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Abstract

The structure and appearance of the blood vessel network in retinal fundus images is an

essential part of diagnosing various problems associated with the eyes, such as diabetes

and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing

matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus

image is enhanced using morphological operations, the contrast is increased using contrast

limited adaptive histogram equalization (CLAHE) method and the inhomogeneity is cor-

rected using Retinex approach. Then, the blood vessels are enhanced using a combination

of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statisti-

cal features are computed on a pixel-wise basis and used in an AdaBoost classifier to

extract the blood vessel network inside the image. Finally, the segmented images are post-

processed to remove the misclassified pixels and regions. The proposed method was vali-

dated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE),

Structured Analysis of the Retina (STARE) and Child Heart and Health Study in England

(CHASE_DB1) datasets commonly used for determining the accuracy of retinal vessel seg-

mentation methods. The accuracy of the proposed segmentation method was comparable

to other state of the art methods while being very close to the manual segmentation provided

by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in

DRIVE, STARE and CHASE_DB1 datasets, respectively.

Introduction

Manual inspection of fundus images by a specialist known as a direct ophthalmoscopy is being

challenged by the computer-assisted diagnosis of retinal images. Although direct ophthalmos-

copy using retinal fundus images could be considered as an effective approach for diagnosing

various retina related diseases that can result in blindness such as macular degeneration and

diabetic retinopathy, it is time-consuming and the results cannot be easily reproduced. On the

other hand, computer-assisted diagnosis of retinal fundus images has been shown to be as

accurate as direct ophthalmoscopy while being faster and more reliable.
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The condition and the appearance of the blood vessel network can be considered as an

important aspect in many computer-assisted diagnosis systems using retinal fundus images.

As a result, many techniques have been proposed for retinal blood vessel segmentation.

However, it remains a challenging task due to the variations in vessel shape and width coupled

with image acquisition difficulties that often results in a low-quality image with uneven illumi-

nation and a considerable amount of noise. Previously proposed retinal blood vessel segmenta-

tion methods can be categorized into supervised and unsupervised methods. Unsupervised

approaches usually rely on different combinations of image processing concepts such as mor-

phological operations, different filtering techniques and clustering methods, to name a few.

On the other hand, supervised methods (mostly including machine learning based methods)

utilize a set of pixel-wise features derived from the images to construct a set of rules that can be

used for separating vessels and the background.

In this paper, retinal vessel segmentation methods are briefly discussed as it is intended to

provide some insight to the overall segmentation concepts and is by no means an exhaustive

review of these methods. For a detailed review of vessel segmentation methods please refer to

[1–3]. Currently, thin vessels and the noise in retinal images can be considered as the main

challenges in retinal vessel segmentation. Moreover, the majority of vessel segmentation meth-

ods optimize their preprocessing and segmentation steps for each dataset separately, resulting

in high accuracy on specific datasets whereas the accuracy will suffer if applied to other data-

sets. Although there are some interactive and semi-automatic segmentation approaches, most

of the vessel segmentation methods are considered as automatic. Usually, vessel segmentation

approaches in retinal images include preprocessing steps aimed at enhancing the vessels,

although some methods may skip this step and go directly to the segmentation.

Popular unsupervised retinal vessel segmentation methods can be divided into vessel track-

ing, matched filtering and morphology based methods. Starting from a set of initial points

defined either manually or automatically, vessel tracking methods try to segment the vessels by

tracking the center line of the vessels. This tracking can be done by utilizing different vessel

estimation profiles such as Gaussian [4–6], generic parametric [7], Bayesian probabilistic [8]

and multi-scale profiles [9]. On the other hand, filtering based techniques utilize different ker-

nels for modeling and enhancing retinal vessels such as matched filters [10], Gaussian filters

[11], wavelet filters [12, 13], Gabor filters [14, 15] and COSFIRE filters [16–18]. Methods utiliz-

ing morphological operations can be used for both the enhancement of retinal images and the

segmentation of blood vessel tree from the background [19–21].

The supervised approach requires the ground truth segmentation provided by human

experts (regarded as the gold standard) for training a classifier using a set of features calculated

based on local (pixel-wise) or global image characteristics, acting as a priori knowledge and

guiding the training. This set of features should be able to effectively discriminate between dif-

ferent objects of interest such as vessel and background pixels and can be extracted by different

concepts such as Gabor filter responses and gray level co-occurrence matrices, to name a few.

Various classification concepts can also be used to classify the pixels such as adaptive boosting

(AdaBoost), support vector machines (SVM), artificial neural networks (ANN), Gaussian mix-

ture models (GMM) and k-nearest neighbors (k-NN).

Niemeijer et al. [22] proposed a supervised retinal vessel segmentation where a k-NN classi-

fier is utilized for identifying vessel and non-vessel pixels based on a feature vector constructed

using a multi-scale Gaussian filter. Staal et al. [23] proposed a similar approach utilizing a fea-

ture vector constructed using a ridge detector where the ridge pixels are grouped into convex

sets that approximately represent the straight lines. Based on a feature vector constructed

using 2-D multi-scale Gabor wavelet filters. Marin et al. [24] proposed a feed-forward neural

network (NN) based classifier utilizing 7-D feature vector calculated using moment-invariant
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features. Fraz et al. [25] proposed a classifier based on boosted decision trees using a 9-D fea-

ture vector computed from Gabor filter responses, morphological transformation, line

strength measures and gradient vector field. Ricci et al. [26] proposed a fast and computation-

ally non-demanding approach utilizing an SVM coupled with features derived using a rota-

tion-invariant linear operator and pixel intensity.

Lupascu et al. [27] proposed an AdaBoost classifier using a 41-D feature set that could

achieve good accuracy on DRIVE dataset. Wang et al. [28] proposed an ensemble based retina

vessel segmentation method that is currently amongst the most accurate methods proposed.

Their method is based on the creation of super-pixels using a simple linear iterative clustering

(SLIC) approach where one pixel from each of the super-pixels is randomly selected for feature

extraction. A trainable hierarchical feature extraction approach using a convolutional neural

network (CNN) is then used on the selected pixel with an ensemble based Random Forest

(RF) being used as the main classifier. You et al. [29] proposed an SVM based semi-supervised

method utilizing features extracted using radial projection. Roychowdhury et al. [30] proposed

a GMM classifier using 8-D features calculated from pixel neighborhood on first-order and

second-order gradient images.

