridors is
a hotspot in the field of urban planning. Traditional studies on ventilation corridors mostly focus
on qualitative or simulated research on urban climate issues such as the intensified urban heat
island effect, serious environmental pollution, and insufficient climate adaptability. Based on the
high-precision urban remote sensing image data obtained by aeromagnetic oblique photography,
this paper calculates the frontal area density of the city with reference to the urban wind statistics.
Based on the existing urban patterns, template matching technology was used to automatically
excavate urban ventilation corridors, which provides scientific and reasonable algorithmic support
for the rapid construction of potential urban ventilation corridor paths. It also provides technical
methods and decision basis for low-carbon urban planning, ecological planning and microclimate
optimization design. This method was proved to be effective through experiments in Deqing city,
Zhejiang Province, China.

Keywords: urban ventilation corridors; intelligent mining; template matching; high-precision oblique
photographic image

1. Introduction

As society develops, the global urbanization process is rapidly increasing. It is pre-
dicted that China’s urbanization rate will reach more than 70% in 2050 [1]. Rapid urban-
ization has strongly promoted the sustainable development of an economical society and
the overall improvement in the standards of living for urban and rural residents. How-
ever, high-speed urbanization has also caused urban environmental problems such as the
deterioration of the microclimate environment and the serious urban heat island effect.
Relevant studies have shown that good urban ventilation can promote urban air circulation
and reduce air pollution [2–4]. Improving the urban ventilation environment and building
urban ventilated corridor are effective measures to improve urban air circulation capacity
and alleviate urban environmental problems [5–7].

Both domestic and international leading research institutes conduct ventilated corridor
research using three main methods: field measurements, physical simulation tests, and
computer numerical simulation analyses [8,9]. Comparatively, based on an urban spatial
data model, the method of using computer analysis technology to assist in the planning
and design of ventilation corridors has a low cost and short cycle. In addition, it can
be evaluated by parameter research via setting conditions, which will play an important
role in supporting decisions to improve the overall ventilation efficiency of a city. The
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development of the Internet of Things (IoT) in recent years [10,11], has provided strong
support for urban ventilation corridor studies in terms of data.

In recent years, many scholars have conducted research in this field. Some studies used
CFD (computational fluid dynamics) software simulations, remote sensing image inversion,
and GIS analysis to explore the planning and design of central urban air ducts [12–14].
However, these studies lack systematization [15]. At the same time, from the perspective
of planning, the literature also lacks systematic thinking to solve urban environmental
and ecological problems. Yuan proposed a WRF model and constructed two-level air
ducts at certain municipal scales [16]. Zhang extracted high-resolution urban geographic
information data and used RS and GIS integration to collect surface information and spatial
information on the downtown area of Jinzhong, obtaining an urban roughness pattern
map of the downtown area [17]. Generally speaking, however, these studies lack in-depth
discussion of the detailed urban form. Moreover, knowledge and redundancy on digging
urban ventilation corridors are insufficient.

Taking Deqing County, Huzhou city, Zhejiang Province, as an example, this paper used
a Quest Kodiak 100 aircraft equipped with a five-view high-definition tilt aerial camera to
obtain tilted image data. Through data processing of the measurements of control point
plane coordinates and altimetric data, multi-view tilted images of DSM and DEM were
extracted. To be specific, according to statistics from the meteorological department, we
analyzed the dominant wind direction of the target city; then, the DSM–DEM map was
processed to obtain data such as urban buildings. In addition, through the dominant wind
direction projection, we calculated the frontal area density (FAD) map and then further
considered information such as the height of zero-plane displacement and the influence
of building height on wind power changes. Next, we performed image processing, such
as binarization, expansion, corrosion, and template matching, on the FAD map and DSM–
DEM map to calculate the urban ventilation corridor data. According to the empirical
value of the urban ventilation corridor, the ventilation corridors of the target city were
extracted. The experimental results show the effectiveness of this research method.

2. City Correlation Analysis and Frontal Area Calculation
2.1. Oblique Photography and Urban Digital Data Acquisition

A digital terrain model (DTM) is a database that represents the spatial distribution of
ground features. Generally, a series of ground point coordinates (x, y, and z) and surface
attributes (target categories, features, etc.) are used to form a data array, so that a digital
terrestrial model can be composed. If a terrain feature point only refers to the elevation of
the ground point, this digital terrain description can be called a digital elevation model
(DEM). A digital surface model (DSM) can be a simulation of the surface’s ground objects
including vegetation and houses. A DSM was processed to remove information, such as
houses and vegetation, to form a DEM as shown in Figure 1.

