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Computerized tumor-infiltrating lymphocytes
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Bingjiang Qiu,1,2,3 Lixu Yan,6 Bingbing Li,7 Zeyan Xu,1,3,5 Zhizhen Wang,4 Ke Zhao,1,2,3 Zhenbing Liu,4

Changhong Liang,1,3 Xin Chen,8,* Zhenhui Li,2,3,9,* Yanfen Cui,1,2,3,10,* Cheng Lu,1,3,* and Zaiyi Liu1,3,12,*

SUMMARY

A high abundance of tumor-infiltrating lymphocytes (TILs) has a positive impact
on the prognosis of patients with lung adenocarcinoma (LUAD). We aimed to
develop and validate an artificial intelligence-driven pathological scoring system
for assessing TILs on H&E-stained whole-slide images of LUAD. Deep learning-
based methods were applied to calculate the densities of lymphocytes in cancer
epithelium (DLCE) and cancer stroma (DLCS), and a risk score (WELL score) was
built through linear weighting of DLCE and DLCS. Association between WELL
score and patient outcome was explored in 793 patients with stage I-III LUAD
in four cohorts. WELL score was an independent prognostic factor for overall sur-
vival and disease-free survival in the discovery cohort and validation cohorts. The
prognostic prediction model-integrated WELL score demonstrated better
discrimination performance than the clinicopathologic model in the four cohorts.
This artificial intelligence-based workflow and scoring system could promote risk
stratification for patients with resectable LUAD.

INTRODUCTION

Lung cancer is one of themost common cancers and the leading cause of cancer-related death worldwide.1

Among all patients with lung cancer, lung adenocarcinoma (LUAD) accounts for the most significant

proportion, and its incidence rate continues to rise.2 The American Joint Commission on Cancer (AJCC)

tumor-node-metastasis (TNM) staging system has played a critical role in routine prediction and patient

risk stratification.3 Although the TNM stage, integrated with clinical risk factors, provides valuable prog-

nostic information and improves the risk stratification ability of patients to a certain extent,4,5 the effect

is not satisfiable at present and there is an urgent need for new biomarkers. Recently, evaluation of the tu-

mor immune microenvironment (TIME) in solid tumors has been demonstrated as a complementary prog-

nostic biomarker for TNM stage.6

The development, metastasis, and prognosis of solid tumors are closely associated with the status of

TIME,7–9 which is influenced by the type, abundance, and location of tumor-infiltrating lymphocytes

(TILs). Several studies have shown that TILs are associated with the prognosis of many tumor diseases,

such as breast cancer,10 colorectal cancer,11 and oropharyngeal cancer.12 In the context of lung cancer,

high TILs and appropriate spatial architecture appeared to have a protective effect and had favorable out-

comes for patients with LUAD.13,14 Immunohistochemical (IHC) and multiplex immunofluorescence (mIF)

are the popular methods to depict the landscape of TILs subpopulation in patients with LUAD.4,15,16

Our group has recently proposed an immune cell biomarker named I-score, which integrated the density

of CD3+ and CD8+ T cells in the tumor region of the IHC pathological images in patients with non-small cell

lung cancer (NSCLC).4 Experiments demonstrated that the high I-score was associated with superior dis-

ease-free survival (DFS) compared with the low I-score. However, Federico et al. demonstrated that a

high number of CD3+ T cells in the tumor was not associated with longer recurrence-free survival that

was evaluated by mIF images.16 This is mainly due to the inconsistency or opposite results assessment

via IHC images which produced with uncontrollable factors (e.g., antibody selection, experimental
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operation process, and different automated immunohistochemical staining instruments) across different

laboratories. Moreover, mIF imaging is challenging to be embedded into the current clinical practice

because it is not a conventional examination compared with Hematoxylin and Eosin (H&E)-stained pathol-

ogy examination, and the cost is high.17

H&E-stained pathological sections, which are routinely used by pathologists for diagnosis with low cost

and are easy to acquire, contain rich TIME information at the tissue and cell levels. It might be an alternative

solution to assess TIME fromH&E-stained images when IHC ormIF examinations are unavailable. Brambilla

et al.13 claimed that intense lymphocytic infiltration was an independent prognostic factor in patients with

LUAD through manual evaluation of the H&E-stained section. However, manual TILs quantification of hot-

spots or regions of interest (ROI) under the microscope is time consuming and laborious, with poor consis-

tency.18 Restricted by computer hardware, the early automatic quantitative analysis of digital pathology

images mainly focused on tissue microarrays (TMAs), which was proved to be a cost-effective method

for exploring TILs-based image biomarkers in pathological practice.19,20 Nevertheless, the TMAs-based

method is challenging to obtain a complete picture of a biological sample, often accompanied by selection

bias. With the development of high-speed scanner technology, pathological sections could be quickly

imaged into whole-slide images (WSIs) with high spatial resolution. This will provide sufficient fuel for

computational pathology and make it possible to automatically quantify the TILs in WSIs. At present, there

are few artificial intelligence-based workflows21 to automatically quantify and locate TILs in H&E-stained

WSIs, and the exploration of the prognostic value of patients with LUAD is still insufficient.