Zhu et al. [31] proposed an extreme learning machine (ELM) based segmentation using a

39-D feature vector constructed using morphological and local features coupled with features

computed from phase congruency, Hessian and divergence of vector fields. Zhu et al. [32] pro-

posed a similar approach using a classification and regression tree (CART) classifier using a

36-D feature vector constructed using multi-scale and multi-orientation morphological trans-

formation and local features coupled with features computed from divergence of vector fields.

Wang et al. [33] proposed an SVM based segmentation using a 30-D feature vector con-

structed using Gaussian and multi-scale Gabor filter features coupled with features computed

from divergence of vector fields. Tang et al. [34] proposed an SVM based segmentation using a

feature vector constructed using Multi-Scale vessel filtering and Gabor Wavelet features.

Aslani et al. [35] proposed a random forest classifier based segmentation using a 17-D feature

vector constructed using multi-scale and multi-orientation Gabor filter responses and inten-

sity features coupled with features computed from vesselness measure and B-COSFIRE filter

response.

Although most supervised retina vessel segmentation methods require an extensive and

computationally demanding training phase, the results obtained are more accurate than

unsupervised segmentation. In this paper, a supervised approach for automatic segmentation

of retinal blood vessels in fundus images is proposed. The proposed method is based on an

AdaBoost classifier coupled with the most informative pixel-wise features selected by a “mini-

mal-redundancy-maximal-relevance” (mRMR) feature selection approach for increased accu-

racy and decreased computational requirements. The AdaBoost classifier is used as it has

strong discriminative power and is computationally efficient. Moreover, a combination of fil-

ters is used to improve the segmentation as each filter responds in a distinct manner to differ-

ent pixels in the image. By combining these filters, it is also possible to make the segmentation

approach more robust considering the different image characteristics between datasets. More-

over, while many features related to pixels (such as intensity and texture) can be used, these

features could have a high degree of redundancy with complicated interrelations leading to

high computational requirements that make supervised segmentation resource intensive. As a

result, feature selection has been used to reduce the computational requirements. Further-

more, the proposed method has not been optimized for any specific dataset as the goal of the

study was to identify a set of optimal features and preprocessing parameters that could be used

on a variety of datasets and images. The performance of the proposed method is validated

using publicly accessible DRIVE [23], STARE [36] and CHASE_DB1 [37] datasets commonly
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utilized in assessing the performance of retinal vessel segmentation methods utilizing fundus

images. REVIEWDB [38] and BioImLab [39] datasets were excluded as they are designed for

use in methods dealing with vessel width and tortuosity estimation, respectively.

The rest of the paper is organized as follows: materials and methods section introduces the

datasets used, the proposed image and vessel enhancement steps followed by segmentation

steps including feature extraction and selection steps along with the AdaBoost classifier. In

results and discussion section, the effects of feature selection and extraction parameters on seg-

mentation accuracy is shown and the results of the proposed method and its performance is

compared to recent methods from the literature. Finally, the conclusions are drawn.

Materials and methods

In this study, the green channel of the RGB fundus image is utilized per suggestions from

many previous works as it was shown that vessels have the highest contrast against the back-

ground in the green channel. The use of blue channel results in a small dynamic range and red

channel offers insufficient contrast, as illustrated in Fig 1. Moreover, Mendonca and Campilho

[40] further validated the use of the green channel by comparing different channels of the RGB

image, Luminance channel of National Television Systems Committee (NTSC) color space

and a component of the lab image representation system where the green channel of the fun-

dus image was shown to provide better contrast. Furthermore, like most other studies, only

the pixels inside the FOV area of the image is considered for the segmentation as the pixels

outside this area are considered as background and have no known medical applications. Fig 2

illustrates the proposed preprocessing and vessel enhancement steps and Fig 3 shows the fea-

ture extraction and classifier training/testing steps. These steps are discussed in detail in the

following sections.

Datasets

Datasets used in this study are amongst the most popular publicly accessible datasets used for

development and testing the performance of various retinal segmentation methods. Datasets

used also include corresponding vessel segmentation done manually by different experts con-

sidered as the ground truth.

DRIVE dataset includes 40 color fundus images divided equally into training and testing

sets with each including 20 images [23]. For each image in the dataset, an FOV mask along

with the manual segmentations of the corresponding vessel tree (one expert for training set

and two experts for testing set) are provided. A Canon CR5 non-mydriatic camera with an

FOV of 45˚ and bit depth of 8-bits was used to capture the images with a resolution of

Fig 1. Color fundus image and its different RGB channels. (a) RGB image, (b) red channel, (c) green channel and (d) blue

channel.

https://doi.org/10.1371/journal.pone.0188939.g001
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Fig 2. Preprocessing and vessel enhancement steps.

https://doi.org/10.1371/journal.pone.0188939.g002
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768×584 pixels. Fig 4 illustrates an image from the test set of this dataset with its respective

manual vessel segmentations.

STARE dataset includes 20 color fundus images with half of them containing signs of differ-

ent pathologies [36]. For each image in the dataset, manual segmentations of the correspond-

ing vessel tree done by two experts are provided. A canon TopCon TRV-50 fundus camera

with FOV of 35˚ and bit depth of 8-bits was used to capture the images with a resolution of

Fig 3. Feature extraction and classifier training/testing steps.

https://doi.org/10.1371/journal.pone.0188939.g003

Fig 4. (a) An image from the DRIVE test set with its respective manual vessel segmentation, (b) first observer and (c) second observer.

https://doi.org/10.1371/journal.pone.0188939.g004
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700×605 pixels. Fig 5 illustrates an image from this dataset with its respective manual vessel

segmentations.

CHASE_DB1 dataset (referred to as CHASE in some publications) includes 28 color fundus

images acquired from 14 patients participated in the child heart and health study in England

[37]. For each image in the dataset, manual segmentations of the corresponding vessel tree

done by two experts are provided. A Nidek NM 200D fundus camera with FOV of 30˚ and bit-

depth of 8-bits was used to capture the images with a resolution of 1280×960 pixels. Fig 6 illus-

trates an image from this dataset with its respective manual vessel segmentations.