Our cooperative partners used the Quest Kodiak 100 aircraft to obtain the tilted image
data with a five-view high-definition tilt aerial camera in the early stage. After digital
image processing, the city data were geometrically corrected, and a digital ground model
(i.e., DSM) was generated. This paper used the difference between the DSM and DEM to
extract the height of the surface roughness of buildings, rivers, lakes, and vegetation [18].

2.2. Wind Rose Chart and Statistics of the City’s Dominant Directions

As a professional statistical chart of wind, the wind rose is used to quantitatively
analyze the characteristics of wind direction and wind speed over a certain period of
time [19]. This study obtained daily average wind speed and wind direction data for
the city at a height of 10 m over the past 10 years from the Deqing City Meteorological
Department, and it determined the average statistics of the wind frequency in 16 azimuths
as shown in Figures 2 and 3, respectively.
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Figure 3. Summer wind rose illustration of Deqing City.

In Figure 2, the dominant wind direction in Deqing City during winter is northwest.
The frequencies of the NNW, NW, and N wind directions were 11.8%, 11.13%, and 10.43%,
respectively, and the sum of the frequencies was 33.36%. In Figure 3, there are two main
wind directions: the southerly wind and easterly wind in Deqing City during summer.
The frequencies of the SSW and S wind directions were 11.45% and 11.19%, respectively,
and the sum of the frequencies was 22.64%. The frequencies of the E, ENE, and ESE wind
directions were 8.85%, 8.09%, and 6.48%, respectively, and the sum of the frequencies
was 23.42%.

2.3. City Ventilation and Frontal Area Density Calculation

Buildings are the most important factor for urban ventilation, and their ventilation
evaluation mainly adopts the comprehensive frontal area density method [20]. City frontal
area density (FAD) represents a certain height increase, where the ratio is the frontal area
of a building under a certain wind condition to the area where the building is located. The
equation for calculating the frontal area density is as follows:

λ f (z,θ) =
A(θ)proj(z)

AT
(1)

In Equation (1), A(θ)proj(z) is the frontal area of the building perpendicular to a certain
wind direction; AT is the area where the building is located; θ is a certain direction selected;
z is the height increase (that is, the calculation range to calculate the projected area in the
height direction). It can be seen that the frontal area density focuses on the description of
the architectural form at the selected specific height increase.

The frontal density λf is a parameter related to the wind direction. Different wind
directions have a different frontal surface density λf. The frontal surface density can reflect
the obstructive effect of the urban form on the wind in a specific direction, which reflects
the ventilation capacity of the wind in a specific direction in the urban area [21].
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In order to calculate the wind density of buildings that dominate the wind direction in
winter and summer in the target city, the height of the buildings in the urban area should
be classified to count, and then the height increase is determined. The frontal area density
focuses on the description of the architectural form at the selected specific height increment.
DSM–DEM can be used to extract the elevation of urban roughness as shown in Figure 4.
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Figure 4. A process using DSM–DEM to extract urban roughness.

We can use the previous model data (including the high-resolution spatial distribution
and height data information of all buildings) to generate 100× 100 m grid data (as shown in
Figure 5). According to the dominant wind direction during winter and summer, through
coordinate transformation we can generate a raster image of the city (as shown in Figure 6).
Then, we can select the high-frequency wind direction angle of the wind rose map in the
winter (similar to summer) of the city and calculate the vertical area of the wind direction
for the entire city to increase the height image projection calculation. Next, we can calculate
the side area for each grid building, that is, the area of the frontal side, and divide it by the
grid area (land parcel), finally automatically calculating the frontal area density of each
grid. Because the map faces north, the raster image needs to be rotated (360—the dominant
wind angle) for each raster before the FAD calculation, and then rotated back to the north
after the calculation is completed. The size of the FAD map is reduced as 1/grid length for
both rows and columns compared to the elevation map.
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The calculation process of the building’s frontal density area is shown in Figure 7.
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The calculated frontal area density in summer and winter are shown in Figure 8a,b,
respectively.
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3. Definition of Urban Ventilation Corridor

Taking the frontal area density as the main calculation factor, the length of the urban
ventilation corridor refers to the continuous length of the value of the frontal area density
interval [22]. This paper selected the following three conditions as the empirical value for
urban ventilation corridors:

(1) VC length > 500 m (preferably 1000 m and above);
(2) VC width 6< 30 m (building interval, preferably 50 m and above). Among them, the

suitable width of an urban air duct was >100 m and a block-scale ventilation corridor
VC width 6< 30 m and a VC width 6> 100 m;

(3) θ < 45◦ (where θ is the dominant wind direction of the VC direction), when the urban
air duct was parallel to the dominant wind direction, the ventilation efficiency of the
air duct was the best, and θ < 30◦ was more conducive to improvements in the overall
wind environment.

