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Abstract

Moloney murine leukemia virus (MLV)-derived gamma-retroviral vectors integrate preferentially near transcriptional
regulatory regions in the human genome, and are associated with a significant risk of insertional gene deregulation. Self-
inactivating (SIN) vectors carry a deletion of the U3 enhancer and promoter in the long terminal repeat (LTR), and show
reduced genotoxicity in pre-clinical assays. We report a high-definition analysis of the integration preferences of a SIN MLV
vector compared to a wild-type-LTR MLV vector in the genome of CD34+ human hematopoietic stem/progenitor cells
(HSPCs). We sequenced 13,011 unique SIN-MLV integration sites and compared them to 32,574 previously generated MLV
sites in human HSPCs. The SIN-MLV vector recapitulates the integration pattern observed for MLV, with the characteristic
clustering of integrations around enhancer and promoter regions associated to H3K4me3 and H3K4me1 histone
modifications, specialized chromatin configurations (presence of the H2A.Z histone variant) and binding of RNA Pol II. SIN-
MLV and MLV integration clusters and hot spots overlap in most cases and are generated at a comparable frequency,
indicating that the reduced genotoxicity of SIN-MLV vectors in hematopoietic cells is not due to a modified integration
profile.
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Introduction

Retroviral integration is a non-random process, whereby the

viral RNA genome, reverse transcribed into double-stranded DNA

and assembled in pre-integration complexes (PICs), associates with

the host cell chromatin and integrates through the activity of the

viral integrase [1]. Large-scale surveys of retroviral integration in

murine and human cells uncovered some genomic features

systematically and specifically associated with retroviral insertions,

and revealed that each retrovirus type has a unique, characteristic

pattern of integration within mammalian genomes [2]. Target site

selection depends on both viral and cellular determinants, poorly

defined for most retroviruses. The Moloney murine leukemia virus

(MLV) and its derived vectors integrate preferentially in

transcriptionally active promoters and regulatory regions [2,3,4],

while the simian (SIV) and human immunodeficiency virus (HIV)

and their derived lentiviral vectors target gene-dense regions and

the transcribed portion of expressed genes, away from regulatory

elements [2,4,5].

Recent clinical studies have shown that transplantation of stem

cells genetically modified by retroviral vectors may cure severe

genetic diseases such as immunodeficiencies [6,7,8], skin adhesion

defects [9] and lysosomal storage disorders [10]. Some of these

studies showed also the genotoxic consequences of retroviral gene

transfer technology. Insertional activation of proto-oncogenes by

MLV-derived vectors caused T-cell lymphoproliferative disorders

in patients undergoing gene therapy for X-linked severe combined

immunodeficiency [11,12] and Wiskott-Aldrich syndrome [13],

and pre-malignant expansion of myeloid progenitors in patients

treated for chronic granulomatous disease (CGD) [14,15]. The

strong transcriptional enhancers present in the MLV LTR played

a major role in deregulating gene expression. Pre-clinical studies

showed that enhancer-less, self-inactivating (SIN) MLV-derived

vectors are less prone to insertional oncogenesis and cell

immortalization than their full-LTR counterparts, with a geno-

toxic profile closer to that of SIN-HIV vectors [16,17,18,19]. The

MLV U3 enhancer contains repeated binding sites for cellular

transcription factors (TF), which may play a role in tethering

retroviral pre-integration complexes to transcriptionally active

regulatory regions and contribute to the MLV genotoxic

characteristics [20].

In this study, we have analyzed the integration profiles of a

MLV and SIN MLV vectors in the genome of a clinically relevant

target cell population, cord blood-derived CD34+ hematopoietic

stem/progenitor cells (HSPCs), by ligation-mediated PCR (LM-

PCR) and high-throughput sequencing. We show that SIN-MLV
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and MLV vectors have very similar integration preferences, with

the typical clustering around enhancer and promoter regions

associated to specific histone modifications, specialized chromatin

configurations and binding of RNA Pol II. Strikingly, SIN-MLV

and MLV integration clusters and hot spots overlap in most cases

and are generated at a similar frequency, indicating that the U3

enhancer has no role in targeting MLV PICs to the genome, at

least in hematopoietic cells.