As seen from sample images, the manual segmentation provided by the first observer in

DRIVE and CHASE_DB1 datasets includes finer segmentation for thinner vessels in contrast

to STARE dataset where the manual segmentation provided by the second observer includes

finer segmentation for thinner vessels.

Preprocessing and vessel enhancement

The extracted green channel of the fundus image is first filtered using a 3×3 median filter for

reducing the image noise as median filters have the useful property of retaining edge informa-

tion within an image. As retina fundus images have high contrast around the edges of the

image resulting in possible false positive vessels being detected around the edges of the image,

the edges are smoothed [15, 17]. Initial FOV mask is computed by thresholding the luminance

Fig 5. (a) An image from the STARE dataset with its respective manual vessel segmentation, (b) first observer and (c) second observer.

https://doi.org/10.1371/journal.pone.0188939.g005

Fig 6. (a) An image from the CHASE_DB1 dataset with its respective manual vessel segmentation, (b) first observer and (c) second observer.

https://doi.org/10.1371/journal.pone.0188939.g006
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channel on CIElab color space [41] computed from the original RGB fundus image. Then, the

FOV boundary is dilated by one pixel where the value of the new pixel is calculated as the

mean value of its 8-connected neighbor pixels. This process is repeated fifty times for ensuring

that no false vessels will be detected near the FOV boundary [17].

Contrast limited adaptive histogram equalization (CLAHE) algorithm [42, 43] is then used

for enhancing the contrast between vessels and the background. CLAHE improves the local

contrast and does not over amplify the noise present in relatively homogeneous regions.

Then, the noise is further reduced by having the images morphologically opened. Finally, the

image is further enhanced using a combination of morphological Top-hat and Bottom-hat

operations.

Retinex based inhomogeneity correction. Often, retinal fundus images can include illu-

mination inhomogeneity resulting in reduced segmentation accuracy. As a result, an inhomo-

geneity correction step is highly desired with Retinex theorem proposed by Land and McCann

[44] being one of the most popular approaches. Retinex theorem, named after a combination

of words retina and cortex, is used to remove the illumination inhomogeneity from the images,

improving the segmentation accuracy [45–48]. In this study, a bilateral filter based Retinex

algorithm is used as this approach was shown to provide better results in retinal images while

preserving the vessels edge details [49, 50]. Based on Retinex theorem, any given image I can

be represented as a component-wise multiplication of its reflectance R and illumination L as:

I ¼ R� L ð1Þ

Let’s denote x as a pixel belonging to image I, the pixel x of the reflectance image R(x) could

be obtained by computing the difference of the logarithms between the original image I(x) and

the resulting image L(x) after applying a bilateral filter to the original image I(x), defined as:

RðxÞ ¼ logðIðxÞ þ 1Þ � logðLðxÞ þ 1Þ ð2Þ

LðxÞ ¼ M� 1ðxÞ
R

wIð‘Þgð‘; xÞsð‘; xÞd‘ ð3Þ

MðxÞ ¼
R

wgð‘; xÞsð‘; xÞd‘ ð4Þ

g ‘; xð Þ ¼ e
� 1

2

dð‘;xÞ
sd

� �2

ð5Þ

s ‘; xð Þ ¼ e�
1
2

dðIð‘Þ;IðxÞÞ
srð Þ

2

ð6Þ

Where w represents the window size used for measuring the spatial relations between pixels

with a window size of 3×3 pixels being used in this study as suggested by [46] andM is a nor-

malization factor. gð‘; xÞ represents the spatial closeness (computed using Euclidean distance)

between pixels x and ‘ inside the window (w) and sð‘; xÞ represents the intensity similarity

between these pixel pairs. σd represents the spatial spread (based on low-pass filtering) and σr
represents the spread of the image intensity range with σr and σd value of 0.3 used in this study.

Afterwards, the image background is computed and removed by subtracting the image from

its median filtered image using a large kernel.

B-COSFIRE filter. Bar-selective combination of shifted filter responses (B-COSFIRE)

was proposed by Azzopardi et al. [17, 51] for detection of patterns with a bar shape. Vessels are

enhanced with B-COSFIRE filter by using a bank of collinearly aligned Difference of Gaussian

(DoG) filters that have been configured for detecting the bar-like appearance of blood vessels
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at different angles. A DoG filter for detecting the intensity variations of the image can be

defined as:

DoG x; yð Þ ¼
1

2ps2
exp �

x2 þ y2

2s2

� �

�
1

2pð0:5sÞ
2
exp �

x2 þ y2

2ð0:5sÞ
2

 !

ð7Þ

Where σ denotes the standard deviation of the Gaussian function. The response cσ(x,y) of a

DoG filter is computed by convolving image I (x,y)withDoG (x,y)while replacing any negative

values with zero. Fig 7 illustrates a B-COSFIRE filter configured for detecting a vertical bar.

Let’s consider point ‘1’ as the center point for a set of concentric circles and responses cσ(x,y)
along these circles, points ‘1’ till ‘5’ represent significant responses to significant intensity

changes (assuming a circle with radios of zero at the center point). These points are repre-

sented using set S defined as:

S ¼ fðri;ΦiÞji ¼ 1; . . . ng ð8Þ

Where ρi andΦi represent the polar coordinates and n represents the number of DoG filter

responses being considered. For the example image shown in Fig 7, S = {(0,0)1, (2,π/2)2, (2,3π/

2)3, (4,π/2)4, (4,3π/2)5} with subscripts denoting the points with their position in the set S. By

using this configuration, a B-COSFIRE filter is configured that is selective for the collinear

alignment of significant intensity changes in an image (such as vessel patterns). By utilizing

the DoG filter responses from different positions in set S, the B-COSFIRE filter output at

the center points is determined. First, the DoG filter responses are blurred for allowing some

tolerance in the position of the points being considered. The blurring is done by keeping the

maximum value of the weighted DoG filter responses where a Gaussian function Gσ0(x,y) is

multiplied with DoG filter responses for the weighting. The standard deviation σ0 is considered

as a linear function defined as σ0 = σ0 + αρi where σ0 and α are constants. Then, the responses

are centered at the center point of DoG filter where each blurred DoG filter response is shifted

by distance ρi with an opposite direction to Φi. The DoG filter response sri ;Fiðx; yÞ at each posi-

tion (ρi,Φi) is computed as:

sri ;Fiðx; yÞ ¼ max|{z}
x0 ;y0

fcsðx � Dxi � x
0 � Dyi � y

0ÞGs0 ðx
0; y0Þg ð9Þ

Fig 7. An example of symmetric B-COSFIRE filter configured to detect vertical bars with the support

center being indicated by the cross marker [17]. The numbered dots along the concentric circles represent

the positions with the strongest DoG responses.