As shown in Figure 9, the smaller the FAD value, the length of VC > 500 m, width of
VC > 30 m, and θ < 45, the higher the wind speed and the better the ventilation efficiency.
This paper combined the actual target city to divide the urban ventilation corridor grades
to CCI, CCII, and CCIII.
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Figure 9. The relationship between frontal area density and velocity ratio [23].

The quantitative parameters and qualitative descriptions are as follows:

FAD ≤ 0.35 means natural wind enters smoothly;
0.35 < FAD ≤ 0.45 means that the natural wind does not enter smoothly;
0.45 < FAD ≤ 0.6 means that the natural wind is obstructed;
FAD > 0.6 means that there is a big obstacle for natural wind to enter.

4. Intelligent Mining of Urban Ventilation Corridors Based on Templates

Template is a common method in image objective mining, but it has not been used in
urban ventilation corridors.

4.1. Template Calculation

The template calculation is a type of convolution calculation, which can be regarded
as a weighted summation process. Each pixel in the image area used is multiplied by each
element of the convolution kernel (weight matrix), and the sum of all products is the new
value of the center pixel of the area.

The implementation of template calculation is shown in Figure 10. The dashed black
box part of 3 × 3 (i.e., M = 3) in Figure 10a is shown in Figure 10b, H (s,t) (s,t ε (−1,+1)) is
the value of the 3 × 3 template coefficient.
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The method by which the template moves point by point in the image is: the template
moves to the right until the last column of the template overlaps the rightmost column of
the image; the template moves down until the bottom row of the template overlaps the
bottom row of the image. It is defined as:

g(i, j) =
k

∑
s=−k

l

∑
t=−l

f (i + s, j + t)H(s, t) (2)

The values of k and l depend on the size of the selected neighborhood, and at this time
k = 1. Generally, the values of k and l are odd numbers, and both k and l are 1 in Figure 10.

In order to save the loss of the number of rows and columns which is caused by the
calculation of Equation (2), we used the method as follows: set the size of the image to be
N × N. Next, expand the rightmost side of the original image by M − 1 rows, expand the
bottom most side by M− 1 columns, and then respond accordingly The template operation
processing can directly obtain the N × N operation result.

Considering the image f (i,j) of degree N × N, there is {i,j ε[0,N − 1]}. For the M ×M
template {H(s,t)}, there is {s,t ε [0,M − 1]}. Therefore, in the calculation, the value ranges of
s and t can be (0, M − 1), respectively, so that Equation (2) is modified to Equation (3).

g(i, j) =
M

∑
s=0

M

∑
t=0

f (i + s, j + t)H(s, t) {i, j = 0, 1, 2, 3, ..., N−M} (3)

4.2. Template Design

Taking winter ventilation corridor mining as an example, according to the wind rose
diagram of the target city over the past 10 years, the frequencies of the northwest wind
(NNW), northwest wind (NW), and north wind (N) in winter are 11.8%, 11.13%, and 10.43%,
respectively. The sum is 33.36%, which satisfies the condition that >30% has a dominant
wind direction. Therefore, the dominant wind directions of the city in winter are northwest
wind (−67.5 degrees), northwest wind (−45 degrees), and north wind (−90 degrees). For
the dominant wind direction, the template was designed as shown in Figure 11 (taking a
length of nine as an example).

4.3. Automatic Mining Process and Algorithm of the Urban Ventilation Corridor

By using DSM–DEM map data of the tilted image, which is on the basis of the
height information and wind characteristics of the city, the frontal area density of a certain
dominant wind direction is calculated to form the FAD map. And by using the classification
empirical value of the ventilation corridor, the template matching operation is performed
to reach the ventilation corridor. The specific process is shown in Figure 12.
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Automatic mining process of a ventilation corridor:

(a) When excavating the corridor, the length of corridor should first be set. This paper
used a conclusion from a previous study that determined the length of a corridor is
greater than 500 m, and the length of a corridor generally takes 1000 m.

(b) We can choose a corridor width of one of the wind directions and use the template of
the wind direction to match the frontal area density map. Then, the corridor of the
alpah1 wind direction can be obtained. Finally, we can calculate the total area of the
corridor (that is, the width of the corridor multiplied by the length of the corridor).

(c) We can complete the template matching of the alpha2 and alpha3 wind directions
and find the best ventilation corridor, that is, the total area of the corridor reaches
the maximum.