In this study, a deep learning-driven digital image biomarker (named WELL score), based on the density

and location of TILs, was proposed and the prognostic value of this biomarker was explored in patients

with LUAD in four independent cohorts. We hypothesized that the WELL score was an independent prog-

nostic factor and could improve the accuracy in predicting overall survival (OS) and DFS, along with clini-

copathologic characteristics, in resectable LUAD.

RESULTS

Baseline characteristics of cohorts

The details of the clinicopathologic characteristics of the discovery and validation cohorts are shown in

Table 1. There were statistically significant differences in all of the clinicopathologic characteristics (age

at surgery, sex, smoking status, pT stage, pN stage, TNM stage, tumor site, and adjuvant chemotherapy)

across the four cohorts (p < 0.05).

Prognostic ability of the WELL score

Kaplan-Meier (K-M) survival curves showed that OS was superior for the low-risk group compared with

the high-risk group (D1, hazard ratio [HR], 2.68; 95% confidence interval [CI], 1.56–4.62; p < 0.001; V1,

HR, 3.05; 95% CI, 1.36–6.83; p = 0.004; V2, HR, 2.39; 95% CI, 0.98–5.84; p = 0.049; V3, HR, 1.99; 95% CI,

0.96–4.13; p = 0.058; Figure 2). In addition, we built a WELL score in terms of DFS and K-M survival curves,

which showed that the low-risk group survived better than the high-risk group (D1, HR, 2.07; 95% CI,

1.42–3.01; p < 0.001; V1, HR, 1.54; 95% CI, 0.90–2.62; p = 0.11; V2, HR, 3.80; 95% CI, 1.61–8.96; p =

0.001; Figure 3). In subgroup analyses, the patients were pooled together to increase the discovery power.

We found that theWELL score was associated with significantly better OS when stratified by age at surgery,

sex, smoking status, and TNM stage (p < 0.05), and this trend (p = 0.210) was demonstrated in patients that

received adjuvant chemotherapy (Figure S6).

The univariable and multivariable Cox regression analysis results for OS in different cohorts are shown in

Table 2. The risk factors (WELL score and clinicopathologic characteristics) that demonstrated statistical

significance at p < 0.05 in the univariable analysis (WELL score, age at surgery, sex, smoking status, and

TNM stage) were included in the multivariable analysis. After adjusting for relevant clinical parameters,

themultivariable Cox regression analysis revealed that theWELL score was an independent prognostic fac-

tor for OS in D1 and V1 (D1, HR, 1.95; 95% CI, 1.12–3.41; p = 0.019; V1, HR, 3.65; 95% CI, 1.61–8.27; p =

0.002). This trend could be found in other two validation cohorts ([V2, HR, 2.06; 95% CI, 0.83–5.07; p =

0.118] and [V3, HR, 1.91; 95% CI, 0.91–3.99; p = 0.085]) (Table 2). Similarly, the WELL score was also an in-

dependent prognostic factor for DFS in D1 and V2 (D1, HR, 1.68; 95% CI, 1.14–2.47; p = 0.008; V2, HR, 3.66;

95% CI, 1.53–8.76; p = 0.004). This trend could be found in another validation cohort (V1, HR, 1.58; 95% CI,

0.92–2.71; p = 0.097) (Table S1).
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Development and validation of the prognostic model

Because age at surgery, TNM stage, andWELL score were identified as independent factors for OS inmulti-

variable Cox regression analysis in the discovery cohort, we developed a predictive model (full model) inte-

grating the above independent factors. We further compared the performance of the full model with four

other models that included the TNM stage model, the WELL score model, the TNM stage & WELL score

combined (TNM_WELL) model, and the TNM stage & age at surgery combined (clinicopathologic) model.

The baseline hazard, coding, and regression coefficients of each model are summarized in Table S2.