Results

MLV and SIN-MLV vectors share the same integration
profile in the genome of human HSPCs

To generate a high-definition integration profile of SIN MLV

integrations in human HSPCs, we transduced umbilical cord

blood-derived CD34+ cells with a previously described SIN-MLV

vector carrying a GFP expression cassette under the control of the

human elongation factor 1a (EFS) promoter [16,21]. Cells were

transduced at 40 to 60% efficiency, and were selected for GFP

expression by cell sorting 10 days after infection, to dilute

unintegrated vectors. Vector-genome junctions were amplified

from genomic DNA by ligation-mediated (LM)-PCR and

pyrosequenced as previously described [4]. Raw sequences

(available at the NCBI Sequence Read Archive with the accession

number SRA061405) were processed by a previously described

bioinformatic pipeline [4] and mapped on the University of

California at Santa Cruz (UCSC) hg19 release of the human

genome (http://genome.ucsc.edu), to obtain 13,011 unique

insertion sites. Two previously generated datasets of full-LTR

MLV vector integrations (32,574) and random sites (40,000)

normalized for a number of parameters [4] were re-annotated on

the hg19 release of the human genome and used for comparison.

To identify differences in the integration preferences of MLV

and SIN-MLV in HSPCs, we first analyzed the relationship

between integration sites and Known Genes (UCSC definition) in

the human genome: integration were annotated as TSS-proximal

when occurring in an interval of 62.5 kb from the TSS of any

Known Gene, intragenic when occurring inside a Known Gene

.2.5 kb from the TSS, and intergenic in all other cases. Intergenic

and intragenic integrations were ,40% for both MLV and SIN-

MLV, while TSS-proximal integrations were 22.9% and 23.8%

respectively (P.0.1 for all comparisons) (Table 1). Plotting the

relative distance of all integration sites in an interval of 650 kb

from any TSS showed two virtually overlapping distributions with

the characteristic enrichment in the 62.5 kb interval and, at 50-bp

resolution, the characteristic drop in frequency in close proximity

(60.2 kb) of a TSS (Figure 1). Similarly, integrations were

enriched around annotated CpG islands (UCSC track) for both

MLV and SIN-MLV vectors (12.8 and 12.4% respectively,

P.0.1), and showed again overlapping, bimodal distributions in

the 62.5 kb interval around the island midpoint (Figure S1A).

Finally, the moderate enrichment in the frequency of integration

around mammalian, evolutionarily conserved non-coding se-

quences (CNC) [22] was the same for both vectors (8.0 and

7.7% respectively, P.0.1), and showed a virtually identical

distribution at 62.5 kb around the feature midpoint (Figure
S1B). In all cases, there were significant differences between the

distributions of the two MLV vectors and that of the random

controls (P,10215).

We previously reported that MLV integrations are strongly

associated with histone modifications marking transcriptionally

active promoters and enhancers, with the specialized H2A.Z

histone variant, and with binding sites for RNA Pol II and

transcription factors in both HSCs and T cells [4,20,23]. Taking

advantage of published ChIP-Seq datasets on epigenetic features

in the chromatin of human CD34+ HSPCs [24], we analyzed the

association of MLV and SIN-MLV integrations with histone

modifications marking active enhancers and promoters

(H3K4me1, H3K4me3) and heterochromatin (H3K27me3),

H2A.Z and binding of Pol II. In all cases, there was no obvious

difference between the two vectors: we observed a strong

association with H3K4me1, H3K4me3, Pol II and H2A.Z, and

no correlation with H3K27me3 (Figure 1C and Figure S1C).

All together, these data indicate that the absence of the U3

region of the LTR of the SIN-MLV vector causes no significant

change in the integration preferences of MLV in the genome of

human HSPCs.