https://doi.org/10.1371/journal.pone.0188939.g007
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Where:

� 3s0 � x0; y0 � 3s0 ð10Þ

Shift values are given as:

Dxi ¼ � ricosΦi; Dyi ¼ � risinΦi ð11Þ

The output of the B-COSFIRE filter is then defined as the weighted geometric mean of all

the blurred and shifted responses from the set S as:

rs x; yð Þ ¼ ð
Qn
i¼1
ðsri ;Fiðx; yÞÞ

oiÞ

1Pn
i¼1

oi

�
�
�
�

�
�
�
�
t

ð12Þ

oi ¼ exp �
r2
i

2ŝ2

� �

ð13Þ

ŝ ¼
1

3
max|{z}
i�f1;::;ng

rif g ð14Þ

Where |.|t denotes the thresholding of the responses at a fraction of their maximum value

where t = (0� t� 1). It should be noted that a B-COSFIRE filter will have a response only in

case of non-zero values from sri ;Fiðx; yÞ as the weighted geometric mean is an ‘AND’ type func-

tion. By moving further from the center point of the B-COSFIRE filter, the contribution of the

blurred and shifted responses decrease.

The orientation of the bar structures used in the configuration determines the orientation

preference of a B-COSFIRE filter. As such, it is possible to achieve rotation invariance by con-

sidering outputs rs(x,y) computed from a set of bar structures oriented at angles ranging from

0 to π. Bar structures oriented at angle θk can be computed by considering a new set Ryk
ðSÞ

generated with respect to S as:

Ryk
ðSÞ ¼ fðri; �i þ ykÞj8ðri; �iÞ 2 Sg ð15Þ

Essentially, the process for obtaining responses rs(x,y) is the same as s(x,y) where only the bar

orientations differ. In practice, twelve angles with equal intervals are used such as θk = {kπ/12 |

0� k� 12} where the maximum response value of the B-COSFIRE filters with different orien-

tations is taken at every location (x,y) as:

r̂ sðx; yÞ ¼ maxy2�frRyk
ðSÞðx; yÞg ð16Þ

Due to ‘AND’ type output function of a B-COSFIRE filter, there should be no filter response

at the end of the bars. However, due to the noise present in the images, a response will be com-

puted although with a much lower value compared to a middle point in the bar. As such, a

new B-COSFIRE filter was introduced that is selective for the bar ending known as asymmetric

B-COSFIRE filter while the B-COSFIRE filter previously described is known as symmetric

B-COSFIRE filter [17]. By placing the center point of the filter on the end point of the bar, a

much higher response value is obtained. An example of symmetric and asymmetric B-COS-

FIRE filter responses can be seen in Figs 7 and 8, respectively. In this study, the responses from

both the symmetric and asymmetric B-COSFIRE filters are summed together with the control-

ling parameters set empirically with σ = 2.4, ρ = {0,2,4,. . .,10}, σ0 = 3, α = 0.6 for symmetric

and σ = 2.1, ρ = {0,2,4,. . .,18}, σ0 = 1, α = 0.1 for asymmetric filters, respectively.
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Frangi filter. Frangi filters were first proposed for enhancing the vessel profiles in coro-

nary artery segmentation [52]. Hessian matrix based Frangi filter is a popular approach that is

both efficient and requires less computation time [53]. The Hessian matrix is constructed by

computing the vertical and horizontal diagonals of the second-order derivative of the image.

The Hessian based Frangi filter can be defined as:

FðxÞ ¼ maxsf ðx; sÞ ð17Þ

Where the pixel of interest is defined by x, the standard deviation for computing the Gauss-

ian derivative of the image is denoted as σ and f represents the filter. The hessian matrix can be

defined as:

H ¼
Hxx Hxy
Hyx Hyy

 !

ð18Þ

Where Hxx,Hxy,Hyx andHyy represent the directional second-order partial derivatives of

the image. Let’s denote λ1 and λ2 as the eigenvalues of H, these are used for determining the

probability of the pixel of interest x being a vessel based on the following notions:

jλ1j � jλ2j > 0 and f ðx; sÞ ¼ 0 ð19Þ

Then, the Hessian based Frangi filter can be defined as:

f xð Þ ¼

0 ; if l2 > o

e
�

R2
b

2 a2

� �

1 � e

S2

2b
2

� �0

B
@

1

C
A; elsewhere

ð20Þ

8
>>>><

>>>>:

Rb ¼
jl1j

jl2j
; S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2

1
þ l

2

2

q

ð21Þ

Where Rb and a are used for differentiating linear structures from blob-like structures while

β and S are being used for differentiating background (noise) and vessels with the controlling

Fig 8. An example of asymmetric B-COSFIRE filter configured to detect vertical bar endings with the

support center being indicated by the cross marker [17]. The numbered dots along the concentric circles

represent the positions with the strongest DoG responses.

https://doi.org/10.1371/journal.pone.0188939.g008
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parameters set empirically with α = 0.9, β = 13 and σ = {1,1.1,1.2,1.3,. . .,4}. Fig 9 illustrates the

preprocessing and vessel enhancement steps and their effect on a sample image from DRIVE

dataset.

Extracting image features

The accuracy of machine learning based supervised segmentation approaches is highly depen-

dent on the set of features being utilized. Thus, it is necessary to select the best set of features

for a good separation between the vessels and the background. Sole use of intensity values as

features is not that accurate and reliable and spatial relations between neighboring pixels

should also be included in the features. In this study, a sliding window is used for extracting

image features for each of the image pixels by considering a predefined set of pixels in the

neighborhood of each pixel.