The model performance is presented in Table 3. The full model showed better discrimination performance

(evaluated by C-index and iAUC) and better calibration ability (evaluated by AIC) than the clinicopathologic

Table 1. Summary of clinicopathologic characteristics of all four cohorts

D1 V1 V2 V3 p value

Age at surgery

(years, median [IQR])

62.0 (55.0, 69.0) 62.0 (57.0, 66.5) 54.0 (48.0, 62.5) 65.0 (58.0, 72.0) <0.001a

<65 181 (65.6%) 97 (69.8%) 98 (85.2%) 136 (51.7%) <0.001b

R65 95 (34.4%) 42 (30.2%) 17 (14.8%) 127 (48.3%)

Sex 0.009b

Male 141 (51.1%) 86 (61.9%) 58 (50.4%) 116 (44.1%)

Female 135 (48.9%) 53 (38.1%) 57 (49.6%) 147 (55.9%)

Smoking status <0.001b

Never 208 (75.4%) 65 (46.8%) 74 (64.3%) 37 (14.1%)

Former/current 68 (24.6%) 74 (53.2%) 41 (35.7%) 226 (85.9%)

pT stage <0.001b

T1 124 (44.9%) 42 (30.2%) 81 (70.4%) 108 (41.1%)

T2 130 (47.1%) 60 (43.2%) 21 (18.3%) 132 (50.2%)

T3 19 (6.9%) 24 (17.3%) 6 (5.2%) 20 (7.6%)

T4 3 (1.1%) 13 (9.3%) 7 (6.1%) 3 (1.1%)

pN stage <0.001b

N0 218 (79.0%) 80 (57.6%) 83 (72.2%) 182 (69.2%)

N1 18 (6.5%) 19 (13.7%) 13 (11.3%) 52 (19.8%)

N2 40 (14.5%) 40 (28.7%) 19 (16.5%) 29 (11.0%)

TNM stage <0.001b

I 198 (71.7%) 50 (36.0%) 70 (60.9%) 157 (59.7%)

II 32 (11.6%) 33 (23.7%) 17 (14.8%) 72 (27.4%)

III 46 (16.7%) 56 (40.3%) 28 (24.3%) 34 (12.9%)

Tumor site 0.033b

Upper/middle lobe 183 (66.3%) 76 (54.7%) 65 (56.5%) 170 (64.6%)

Lower lobe 93 (33.7%) 63 (45.3%) 50 (43.5%) 90 (34.2%)

Unknown 0 (0%) 0 (0%) 0 (0%) 3 (1.1%)

Adjuvant chemotherapy <0.001b

No 211 (76.4%) 63 (45.3%) 56 (48.7%) 164 (62.4%)

Yes 65 (23.6%) 76 (54.7%) 59 (51.3%) 99 (37.6%)

Follow-up (month, median [95% CI])c 85.0 (82.4–88.6) 36.9 (36.4–43.0) 60.8 (57.8–65.1) 29.6 (25.8–35.3)

No. of OS events 62 (22.5%) 46 (33.1%) 30 (26.1%) 90 (34.2%)

No. of DFS events 116 (42.0%) 67 (48.2%) 48 (41.7%) 113 (43.0%)

IQR, interquartile range; CI, confidence interval. Data in parentheses are IQR, percentages, or 95% confidence intervals.
ap values were determined by Kruskal-Wallis rank-sum test.
bp values were determined by the Pearson’s Chi-square test or Fisher’s exact test, where appropriate.
cmedian follow-up time was estimated by the reverse Kaplan-Meier method.

ll
OPEN ACCESS

iScience 25, 105605, December 22, 2022 3

iScience
Article



model in the four cohorts. The TNM_WELL model showed better discrimination and calibration perfor-

mance than the TNM stage model in the four cohorts. Integrating the WELL score into the TNM stage

model improved the prediction for OS (likelihood ratio test, c2 = 8.269, p = 0.004); also, integrating the

WELL score into the clinicopathologic model improved the prediction for OS (likelihood ratio test, c2 =

6.967, p = 0.008). The receiver operating characteristic curve (ROC, t = 60 months) and resulting time-

dependent AUC plotted over time are presented in Figure S7. The full model showed higher AUC across

most time points compared to the reference model.

Visualization of TILs and assessment of the immune cell phenotypes

Visual examples of high-risk and low-risk groups identified by the WELL score were shown in Figure 4. We

could observe that densities of TILs in the cancer epithelium and cancer stroma regions of low-risk patients

in the discovery and validation cohorts were much higher than those of high-risk patients. CIBERSORT al-

gorithm22,23 was employed to calculate the relative level of 22 immune cell phenotypes using RNA tran-

scripts for the patients in V3 (n = 263). 25 samples were excluded because of p > 0.05 or lack of immune

infiltration. Among the 22 immune cells, the difference in the abundance of 7 immune cells between the

high-risk and low-risk groups was statistically significant (p < 0.05, Figure 5). The fractions of plasma cells,

A B C

DEF

Figure 1. The overall workflow of the study

(A) The HE-stained glass sections were scanned into whole-slide images.