(d) Repeat step (c), complete the template matching of the alpha2 and alpha3 wind
directions and determine the best ventilation corridor, that is, the total area of the
corridor reaches the maximum. The specific process is shown in Figure 13.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 18 
 

 

Select the wind frequency to meet 
the high frequency wind direction 
alpha of the ventilation corridor 

according to the wind rose diagram

Enter the width of the ventilation 
corridor (starting from 30 meters 
and increasing by a certain step 

length such as 20 meters)

Enter the frontal area density map of 
each wind direction alpha

Extract the ventilation corridors 
according to the template of each 

wind direction alpha, and calculate 
the proportion of the ventilation 

corridor area to the area of the plot

Does the ratio of the 
ventilation corridor area 
to the plot area change 

obviously?

Is the search for high-
frequency wind directions 

completed?

Find the best corridor width value 
for each high frequency wind 

direction

Extract corridor map according to 
template

Y

Y

N

N

 
Figure 12. Flow chart of the optimal width for automatic mining of an urban ventilation corridor. 

Initially set the length of the corridor, 
extract three dominant wind directions, and 

set the best corridor width as width1, 
width2, and width3

Use a certain wind direction template to 
match and search frontal area density map, 
and extract the specified length of corridor.

Is the search for high-
frequency wind directions 

completed?

Synthesize the corridor maps of three 
wind directions to get the best urban 

ventilation corridor

N

Y

 
Figure 13. The process of extracting corridors based on the optimal corridor width. Figure 13. The process of extracting corridors based on the optimal corridor width.

5. Experiment and Result Analysis
5.1. Experimental Settings

In this experiment, the Quest Kodiak 100 aircraft was equipped with a five-view
high-definition tilt aerial camera to obtain the tilted image data of Deqing city. After
verification, the multi-view tilted image DSM map and DEM map were extracted, and the
DSM–DEM map was formed into urban buildings height and ground roughness data using
Global Mapper. According to the wind feature statistics of the dominant wind directions
in Deqing City over the past 10 years, we projected the dominant wind direction on the
DSM–DEM map in order to calculate the FAD map. Then, we performed image processing,
such as binarization, expansion, corrosion, and template matching, and finally realized
the automatic acquisition of urban ventilation corridor maps of various specified widths
or lengths.

Experimental environment: Windows Server 2016, 64 bit operating system; internal
memory of 256 GB; CPU was an Inter(R) Xeon(R) Gold 5117 CPU @2.00 GHz; MATLAB
R2019; Global Mapper 17.

5.2. Calculation of the Maximum Effective Width of a Ventilation Corridor

In the experiment, corridors of different widths and lengths were excavated according
to the dominant wind directions of the target city in winter (i.e.,−67.5 degrees,−45 degrees,
and −90 degrees), and the maximum effective width of the corridor was calculated.
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It can be seen from Figure 14 and Table 1 that the width of the corridor with the
dominant wind direction of −67.5 degrees gradually increased from 30 to 70 m, and the
degree of corridors (given lengths: 0.5, 1, 1.5, and 2 km) ventilation (excavated ventilation
corridor area/total urban area) gradually increased, but when the width increased to 70 m,
the degree of ventilation remained relatively stable.
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Table 1. Ventilation degree of each corridor length and width when the wind direction was -67.5 degrees.

Corridor Width
= 30 m

Corridor Width
= 50 m

Corridor Width
= 70 m

Corridor Width
= 100 m

Corridor Width
= 120 m

Corridor length = 500 m 0.4548 0.6539 0.7212 0.7170 0.7271

Corridor length = 1000 m 0.3504 0.5282 0.6178 0.6269 0.6157

Corridor length = 1500 m 0.2879 0.4548 0.5475 0.5521 0.5290

Corridor length = 2000 m 0.2433 0.3963 0.4729 0.4689 0.4583

It can be seen from Figure 15 and Table 2 that the width of the corridor with the
dominant wind direction of −45 degrees gradually increased from 30 to 100 m, and the
degree of corridor (given lengths: 0.5, 1, 1.5, 2, and 2.5 km) ventilation gradually increased,
but when the width increased to 100 m, the degree of ventilation remained relatively stable.

Table 2. The degree of ventilation of the length and width of each corridor when the wind direction was −45 degrees.