Fig 9. Preprocessing and vessel enhancement steps on an example image from DRIVE dataset. (a) color fundus image, (b) manual

segmentation (first observer), (c) green channel, (d) FOV mask, (e) image after applying CLAHE, (f) image after applying Retinex, (g) image after

applying morphological Top-hat and Bottom-hat, (h) computed background, (i) image after subtracting the background, (j) image after applying

morphological Top-hat, (k) image after applying B-COSFIRE filter and (m) final preprocessed image after applying Frangi filter.

https://doi.org/10.1371/journal.pone.0188939.g009
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Intensity based image features. Intensity based features can be used to represent some

texture characteristics of the image using the distribution of intensities inside the image. These

features are mostly calculated using the image histogram. Given an image I with size n, these

features are defined as:

Mean ¼
1

n2

P

ði;jÞ2½1:n�2
Ii;j ð22Þ

Variance ¼
1

n2

P

ði;jÞ2½1:n�2

�
Ii;j � mean

�2
ð23Þ

Skewness ¼
1

n2

P

ði;jÞ2½1:n�2

�
Ii;j � meanÞ

3
ð24Þ

Kurtosis ¼
1

n2

P

ði;jÞ2½1:n�2

�
Ii;j � meanÞ

4
ð25Þ

Image features calculated using gray level co-occurrence matrix. Co-occurrence matri-

ces are used to track the distribution of the pixel pairs inside an image and are very popular in

pattern recognition and image processing fields [54–56]. As this study uses gray intensity val-

ues for pixels, only one co-occurrence matrix will be used, known as gray level co-occurrence

matrix (GLCM). The GLCM characterizes the image texture by calculating the adjacency

occurrence of a pixel with specific intensity i to a pixel with intensity value j in a predefined

distance d and angle θ. Although various distances can be used for calculating co-occurrence

matrices, the choice of the angles is usually limited to angles as a multiple of 45˚ (0˚, 45˚, 90˚,

135˚), allowing direct use of intensity values without any interpolation (as co-occurrence

matrices are rotationally invariant). To reduce dimensionality, for any given sliding window, a

single GLCM from all four angles is calculated in this study. Let P define the GLCM of a quan-

tized image I (x,y) with P(i,j) representing the GLCM and Ng representing the number of gray

levels in image I. Only one GLCM of sizeNg ×Ng is computed per image per distance by simul-

taneously adding up the frequency of co-occurrences of all pixels with their connected neigh-

bors with all pixels considered once as a center voxel. The entry (i,j) of the of the normalized

GLCM is then defined as:

p i; jð Þ ¼
P ði; jÞ

PNg
i¼1P ði; jÞ

ð26Þ

Before any discussion on image features computed using GLCM, the following notions

should be considered:

pxðiÞ ¼
PL

j¼1
p ði; jÞ ð27Þ

pyðiÞ ¼
PL

i¼1
p ði; jÞ ð28Þ

mx ¼
P

i

P
ji:p ði; jÞ ð29Þ
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my ¼
P

i

P
jj:p ði; jÞ ð30Þ

s2

x ¼
P

i

P
jði � mxÞ

2
:p ði; jÞ ð31Þ

s2

y ¼
P

i

P
jðj � myÞ

2
:p ði; jÞ ð32Þ

pxþyðkÞ ¼
PL

i¼1 iþj¼k

PL
j¼1
p ði; jÞ; k ¼ 2; 3; . . . ; 2L ð33Þ

px� yðkÞ ¼
PL

i¼1 ji � jj¼k
PL

j¼1
p ði; jÞ; k ¼ 2; 3; . . . ; L � 1 ð34Þ

HX ¼ �
P

ipx ðiÞ:logðpx ðiÞÞ ð35Þ

HY ¼ �
P

ipy ðiÞ:logðpy ðiÞÞ ð36Þ

HXY ¼ �
P

i

P
jp ði; jÞ:logðp ði; jÞÞ ð37Þ

HXY1 ¼ �
P

i

P
jp ði; jÞ:logðpx ðiÞpy ðjÞÞ ð38Þ

HXY2 ¼ �
P

i

P
jpx ðiÞpy ðjÞ:logðpxðiÞpyðjÞÞ ð39Þ

Based on above notions, GLCM features are defined as:

Autocorrelation ¼
P

i

P
jði; jÞp ði; jÞ ð40Þ

Energy ¼
P

i

P
jp ði; jÞ

2
ð41Þ

Entropy ¼ �
P

i

P
jp ði; jÞ:logðp ði; jÞÞ ð42Þ

Correlation I ¼
P

i

P
j

ði � mxÞðj � myÞp ði; jÞ
sxsy

ð43Þ

Correlation II ¼
P

i

P
j

ði:jÞp ði; jÞ � mxmy

sxsy
ð44Þ

Contrast ¼
P

i

P
jji; jj

2p ði; jÞ ð45Þ

Cluster Shade ¼
P

i

P
jðiþ j � mx � myÞ

3p ði; jÞ ð46Þ

Cluster Prominence ¼
P

i

P
jðiþ j � mx � myÞ

4p ði; jÞ ð47Þ

Homogeneity I ¼
P

i

P
j
p ði; jÞ

1þ ji � jj
ð48Þ
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Homogeneity II ¼
P

i

P
j
p ði; jÞ

1þ ji � jj2
ð49Þ

Inverse difference moment normalized¼
P

i

P
j

p ði; jÞ
1þ ði � jÞ2=L

ð50Þ

Inverse difference normalized¼
P

i

P
j

p ði; jÞ
1þ ji � jj2=L

ð51Þ

Maximum probability ¼ maxi;jpði; jÞ ð52Þ

Sum average ¼
P2L

i¼2
i : pxþyðiÞ ð53Þ

Sum variance ¼
P2L

i¼2
ðiþ

P2L
i¼2
pxþyðiÞ:logðpxþyðiÞÞÞ

2
:pxþyðiÞ ð54Þ

Dissimilarity ¼
P

i

P
jji; jj:p ði; jÞ ð55Þ

Sum of squares : variance ¼
P

i

P
jði � vÞ

2p ði; jÞ ð56Þ

Sum entropy ¼ �
P2L

i¼2
pxþyðiÞ:logðpxþyðiÞÞ ð57Þ

Difference variance ¼
PL� 1

i¼0
i2:pxþyðiÞ ð58Þ

Difference entropy ¼ �
PL� 1

i¼0
px� yðiÞ:logðpx� yðiÞÞ ð59Þ

Information measure of correlation I ¼
HXY � HXY1

maxðHX;HYÞ
ð60Þ

Information measure of correlation II ¼ ð1 � exp½� 2ðHXY2 � HXYÞ�Þ1=2
ð61Þ

Gray level run length matrix. Given an image, a gray level run can be defined as a set of

consecutive pixels having the same gray level and being collinear in any given direction with

the number of pixels in this set representing the length of the run. Gray level run length matri-

ces (GLRLM) are used to represent this set where each element, denoted by P(i, j, θ), contains

the number of runs with length j with the gray level of i and the orientation θ representing line

segment formed by the pixels [57, 58]. Gray level run length matrices can be computed by:

P ði; j; yÞ ¼ CARD ½fðm; nÞ j f ðm; nÞ ¼ i; t ði; yÞ ¼ jg� ð62Þ

Where f (x, n) represents the gray level function for the pixel (m, n), and τ (i,θ) is the length

of the gray level run i with direction θ and CARD denotes the cardinality of the set (number of

elements). The choice of the angles is usually limited to angles as a multiple of 45˚ (0˚, 45˚, 90˚,

135˚) allowing direct use of intensity values without any interpolation (as GLRLM is rotation-

ally invariant). To reduce dimensionality, for any given image a single GLRLM from all four
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angles is calculated. Utilizing the original run length matrix P(i, j, θ), texture characteristics

can be defined as:

Short Run Emphasis ¼
1

nr

PM
i¼1

PN
j¼1

p ði; jÞ
j2
¼

1

nr

PN
j¼1

pr ðiÞ
j2

ð63Þ

Long Run Emphasis ¼
1

nr

PM
i¼1

PN
j¼1
p ði; jÞ : j2 ¼

1

nr

PN
j¼1
pr ðiÞ : j

2 ð64Þ

Gray Level Non � Uniformity ¼
1

nr

PM
i¼1
ð
PN

j¼1
p ði; jÞÞ2 ¼

1

nr

PM
i¼1
pg ðiÞ

2
ð65Þ

Run Percentage ¼
nr
np

ð66Þ

Run Length Non � Uniformity ¼
1

nr

PN
j¼1
ð
PM

i¼1
p ði; jÞÞ2 ¼

1

nr

PN
j¼1
pr ðiÞ

2
ð67Þ

Low Gray Level Run Emphasis ¼
1

nr

PM
i¼1

PN
j¼1

p ði; jÞ
i2
¼

1

nr

PM
i¼1

pg ðiÞ
i2

ð68Þ

High Gray Level Run Emphasis ¼
1

nr

PM
i¼1

PN
j¼1
p ði; jÞ : i2 ¼

1

nr

PM
i¼1
pg ðiÞ : i

2 ð69Þ

In above equations, nr represents the total number of runs and np represents the total num-

ber of pixels in the image.

Using Gabor filters for texture characterization. For 2D images (spatial Gabor filter),

convolution is used for applying Gabor filters where varying kernels are defined as Gaussian

kernels modulated by a sinusoid [59, 60]. Using Cartesian basis as the center, these kernels are

defined based on an abscissa with orientation θ. Gaussian and sinusoid components of the

Gabor filter Kθ,σ,γ,λ,φ can be customized independently. Gabor filter Kθ,σ,γ,λ,φ is defined as:

Ky;s;g; l;φ x ; yð Þ ¼ exp �
x2 þ g2y2

2s2

� �

cos 2p
x
l
þ φ

� �
ð70Þ

Where the Gaussian component is customized by its deviation σ and a spatial aspect ratio

γ defining the ellipticity of the circular Gaussian and the sinusoid is customized by a spatial

wavelength λ and a phase offset ϕ. The Gabor kernel is expressed using the orientation θ and

with a change of scale defined by the size of pixel (vx,vy) and by a translation of the center of

the kernel (ic,jc) as:

Ky;s;g; l;φ i ; jð Þ ¼ exp �
x02 þ g2y02

2s2

� �

cos 2p
x0

l
þ φ

� �

ð71Þ

Where:

x0 ¼ ði � icÞvxcosyþ ðj � jcÞvysiny ð72Þ

y0 ¼ ði � icÞvxsinyþ ðj � jcÞvycosy ð73Þ
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A Gabor kernel is made of parallel stripes with different weights inside an ellipsoidal enve-

lope with the parameters of the kernel controlling the size, the orientation and the position of

these stripes. The wavelength λ, specified in pixels, represents the wavelength of the filter. This

value is used for scaling the stripes whereas by modifying the wavelength, the overall size of the

stripes is modified with the stripes keeping the same orientation and relative dimensions. This

wavelength should be more than two and is often chosen to be less than the fifth of the image

dimensions (because of the influence of image borders).

The angle of the parallel stripes is specified using the orientation θ. By modifying θ, the

kernel can be rotated and oriented at the desired position. The shift of the cosine factor is repre-

sented by the phase offset ϕ. The symmetry of the kernel is determined by ϕ whereas by modify-

ing the shift, positions of the inhibitory and excitatory stripes changes. The kernel is symmetric

for a phase shift of ϕ = 0 and asymmetric for a phase shift of ϕ = π/4. Ellipticity is represented

using the aspect ratio γ. The bandwidth b is used as a replacement for the Gaussian deviation σ
[61, 62]. For extracting Gabor features, an image R(x,y) is defined where the input image I(x,y)
is convolved with every Gabor filter g(x,y) from the banks of available filters as [63, 64]:

Rðx; yÞ ¼ gðx; yÞ � Iðx; yÞ
PM� 1

m¼0

PN� 1

n¼0
gðm; nÞ � Iðx � m; y � nÞ ð74Þ

Where � denotes 2D linear convolution andM and N are the size of the Gabor filter mask.

The local squared energy E(x,y) of the filtered image can be obtained by computing the abso-

lute mean deviation of the transformed values in the filtered images from the mean μ within a

windowW of sizeMxMy as:

E x; yð Þ ¼

�
1

M
P
ða;bÞ2W jRða; bÞ � mj

�2

ð75Þ

Local responses from each one of the Gabor filters can also be represented in terms of

amplitude A(x,y) defined as:

Aðx; yÞ ¼ jRðx; yÞj ð76Þ

To reduce dimensionality, for each scale λ a single mean value for squared energy and

amplitude is calculated in this study.