(B) Semiautomated tumor region segmentation. A transfer learning framework was deployed for tumor region segmentation and segmentation masks of the

tumor region were checked by two pathologists.

(C) Fully automated tissue and nuclei segmentation. To accurately obtain the boundary of the tissue region, our proposed semantic segmentation method

was proposed to divide the tumor region into cancer epithelium, cancer stroma, lymphoid aggregate, and necrosis regions on WSIs under 103

magnification. Hover-Net was deployed to segment and classify the nuclei into tumor nuclei, stromal nuclei, lymphocytes, and other nuclei in the tumor

region of WSI at the maximum magnification.

(D) TILs in cancer epithelium and cancer stroma. The densities of lymphocytes in cancer epithelium (DLCE) and cancer stroma (DLCS) were calculated.

(E) Risk score and model development. A risk score (named WELL score) was built through linear weighting of DLCE score and DLCS score. A discovery

cohort was used to optimize WELL scores and the median value of WELL scores in the discovery cohort was selected as the cutoff to stratify patients into

high- and low-risk groups. Univariable and multivariable Cox regression analyses were performed to evaluate the association of WELL score and clinical risk

factors with OS and DFS.

(F) Model validation. The other two cohorts and TCGA were used to validate the performance of the model.
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CD8+ T cells, and activated CD4+ memory T cells in the low-risk group were higher than those of the high-

risk group (p < 0.05). The fractions of CD4+memory resting T cells, macrophagesM2, andmast cells resting

in the low-risk group were lower than those of the high-risk group (p < 0.05).

A B

DC

Figure 2. Kaplan-Meier curves of patients in four cohorts in terms of OS

Kaplan-Meier curves of patients stratified by WELL score in the discovery cohort D1 (A) and three validation cohorts V1,

V2, and V3 (B, C, and D) in terms of OS.

A B

C

Figure 3. Kaplan-Meier curves of patients in three cohorts in terms of DFS

Kaplan-Meier curves of patients stratified by WELL score in the discovery cohort D1 (A) and two validation cohorts V1 and

V2 (B and C) in terms of DFS.
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DISCUSSION

In this study, we developed a digital biomarker namedWELL score, which integrated the densities of TILs in

cancer epithelium and cancer stroma region of H&E-stained WSIs. The prognostic analysis found that the

WELL score was an independent prognostic factor in patients with resectable LUAD. Compared with a high

WELL score, a lowWELL score was associated with significantly superior OS and DFS in patients with LUAD.

To our knowledge, this is the first image biomarker based on the artificial intelligence-driven automatic

quantification of H&E-stained WSIs that focus on the prognosis analysis of resectable LUAD.

The analysis of TIME largely depends on the accurate quantification of tissue- and nuclei-level information.

However, the heterogeneity of lung cancer pathological images has brought a great challenge in building

the analysis manner.24,25 This work proposed a deep learning-based pipeline for the TILs quantification. In

the tumor region segmentation process, a transfer learning framework was employed to pre-train the deep

learning model by using pathological images of other tissues (breast cancer). We then used a small amount

of annotated pathological images of LUAD for fine-tuning to accurately segment of tumor region while

making full use of the labeled data. For the overstained vascular tissues or atelectasis that belong to normal

tissue, it is easy to confuse with tumor-associated stroma (which belongs to the tumor region), so

Table 2. Univariable and multivariable Cox regression analyses for OS in four cohorts

Discovery cohort D1a Validation cohort V1 Validation cohort V2 Validation cohort V3

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Univariable analysis

Age at surgery (years)

R65 vs. ＜65 2.04 [1.24, 3.36] 0.005 1.08 [0.57, 2.02] 0.814 1.39 [0.57, 3.41] 0.468 1.37 [0.91, 2.08] 0.133

Sex

Female vs. male 0.49 [0.29, 0.83] 0.007 0.43 [0.22, 0.85] 0.015 0.95 [0.46, 1.95] 0.894 0.83 [0.55, 1.25] 0.371

Smoking status

Former/current vs.

never

2.00 [1.19, 3.34] 0.008 2.04 [1.11, 3.75] 0.021 0.69 [0.32, 1.51] 0.351 1.35 [0.70, 2.61] 0.372

TNM stage

Stage III vs. stage I/II 5.54 [3.30, 9.30] <0.001 2.02 [1.13, 3.61] 0.018 3.48 [1.69, 7.14] <0.001 2.27 [1.35, 3.81] 0.002