Corridor Width
= 30 m

Corridor Width
= 50 m

Corridor Width
= 70 m

Corridor Width
= 100 m

Corridor Width
= 120 m

Corridor length = 500 m 0.4856 0.6922 0.7610 0.7903 0.7363

Corridor length = 1000 m 0.4025 0.5681 0.6424 0.6794 0.6038

Corridor length = 1500 m 0.3322 0.5033 0.5837 0.5977 0.5532

Corridor length = 2000 m 0.2737 0.4275 0.5060 0.5231 0.4608

Corridor length = 2500 m 0.2237 0.3809 0.4618 0.4901 0.4219
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Figure 15. Ventilation conditions of corridors with different widths in the direction of −45 degrees.

It can be seen from Figure 16 and Table 3 that the width of the corridor with a dominant
wind direction of −90 degrees gradually increased from 30 to 70 m, and the degree of
corridors (given lengths: 0.5, 1, 1.5, and 2 km) ventilation gradually increased, but when
the width increased to 70 m, the degree of ventilation remained relatively stable.
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Corridor Width
= 100 m

Corridor Width
= 120 m
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In order to further verify the effectiveness, that is, the existence of the maximum
effective corridor width, this study tested the different widths of the 1000 m corridors with
three dominant wind directions in winter as shown in Figure 17.
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It can be seen from Figure 17 and Table 4 that when the wind direction is−67.5 degrees,
the maximum effective corridor width is 70 m; when the wind direction is −45 degrees,
the maximum effective corridor width is 100 m; when the wind direction is −90 degrees,
the maximum effective corridor width is 70 m. Thus, it was verified again that there is a
maximum effective ventilation corridor width.

Table 4. Verification of the automatic mining of ventilation corridors.

Corridor Width
= 30 m

Corridor Width
= 50 m

Corridor Width
= 70 m

Corridor Width
= 100 m

Corridor Width
= 150 m

Wind direction = −67.5◦ 0.5853 0.7015 0.7727 0.7701 0.7295

Wind direction = −45◦ 0.6632 0.7569 0.8289 0.7900 0.7879

Wind direction = −90◦ 0.3516 0.5451 0.6326 0.5967 0.5920

5.3. Results of Ventilation Corridors

We can choose the angle of the dominant wind direction in winter and take the
minimum length of 500 m as the standard, then extract the ventilation corridors with
widths of 200, 70, and 30 m, respectively. The results of mining with a width of 200 m
(Figure 18) show that the program automatically excavated five ventilation corridors with
a width of 200 m and above, which can be used as a reference for the first-level air ducts of
the urban ventilation system. The northwest wind prevails in Deqing during winter. The
first-level ventilation corridors follow the prevailing wind direction to introduce natural
wind into urban areas. The space carriers of No. 1, No. 3, and No. 4 wind passages are
railway lines and the main road of the city. The No. 2 air duct runs from the high-tech
industrial development zone to the county people’s government and city parks to low-
density residential land, and the No. 5 air duct enters the city along the urban road after
the industrial park land was used.
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The 70 m wide mining results are shown in Figure 18. Three new 70 m width ventila-
tion corridors that introduce natural wind can be used as a reference for the secondary air
ducts of the urban ventilation system. At the same time, several primary air ducts routes
will be extended, and secondary air ducts are mostly urban roads relying on space carriers.

Based on Figures 18 and 19, there are still potential tertiary wind corridors in dense
areas in the southern part of the city that can be excavated at a smaller scale (30 m wide).
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After calculating the FAD and running the control system program, three new 30m-width
corridors dependent on urban roads were excavated in these dense areas, as shown in
Figure 20.
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Figure 20. Results of the automatic mining of a 30 m width and 500 m corridor (DSM + corridor).

We invited three experts, who are engaged in urban planning research, to indepen-
dently draw three-level corridors after analyzing the high-definition image map of Deqing
city and fieldwork. After comparison, the same average ratios of the three-level corridors
drawn by the experts and the corridors automatically extracted in this paper were 93.1%,
91.6%, and 90.25%, respectively.

6. Conclusions

Aimed at existing potential urban ventilation corridor problems, this paper extracted
a multi-view oblique image DSM map and DEM map based on HD data obtained from
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aeromagnetic oblique photography. In addition, this paper used building elevation infor-
mation, which was formed by the DSM–DEM difference map, to calculate the dominant
wind direction projection to obtain a FAD map. Then, image processing techniques, such
as binarization and template matching, were used to excavate urban ventilation corridors
of different widths and lengths to provide technical support for scientific and reasonable
planning for the city. Experiments in Deqing County, Zhejiang Province, China, proved
that the method in this paper is effective. In future research, we will further utilize the
roughness and other information on the urban wind environment to excavate the urban
ventilation corridors more comprehensively and provide virtual reality technical support
for precise microclimate environment planning and design of the city.
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