MLV and SIN-MLV vectors integrate in the same hot spots
in the HSPC genome

MLV and SIN-MLV integrations showed the same non-

random, highly clustered distribution in the human genome, with

integration hot and cold spots. Integration clusters were statisti-

cally defined as described [4], obtaining a numerosity-adjusted

threshold for cluster definition of 3 integrations within 31,525 bp

for SIN-MLV and 12,587 bp for MLV at a P-value,0.01. We

identified 1,415 clusters containing 56.0% (7,318) of the total SIN-

MLV integration sites, an overall clustering highly comparable

(P.0.1) to that showed by the MLV vector (3,497 clusters

containing 65.3% of the integrations). Most of the SIN-MLV

clusters (75.9%) overlapped for at least 1 bp with MLV clusters,

and up to 69% overlapped for at least 1,000 bp. The non-

overlapping clusters contained only 3 integrations and mapped less

than 200-bp apart in the MLV and SIN-MLV datasets.

We then looked at the integration clusters of both vectors in a

number of individual loci characteristically hit at high frequency

by MLV integration. Most of the loci highly targeted by MLV

were targeted also by SIN-MLV. Whenever the numerosity was

sufficient, we observed a striking overlap between the integration

hot spots of the two vectors within the same loci. As examples,

SIN-MLV integrations faithfully reproduced the MLV integration

patterns in the LMO2, EVI2A/B, RUNX1, RUNX2, ZNF217-

BCAS1, CD34, ELF1 and NFE2 loci, which were targeted at the

same overall frequency and at the same hot spots within each locus

(Figure 2 and Figure S2). We also found SIN-MLV integrations

mapping very closely to the MLV integrations in two hot spots

(MECOM and PRDM16) observed in the CGD and WAS clinical

trials [13,14,15] (Figure S2).

Discussion

Retroviruses select their target integration sites by tethering

their PICs to the host cell chromatin through protein-protein

interactions that appear to be specific for each retrovirus type [2].

The chromatin component LEDGF/p75 has a major role in

tethering HIV PICs to the body of active transcription units,

associated with H4K12ac, H2BK5me1, H3K27me1, H3K36me3,

and H4K20me1 histone modifications [5,25]. LEDGF/p75 is

directly bound by the HIV integrase [26], a major viral

determinant of target site selection [27]. Much less is known for

the MLV PICs: regions preferred by MLV are marked by

acetylations of histones H2A, H2B, H3 and H4, methylations of

H3 (H3K4me1, H3K4me2, H3K4me3), and binding of Pol II,

CTCF, histone acetyl transferases (p300 and CBP) and H2A.Z

[4,23], a histone variant enriched at targets of the Polycomb

complex and marking elements involved in the regulation of cell

commitment and differentiation [28]. Most of these associations

are statistically significant for all MLV integrations, independently

MLV and SIN-MLV Integration Profile
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from their location with respect to promoters and in all analyzed

cell types, possibly reflecting the engagements of PICs by basal

components of the enhancer-binding and/or RNA Pol II

transcriptional machinery. A yeast two-hybrid analysis of proteins

potentially interacting with the MLV integrase provided biochem-

ical evidence in this direction [29].