Tumor site

Upper/middle vs.

lower

1.39 [0.80, 2.44] 0.243 1.38 [0.76, 2.51] 0.296 1.01 [0.49, 2.07] 0.986 0.82 [0.54, 1.26] 0.367

WELL scoreb

High vs. low 2.68 [1.56–4.62] <0.001 3.05 [1.36–6.83] 0.004 2.39 [0.98–5.84] 0.049 1.99 [0.96–4.13] 0.058

Multivariable analysis

Age at surgery (years)

R65 vs. ＜65 2.29 [1.38, 3. 81] 0.001 1.29 [0.67, 2.47] 0.445 1.26 [0.50, 3.22] 0.625 1.30 [0.85, 1.98] 0.232

Sex

Female vs. male 0.60 [0.33, 1.09] 0.129 0.58 [0.22, 1.57] 0.285 0.81 [0.31, 2.11] 0.662 0.78 [0.51, 1.18] 0.237

Smoking status

Former/current vs.

never

1.30 [0.71, 2.36] 0.366 1.59 [0.64, 3.93] 0.316 0.57 [0.20, 1.60] 0.286 1.29 [0.66, 2.52] 0.458

TNM stage

Stage III vs. stage I/II 5.39 [3.14, 9.24] <0.001 1.92 [1.06, 3.45] 0.030 3.20 [1.53, 6.68] 0.002 1.95 [1.14, 3.34] 0.015

WELL scoreb

High vs. low 1.95 [1.12, 3.41] 0.019 3.65 [1.61, 8.27] 0.002 2.06 [0.83, 5.07] 0.118 1.91 [0.91, 3.99] 0.085

aD1 is the discovery cohort.
bContinuous variables DLCE score and DLCS score were employed for Cox modeling, and the coefficients of the two variables in terms of OS were�0.4181 and

�0.4400, respectively. We combined the two variables into a score through linear weighting, which was namedWELL score, WELL score =�0.4181*LDCE score

�0.4400*LDCS score.
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pathologists with relevant experience are essential to identify these issues. In the process of tissue segmen-

tation, our proposed weakly supervised method was applied to segment the tumor region into cancer

epithelium, cancer stroma, lymphoid aggregates, and necrosis.26 Compared with the full supervision

method which requires a lot of pixel-level annotations,21 the weakly supervised semantic segmentation

method only needs patch-level labels, which will greatly reduce the burden of data annotation for pathol-

ogists. The lymphoid aggregates and necrosis region were excluded according to the practical review.27

When calculating the density of TILs, the numerator of the calculation formula was the number of TILs,

and the denominator represented the area of cancer epithelium or cancer stroma. Owing to the unique

structure of the cavity in lung cancer tissue and the fact that the area and ratio of the blank region varied

significantly in different pathological grades,28 we removed this area, which would help to calculate the

density of TILs accurately and was conducive to downstream analysis.

TILs scoring process in breast cancer is relatively mature,29 but the uniform workflow is still unavailable for

LUAD. Furthermore, there is no unified statement about which regions/compartments’ TILs scores are

calculated. Most of the TILs-related research focused on the density of TILs in the stromal region. For

example, Donnem et al.30 evaluated the density of stomal CD8+ TILs, which was demonstrated as the in-

dependent prognostic factor in NSCLC. Two pathologists evaluated stromal TILs in H&E-stained WSIs in

a semiautomatic manner, and comparative experimental results showed that high-density TILs in the

stroma were positively associated with better survival for the patients that received immunotherapy.31

Recently, some research work advocated considering the importance of TILs in cancer epithelium re-

gion.6,21 Park et al.21 firstly classified the tiles into three different immune phenotypes (IPs) according to

the TILs density of the cancer epithelium region and cancer stroma region. Then the ratio of different

IPs patches determined the IP of WSIs, which formed an image biomarker. It needed to set twice cutoff

values on the processing pipeline in the discovery cohort, which may weaken the generalization ability

of the model, especially when encountering a gap in data distribution between the discovery cohort and

validation cohorts. In this study, we directly quantified the TILs density in cancer epithelium and cancer

stroma of the tumor region in theWSIs. Furthermore, we developed and validated a new biomarker by inte-

grating DLCE score and DLCS score and conducted the prognostic analysis.