Feature selection

As many of the extracted image features can be redundant or correlated, resulting in reduced

performance in many classification methods, feature selection should be used for identifying

the most prominent and informative features. Feature selection increases the classification

accuracy by identifying the most discriminant features and their combination that might oth-

erwise be hidden or contaminated by noisy features in a large feature vector. Another problem

to consider during feature selection is the fact that the combinations of individually good fea-

tures might not necessarily result in a good classification performance. In other words, “them
best features are not the bestm features” [65]. It is likely that features selected using Max-Rele-

vance criterion would have a high degree of redundancy, i.e. these features could have high

dependency amongst them. This redundancy between features can result in a classifier with

less than optimal performance. In this study, “minimal-redundancy-maximal-relevance”

(mRMR) method proposed by [65] has been utilized for selecting the best set of features. The

mRMR approach selects the most informative features using the maximal relevance criterion

based on mutual information while minimizing the redundancy between the features and has

gained wide popularity, especially in biomedical data analysis.
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AdaBoost classifier

Introduced by Freund and Schapire [66], Adaptive Boosting known as AdaBoost is a super-

vised machine learning technique that constructs a strong classifier by combining a set of low-

level classifiers (known as weak learners) with low discrimination ability. The AdaBoost algo-

rithm has become very popular in problems related to computer vision and medical imaging

as it is simple to implement and is relatively fast. The AdaBoost algorithm can be easily applied

to many problems without the need for extensive tuning. Only the number of training itera-

tions needs to be defined, along with a set of weak learners. Moreover, the AdaBoost algorithm

can quickly calculate the results of classification, this is especially useful in methods having lots

of classifications. Given a training set, composed of features (samples) with ground truth clas-

ses, AdaBoost constructs a strong classifier by combining multiple weak learners in a coarse-

to-fine approach. Although AdaBoost can be applied to multi-class classification problems, the

context of this work only requires binary classification, therefore binary AdaBoost classifica-

tion will be discussed. Given a training set X comprised of features and their classes (xi, yi), the

goal of the AdaBoost algorithm is the construction of a strong classifier H that provides rules

to predict the class of a sample xi in the training set X with good accuracy. Given a set of weak

learners fhjgj and a maximum number of learning iterations T, the algorithm constructs this

classifier H as a weighted sum of t weak learners balanced by their weights αt. It should be

noted that a certain weak learner might be used more than once while some available weak

learners might remain unutilized.

The AdaBoost learning process is based on defining a classifier that minimizes the predic-

tion error for the training set X. This minimization problem could be considered as identifying

a set of weights ai along a set of weak learners {h1,. . .,hT} that minimize the classification error

on the training set. As the expected class yi is given for each sample xi, classification error is

well defined. The main idea behind the learning process is to begin by classifying the easiest

cases and then shifting the focus on more difficult cases. This process is based on a distribution

Dt that assigns a weight to each training sample xi. During the learning process, the weights for

well classified samples will decrease while the weights for misclassified samples will increase,

thus shifting the focus on more difficult samples. The learning process is iterative, containing

three main steps as shown in Algorithm 1.

Algorithm 1. AdaBoost classifier.

Given X = {(x1,y1),. . .,(xm,ym)} where xi 2 X, yi 2 Y, xi and yi 2 {−1,+1}

for each training round t= {1, . . ., T}

1. Train a weak learner ht using distribution Dt

2. Choose at ¼
1
2

ln 1� �t
�t

where �t ¼
Pm

i¼1DtðiÞ½ðhtðxiÞ 6¼ yiÞ�

3. Update distribution as:

Dtþ1 ið Þ ¼
DtðiÞ
Zt
�

exp� at if htðxiÞ ¼ yi
expat if htðxiÞ 6¼ yi

(

end

Where Zt ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tð1 � �tÞ

p
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First, a proper weak learner ht should be chosen with an error smaller than 0.5 for the cur-

rent distribution Dt. Then the error εt is calculated with respect to the current distribution Dt
and later used to define the weight αt for the weak learner ht. Finally, a new distribution Dt+1

is calculated to focus more on samples that were not correctly classified during the step t while

reducing the importance of correctly classified samples. A normalization term Zt is also used

so that Dt+1 remains as a distribution. Often, samples are gives an equal weight at the initial

distribution. However, in some cases such as in an unbalanced training set, the distribution

might also be used to give some samples more weights. The algorithm stops when there is no

error or when no weak learner has an error smaller than 0.5, as the classification accuracy can-

not be improved on the training set. In the first instance, classification is already perfect in the

training set, thus no further improvement is possible and in the second instance, the addition

of more weak learners will not reduce the classification error. It should be noted that a tree-

based week learner has been utilized in this study.

Postprocessing

Due to the noise or anatomical structures that might be present in fundus images, there might

be small blob-like regions of unconnected pixels wrongly identified as vessels (especially in

pathological images). As a result, the final segmented image is cleaned by removing non-elon-

gated and unconnected regions comprised of less than 30 pixels.

Performance measures

Definitions of true and false positive/negative.

• True positive: Vessel pixel correctly segmented as vessel pixel (TP)

• False positive: Non-vessel pixel segmented as vessel pixel (FP)

• True negative: Non-vessel pixel correctly segmented as non-vessel pixel (TN)

• False negative: Vessel pixel segmented as non-vessel pixel (FN)

Sensitivity. Sensitivity represents the probability that the segmentation method will cor-

rectly identify vessel pixels. Sensitivity is computed as:

Sensitivity ¼ ðtotal TPÞ=ðtotal TPþ total FNÞ ð77Þ

Specificity. Specificity is the probability that the segmentation method will correctly iden-

tify non-vessel pixels. Specificity is computed as:

Specificity ¼ ðtotal TNÞ=ðtotal TNþ total FPÞ ð78Þ

The final classifier is the defined as:

HðxÞ ¼ sign
XT

t¼1

athtðxÞ

 !
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Accuracy. Accuracy represents the overall performance of a segmentation method. Accu-

racy is computed as:

Accuracy ¼ ðtotal TPþ total TNÞ=ðtotal TPþ total FPþ total TNþ total FNÞ ð79Þ

Area under a receiver operating characteristic curve. The area under a receiver operat-

ing characteristic curve (AUC), also known as AUROC, shows the performance of the segmen-

tation method and is determined based on the trade-offs between sensitivity and specificity

[67]. It should be noted that an AUC of 0.50 or less means that the segmentation algorithm is

based purely on random guessing and an AUC of 1 means that the segmentation algorithm is

able to segment all pixels correctly with respect to provided ground truth segmentation.