The peculiar characteristics of MLV integration, coupled with

the strong transcriptional enhancer activity of the LTR U3 region,

explain the high risk of insertional gene activation and genotoxicity

observed in pre-clinical [19,30,31,32] as well as clinical

[11,12,13,14,15] studies. SIN vectors have been developed to

reduce the genotoxic potential of MLV vectors, and have indeed

shown a reduced cell immortalization and tumorigenic activity by

sensitive pre-clinical assays [18,19,33]. In this study, we compared

the integration preferences of a SIN and a traditional MLV vector

in human CD34+ HSPCs, the most used target cell in clinical

applications of retroviral transgenesis. By an LM-PCR coupled to

pyrosequencing approach we show that the lack of the U3

enhancer/promoter in the LTR has no impact on the integration

pattern of MLV in human HSPCs. Indeed, the SIN-MLV

integration map reproduced with remarkable precision that of

the unmodified MLV, including the association with TSSs, CpG

islands, CNCs and representative epigenetic marks of active and

highly regulated enhancers and promoters. SIN-MLV and MLV

integrations cluster into hot spots at approximately the same

frequency, and generate almost overlapping integration maps at

the level of highly targeted loci, including the gene involved in

most of the severe adverse events observed in clinical trials, i.e.,

LMO2 [11,12]. On the basis of the integration pattern, a SIN-

MLV vector therefore maintains the same genotoxic potential of a

traditional MLV vector. Insertion of either provirus has a high

chance of altering gene regulation by disrupting the physical

continuity of enhancers and promoters, and by altering the

chromatin configuration induced by the binding of transcription

factors and the basal transcriptional machinery (the enhanceo-

some). This type of effect is not expected to differ between SIN-

MLV and MLV vectors. On the contrary, the lack of the two

copies of the U3 enhancer may significantly reduce the dominant

activity in overcoming gene regulation typical of oncogenic

retroviruses in vivo [19], although studies based on in vitro

immortalization of bone marrow-derived cells provided conflicting

evidence on this point [18,34]. The choice of a cellular, possibly

restricted enhancer to drive the internal transgene cassette may

therefore overcome the LTR-specific component of the MLV

genotoxicity. Indeed, most of the gene deregulation and genotoxic

activity of SIN vectors appears to be due to the characteristics of

the enhancer driving transgene expression more than by the SIN

design per se [16,17,18,19].

Genotoxicity of retroviral vectors has many components,

including the vector design, the nature of the target cell and the

genetic background of the patient, all ultimately affecting the risk

of a specific gene therapy approach [35]. Target site selection is

just one of these components. Based on current knowledge, SIN

lentiviral vectors appear to combine an integration profile that

does not target regulatory elements with the lack of strong viral

enhancers. SIN-MLV vectors share with SIN lentiviral vectors

only the latter component. On the other hand, the lower

propensity to integrate within transcribed regions may reduce

the recently emerged post-transcriptional component of insertional

gene deregulation [23,36,37,38,39,40]. For SIN-MLV vectors, the

designs of the transgene expression cassette, and particularly the

choice of its transcriptional regulatory elements, appear to be the

most relevant determinants of their biosafety characteristics.

Materials and Methods

Vectors and cells
Human CD34+ HSPCs were purified form umbilical cord

blood, pre-stimulated for 48 hours in serum-free Iscove modified

Dulbecco medium supplemented with 20% FCS, 20 ng/ml

human thrombopoietin, 100 ng/ml Flt-3 ligand, 20 ng/ml inter-

leukin-6, and 100 ng/ml stem cell factor, as previously described

[3]. HSPCs were transduced with the SIN-MLV vector

pSRS11.EFS.GFP.pre, expressing GFP under the control of the

elongation factor 1a promoter, pseudotyped in an amphotropic

envelope by three-plasmid transfection in 293 cells, as previously

described [16,21]. Cells were infected by 3 rounds of spinoculation

(1,500 rpm for 45 min) in the presence of 4 mg/ml polybrene.

Transduction efficiency was evaluated by cytofluorimetric analysis

of GFP expression 48 hrs after infection. All human studies were

approved by the San Raffaele Scientific Institute Ethical Com-

mittee. Written informed consent was received from participants

prior to inclusion in the study.

Figure 1. Genomic distribution and association with histone modifications of MLV and SIN-MLV integrations in human HSPCs.
Distribution of the distance of SIN-MLV (green bars) and MLV (red bars) integration sites from the TSS of targeted genes at 2,500 bp (a) or 50 bp (b)
resolution. The percentage of genes targeted at each position is plotted on the y axis. The number of plotted sites is higher than the actual number
of mapped integrations sites, since each site may relate to more than one gene. The black line indicates the distribution of random control sites. (c)
The distribution of H3K4me1 (top panels) and H3K4me3 (lower panels) epigenetic marks in a 10-kb window around vector integration sites (IS) is
shown for MLV integrations (left panels) or SIN-MLV integrations (right panels). The mean density of tags (tag/50 bp) of the reference dataset (i.e.
each chromatin feature) is plotted on the y axis. The scale of the graph is shown at the top left of each panel.
doi:10.1371/journal.pone.0055721.g001

Table 1. Distribution of SIN-MLV and MLV integrations in the genome of human HSPCs.