Table 3. Performance metrics of the full model (integrated WELL score and clinicopathologic characteristics) and

reference models in the discovery and validation cohorts

Cohort Model C-index iAUC AIC

Discovery cohort (D1) TNM stage 0.651 (0.592–0.710) 0.634 629.2

WELL score 0.622 (0.563–0.681) 0.618 650.2

TNM_WELL 0.709 (0.646–0.772) 0.700 622.9

Clinicopathologic 0.723 (0.658–0.788) 0.715 618.9

Full 0.751 (0.686–0.815) 0.743 614.0

Validation cohort 1 (V1) TNM stage 0.586 (0.511–0.661) 0.590 417.4

WELL score 0.589 (0.523–0.655) 0.609 413.7

TNM_WELL 0.627 (0.548–0.707) 0.659 411.4

Clinicopathologic 0.596 (0.512–0.680) 0.593 417.9

Full 0.622 (0.535–0.709) 0.664 413.0

Validation cohort 2 (V2) TNM stage 0.632 (0.547–0.717) 0.634 267.2

WELL score 0.587 (0.509–0.664) 0.587 273.5

TNM_WELL 0.679 (0.592–0.767) 0.676 264.3

Clinicopathologic 0.650 (0.556–0.744) 0.648 267.0

Full 0.683 (0.593–0.773) 0.684 264.3

Validation cohort 3 (V3) TNM stage 0.565 (0.516–0.613) 0.552 853.4

WELL score 0.527 (0.488–0.565) 0.543 857.3

TNM_WELL 0.585 (0.531–0.639) 0.580 850.7

Clinicopathologic 0.586 (0.521–0.651) 0.575 852.5

Full 0.596 (0.529–0.663) 0.597 850.3
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Despite the differences in clinicopathologic characteristics among the four cohorts (Table 1), the WELL score

also had good prognostic performance across different cohorts using a cutoff threshold learned from the dis-

covery cohort. Image metrics related to brightness and contrast that were computed via HistoQC32 were

embedded using the t-SNE algorithm33 and demonstrated in Figure S8A, which showed that each cohort

was aggregated separately, indicating a strong batch effect. However, the image features (DLCE score and

DLCS score) extracted by us from different cohorts were interlaced or overlapped with each other, indicating

that two features of TILs were resilient to batch effects and reproducible across multiple cohorts (Figure S8B).

Both in cancer epithelium and cancer stroma regions, the TILs densities of low-risk groups were higher than

those of high-risk groups (Figure 4). This observation may suggest that more infiltration of lymphocytes was

conducive to stronger anti-tumor immune reaction and thus conducive to the better survival of patients

with LUAD. This was consistent with the experimental results or conclusions of18 previous studies mainly

focused on the associations between DLCS and prognosis.15,30 This study comprehensively considered the

impact of DLCE and DLCS on the prognosis of LUAD patients. It suggested that the risk stratification and

generalization ability of theWELL score were better than those of DLCE or DLCS alone (Figures 2, S2, and S3).

Although the WELL score could enable risk stratification of LUAD by the density of TILs assessed via H&E-

stained sections, the association of the WELL score with the immune infiltration landscape remained un-

clear. Hence, we applied the CIBERSORT,22 a tool for inferring the composition of immune cells by RNA

transcripts, to clarify the lymphocyte infiltration landscape between the high-risk and low-risk groups.

We found that the patients in the low-risk group had a higher proportion of CD8+ T cells, activated

Figure 4. heatmaps of TILs

DLCE and DLCS maps of high-risk and low-risk groups from different cohorts (discovery cohort D1 and three validation

cohorts V1, V2, and V3). The first and second columns were DLCE maps of the high-risk and low-risk groups identified by

theWELL score. The third and fourth columns were DLCSmaps of the high-risk and low-risk groups identified by theWELL

score. The color bar (on the right of the figure) indicates the TILs density measurement (blue represents the low density,

while red represents the high density).
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CD4+ memory T cells, and plasma cells versus those in the high-risk group, and these lymphocyte subsets

participated in many aspects of antigen presentation and anti-tumor immune reaction.34 It was widely re-

ported that the high abundance of CD8+ T cells,30,35 activated (but not resting) CD4+ memory T cells,36 and

plasma cells37 contributed to favorable survival outcomes in LUAD, which was consistent with our findings.

In addition, these lymphocyte subsets were involved in the formation of tertiary lymphoid structures, which

played an important role in controlling tumor invasion andmetastasis.38 We speculated that the differences

in survival between the high-risk and low-risk groups might be due to the dual effect on both the TILs den-

sity and the abundance of these lymphocyte populations that were associated with better prognosis. How-

ever, the spatial correlation of these lymphocyte populations and the density of TILs remained to be further

explored by using multiplex immunohistochemistry analysis.

In conclusion, we developed and validated a TILs-based digital image biomarker (namedWELL score) by using

H&E-stained WSIs. The WELL score was an independent prognostic factor and would improve the risk strati-

fication ability when integrated with clinicopathologic characteristics for resectable LUAD patients. A future

prospective study of the clinical application of theWELL score in the prognostic analysis of LUAD is warranted.

Limitations of the study

Our research still had some limitations. First, this work was retrospective with significant differences in clin-

icopathologic characteristics of different cohorts, which brought great challenges to the model develop-

ment and validation. In addition, the protocol for the production of pathological sections and the param-

eters of WSI scanners in each cohort were different, which resulted in great differences in pathological

images and was more prone to batch effects. Thanks to the two indexes (DLCE and DLCS), they alleviated

batch effects to a certain degree that benefited multi-institute prognostic analysis. Second, we quantified

DLCE and DLCS via routine H&E-stained slides but did not distinguish between lymphocyte (immune cell)

subtypes. Automatic identification of subtypes of TILs (eg., CD3, CD4, CD8, CD20, etc.) could refine and

enrich our studies. Third, this study was based on the analysis of a single WSI without considering the

case of multiple slides. Although multiple slides would significantly increase the computational overhead,

it may alleviate the bias in slide selection. In addition, the auxiliary results of lymph node metastases sec-

tions may further improve the discriminant ability of the WELL score-based model.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

Figure 5. Immune cell phenotypes evaluated by CIBERSORT algorithm

Among the 22 immune cells, the distribution of 7 immune cells between the high-risk and low-risk groups was statistically

significantly different (p < 0.05). The blue violin represents the low-risk group and the red represents the high-risk group.

The fractions of plasma cells, CD8 T cells, and CD4 memory-activated T cells in the low-risk group are higher than those of

the high-risk group. The fractions of CD4 memory resting T cells, macrophages M2, and mast cells resting in the low-risk

group are lower than those of the high-risk group.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients cohorts

Patients with LUAD who underwent curative-intent resection were retrospectively recruited from four insti-

tutions: Guangdong Provincial People’s Hospital (discovery cohort, D1), Shanxi Cancer Hospital (validation

cohort 1, V1), Yunnan Cancer Hospital (validation cohort 2, V2), and The Cancer Genome Atlas (validation

cohort 3, V3). The study was approved by the Research Ethics Committee of Guangdong Provincial Peo-

ple’s Hospital, the Ethics Committee of Shanxi Provincial Cancer Hospital, and the Institutional Review

Board of Yunnan Cancer Hospital (approval number: KY-Z-2021-030-02, 202106, and KY2020139). As this

was a retrospective image analysis study, the informed consent of patients was waived. The clinical factors,

including age at surgery, sex, smoking status, pT stage, pN stage, TNM stage, tumor site, and adjuvant

chemotherapy were collected from the hospital information system. The patients were excluded because

of no intact clinicopathologic characteristics, receiving neoadjuvant therapy, incomplete resection, history

of other tumors, and obvious artifacts on pathology image quality evaluation. The detailed inclusion criteria

and exclusion criteria are shown in Figure S1. The endpoints were overall survival (OS) and disease-free sur-

vival (DFS).

H&E-stained slides digitalization and quality control

In discovery cohort (D1) and validation cohort 2 (V2), the glass sections were scanned as whole-slide images

(WSIs) at 403 magnification (0.25mm/pixel) using a scanner (Leica, Aperio-AT2, USA), and the scanning

equipment brand was Hamamatsu (Japan, 403 magnification, 0.22mm/pixel) in validation cohort 1(V1)

cohort. WSIs of TCGA came from multiple institutes with large variances in terms of color and contrast.

H&E-stained WSIs were reviewed by two pathologists (BBL and LXY) to select the most representative tu-

mor slide. In addition, other low-quality (e.g., out-of-focus, blurred, pen markings, noticeable artifacts)

WSIs were removed.

METHOD DETAILS

Semi-automated tumor region segmentation

The image processing pipeline was shown in Figures 1B–1D. Tumor region segmentation was a prerequi-

site for tissue and nuclei segmentation and classification. Firstly, the Camelyon Challenge dataset41 was cut

into tumor patches and non-tumor patches, and fed into the ResNet-50 40 model for pre-training; Then, 67

LUAD WSIs from D1 were cut into tumor patches and non-tumor patches for fine-tuning the pre-trained

model. Finally, the fine-tuning model was adopted in the tumor region segmentation for the remaining

WSIs from D1 and all WSIs from the other three institutes. The segmentation masks of the tumor region

were checked by two pathologists (BBL and LXY), and the imperfect masks were corrected for the following

workflow.