Intergenic (%) TSS-proximal (%) Intragenic (%) CpG islands (%) CNCs (%) Total hits

SIN-MLV 38.0 23.8 38.1 12.4 7.7 13,011

MLV 38.2 22.9 38.8 12.8 8.0 32,574

Random 59.1 3.0 37.8 1.2 5.4 40,000

Percentage of intergenic, TSS-proximal or intragenic integration sites in the SIN-MLV, MLV and random control site datasets, together with the percentage of sites at a
distance of 61,000 bp from at least one CpG island or conserved non coding region (CNC).
doi:10.1371/journal.pone.0055721.t001
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Figure 2. MLV and SIN-MLV integration sites and clusters in CD34+ HSPC-specific loci. Distribution of MLV (red) and SIN-MLV (green)
integration clusters (horizontal solid bars) and integrations (vertical marks) in the LMO2, RUNX1, EVI2A/B, and ZNF217-BCAS1 loci as displayed by the
UCSC Genome Browser. The base position feature at the top (scale bar and chromosome number) identifies the genomic coordinates of the
displayed region.
doi:10.1371/journal.pone.0055721.g002
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Amplification, sequencing, and analysis of retroviral
integration sites

Genomic DNA was extracted from a pool of 26106 CD34+/

GFP+ cells enriched by fluorescence-activated cell sorting, after a

brief period in culture to dilute unintegrated vectors. 39-LTR

vector-genome junctions were amplified by LM-PCR adapted to

the GS-FLX Genome Sequencer (Roche/454 Life Sciences)

pyrosequencing platform, as previously described [3,4]. Raw

sequence reads were processed by an automated bioinformatic

pipeline that eliminated small and redundant sequences [4] and

mapped on the UCSC hg19 release of the human genome. All

UCSC Known Genes having their TSS at 650 kb from an

integration site were annotated as targets. Genomic features were

annotated when their genomic coordinates overlapped for $1

nucleotide with a 650-kb interval around each integration site.

We used UCSC tracks for both cytosine-phosphate-guanosine

(CpG) islands and conserved TFBSs. The genomic coordinates of

82,335 mammalian conserved non-coding sequences (CNCs) were

previously described [22]. For the association of the integrations

with epigenetic marks, we re-annotated published ChIP-Seq data

[24] in the UCSC hg19 release of the human genome, and

analyzed the distribution of histone modifications (H3K4me1,

H3K4me3, H3K27me3) H2A.Z and Pol II binding sites around

the integrations, using the seqMINER platform [41]. Previously

generated MLV integrations and random control sequences

datasets [4] were also re-annotated on the UCSC hg19 genome.

For all pairwise comparisons we applied a 2-sided Fisher’s exact

test. The threshold for statistical significance was set at a P

value,0.05.

Supporting Information

Figure S1 Association between MLV and SIN-MLV integration

sites and CpG islands, CNCs, PolII and histone modifications.

Distribution of the distance of SIN-MLV (green bars) and MLV wt

(red bars) integrations from the midpoint of CpG islands (A) or

CNCs (B) in a 20 kb window. In the y axis is plotted the

percentage of the total number of CpG islands or CNCs located at

650 kb distance from the integrations. The black line indicates

the distribution of random control sites. (C) The distribution of

epigenetic marks in a 10 kb window around vector integration

sites (IS) shown for H3K27me3 (top panels), H2A.Z (middle

panels), PolII (lower panels) with respect to MLV integrations (left

panels) or SIN-MLV integrations (right panels). See legend of

Figure 1C for explanation of the graphs.

(PDF)

Figure S2 MLV and SIN-MLV integration sites and clusters in

CD34+ HSPC-specific loci. Distribution of MLV (red) and SIN-

MLV (green) integration clusters (horizontal solid bars) and

integrations (vertical marks) in the CD34, ELF1, NFE2, and

RUNX2, MECOM and PRDM16 loci as displayed by the UCSC

Genome Browser. The base position feature at the top (scale bar

and chromosome number) identifies the genomic coordinates of

the displayed region.

(PDF)
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