Tissue segmentation of tumor region

To accurately obtain the boundary of the tissue region, we introduced the semantic segmentation (pixel-

level classification) method to divide the tumor region into cancer epithelium, cancer stroma, lymphoid

aggregate, and necrosis regions. The tissue semantic segmentation was performed on WSIs under

103 magnification to save the computation cost. To save the workload of manual annotation, we applied

our proposed weakly supervised segmentation method based on patch-level classification labels. The

method was divided into two stages: image classification and image segmentation. In the image classifi-

cation stage, we used a class activation map (CAM)-based model to generate pseudo segmentation; in

the image segmentation stage, we used our proposed Multi-Layer Pseudo-Supervision strategy26 to

improve the accuracy of image segmentation. The schematic diagram is shown in Figure 1C.

Nuclei segmentation and classification

Hover-Net,39 consisting of one encoding branch and three decoding branches, was one of the state-of-the-

art deep learning models for nuclei segmentation and classification. We deployed Hover-Net to segment

and classify the nuclei into tumor nuclei, stromal nuclei, lymphocytes, and other nuclei in the tumor region

of WSI at the maximum magnification. The schematic diagram is shown in Figure 1C.

TILs quantification and WELL score establishment

We quantified the TILs density using the following equations.
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DLCE =
# of lymphocytes in cancer epithelium

the area of cancer epithelium
(Equation 1)

DLCS =
# of lymphocytes in cancer stroma

the area of cancer stroma
(Equation 2)

DLCE score = logðDLCE + 1Þ (Equation 3)

DLCS score = logðDLCS + 1Þ (Equation 4)

WELL score = ðw1 3 DLCE scoreÞ + ðw2 3 DLCS scoreÞ (Equation 5)

where DLCE indicated the density of TILs in cancer epithelium (Equation 1); DLCS indicated the density of

TILs in cancer stroma (Equation 2). We used a logarithmic operation42 to compress the dynamic range of

DLCE and DLCS for the sake of better visualization and analysis (Equations 3 and 4). A risk score, named

WELL score (Equation 5), was constructed through linear weighting of DLCE score and DLCS score. A

Cox regression model was built in the discovery cohort to estimate the weights w1 and w2. The median

value of the WELL score in the discovery cohort was set as a cutoff. That is, a patient with a WELL score

higher than the median value belonged to the high-risk group and vice versa.

Quantitative assessment of immune cells via CIBERSORT algorithm

A well-known bioinformatics tool (named CIBERSORT algorithm22,23) was used to evaluate the proportion

of the relative level of 22 immune cell phenotypes according to the expression of immune-related and other

genes in the complex expression mixture. These 22 kinds of immune cells are mainly composed of T cells, B

cells, natural killer cells, monocytes, macrophages, dendritic cells, mast cells, eosinophils, neutrophils, etc.

We set the threshold p<0.05 and excluded the sample without immune infiltration.

QUANTIFICATION AND STATISTICAL ANALYSIS

Continuous clinicopathologic characteristics (age at surgery) were reported asmedian (IQR) and compared

via Kruskal-Wallis rank-sum test. Categorical clinicopathologic characteristics (sex, TNM stage, etc.) were

reported as count (percentage) and compared via Pearson’s Chi-square test or Fisher’s exact test, where

appropriate. The follow-up time across the institutions was estimated using the reverse Kaplan-Meier

(K-M) method. K-M curves and Cox proportional hazards regression models were employed for survival an-

alyses. The log-rank test was used to compare the high-risk group and the low-risk group in terms of OS and

DFS. The univariable Cox regression analysis was performed to evaluate the risk factors that are associated

with OS and DFS, and the factors that demonstrated statistical significance (p < 0.05) would be served as

candidates in multivariable Cox regression analysis. The final model was determined by stepwise regres-

sion, and Akaike information criterion (AIC) was used to balance the model complexity and the goodness

of the fit. The discrimination performance of the prediction models was evaluated using Harrell’s

C-statistics (C-index) and the integrated area under the curve (iAUC). The time-dependent area under

the curve (tAUC) was computed and plotted over time.

All statistical analyses were performed using R (version 4.0.2; https://www.r-project.org/) with packages

survival, survminer, Rmisc, timeROC, lmtest, lpSolve, and irr. All statistical tests were two-sided, and p-

values < 0.05 were considered statistically significant. Since this study was retrospective and the patients

with end-point events (i.e., 62/278 in our case) in the discovery cohort had been identified, our risk variables

could not exceed 6 to meet the 10 EPP rule.43
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