Results and discussion

In this study, like most of the previous studies, the performance of the proposed vessel segmen-

tation method is compared to the provided ground truth segmentations by the first observer

(referred to as the first expert in some publications) in all datasets and the test set of the

DRIVE dataset. While DRIVE dataset includes separate training and testing sets, training the

classifier for use in STARE and CHASE_DB1 datasets is done differently as they do not have a

separate training set. Currently, there are two popular approaches for training a classifier on

STARE dataset. The first approach is based on the leave-one-out concept [15, 27] where one

image is selected as test data and the classifier is trained using other images in the dataset with

all the possible pixels used for the training, this process is repeated by changing the test image

till all images in the dataset have been used once for testing. Second approach that is more pop-

ular (also used in this study) is based on randomly selecting a small number of pixels in each

image and training the classifier using these samples with the use of 0.5% [26], 1% [35], 2%

[28] and 6% [68] of the total pixels available in the dataset being suggested by different authors.

In this study, a subset of 1% of randomly selected pixels inside the FOV from each image from

STARE dataset and a subset of 5% of randomly selected pixels inside the FOV from each

image from DRIVE training set is used for training the classifier as suggested by [35]. For

CHASE_DB1 dataset, like the STARE dataset, a subset of 1% of randomly selected pixels inside

the FOV from each image was used for training the classifier.

It should be noted that since the FOV masks are not provided in STARE and CHASE_DB1

datasets and to make the proposed method compatible with other datasets, FOV masks used

were generated automatically and no dataset supplied FOV mask was used in this study.

Table 1 illustrates the effects of different window sizes used for extracting image features on

the classification accuracy using four randomly selected images from each of the datasets.

Table 2 shows the accuracy implications of using different distances for calculating GLCM

matrices computed on a 5×5 window utilizing an AdaBoost classifier with 200 learning cycles

and 5-fold cross-validation using the same samples. As seen, the best segmentation accuracy

can be achieved by using a window of 3×3 pixels and GLCM distance of one pixel.

The accuracy of different classification concepts was compared for selecting the most

appropriate classification method for vessel segmentation using the same set of four randomly

selected images from each of the datasets using 5-fold cross-validation with the AdaBoost clas-

sifier being the most accurate, as illustrated in Fig 10. As discussed, the accuracy of any classi-

fier can be increased by selecting the most appropriate set of features and removing the

redundant features. Table 3 illustrates different feature combinations sorted using the mRMR

method and their effect on classifier accuracy using an AdaBoost classifier with 5-fold cross-

validation. It should be noted that each feature combination contains all the features listed
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before that combination using the same set of four randomly selected images from each of the

datasets. As seen, a combination of 10 features can result in the best overall classification accu-

racy while reducing the computational time by an average of 70.74%.

Table 1. Effects of varying the feature extraction window size on classifier accuracy.

Window Size (pixels) Sensitivity Specificity Accuracy

3×3 0.812425 0.950528 0.932100

5×5 0.804419 0.939632 0.922397

7×7 0.796018 0.915613 0.900553

9×9 0.814860 0.894425 0.884507

11×11 0.812207 0.871491 0.864167

13×13 0.807586 0.852919 0.847372

15×15 0.807140 0.832814 0.829701

17×17 0.810933 0.810378 0.810445

19×19 0.805950 0.790771 0.792581

21×21 0.797988 0.776182 0.778764

23×23 0.793468 0.761018 0.764832

25×25 0.779191 0.749188 0.752695

https://doi.org/10.1371/journal.pone.0188939.t001

Table 2. Effects of varying GLCM distance on classifier accuracy computed on a 5×5 window.

GLCM Distance Sensitivity Specificity Accuracy

1 0.732950 0.867996 0.850784

2 0.744058 0.840802 0.828467

3 0.709562 0.731677 0.728860

4 0.522021 0.843146 0.475131

https://doi.org/10.1371/journal.pone.0188939.t002

Fig 10. Retina vessel segmentation accuracy of different classifiers using 5-fold cross-validation on sample data.

https://doi.org/10.1371/journal.pone.0188939.g010
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As mentioned before, the length (the number of components) of an AdaBoost classifier is

determined by the maximum number of learning cycles given by the user during the learning

process. As the AdaBoost method is based on a coarse-to-fine approach, adding components

in later learning cycles of the training process can not only result in a low increase in the over-

all quality of classification, it can also increase the classification error. Thus, an optimal num-

ber of components (length) of an AdaBoost classifier should be determined using a validation

step. This optimal length can be determined by finding the number of components of the

classifier whereby adding more components, no improvement on generalization error can

be seen. Fig 11 illustrates the generalization error for an AdaBoost classifier for vessel classifi-

cation using 1,250 learning cycles using the same set of four randomly selected images using

Table 3. Different combinations of features and their effect on vessel segmentation accuracy. It should be noted that each feature combination con-

tains all the features listed before that combination.

Feature combinations Features Sensitivity Specificity Accuracy

1 Mean (intensity based) 0.773662 0.943587 0.919794

2 Cluster Prominence 0.853639 0.960726 0.945732

3 Run Length Non-Uniformity 0.863320 0.959784 0.946277

4 Gabor Mean Amplitude 0.858323 0.962049 0.947525

5 Low Gray Level Run Emphasis 0.858146 0.962143 0.947581

6 Difference Entropy 0.853626 0.963128 0.947795

7 Variance (intensity based) 0.854103 0.965016 0.949486

8 Sum of Squares: Variance 0.862384 0.959996 0.946328

9 Correlation II 0.853880 0.965101 0.949528

10 Gray Level Non-Uniformity 0.849457 0.966444 0.950063

11 Gabor Energy 0.874741 0.961355 0.949227

12 Contrast 0.852045 0.965521 0.949632

13 Energy 0.860752 0.964309 0.949809

14 Cluster Shade 0.871492 0.959857 0.947484

15 Homogeneity II 0.857430 0.961684 0.947086

16 Kurtosis 0.860113 0.960604 0.946533

17 Sum Variance 0.860113 0.960604 0.946533

18 Sum Entropy 0.849739 0.966287 0.949967

19 Information Measure of Correlation I 0.882341 0.958801 0.948095

20 Inverse Difference Normalized (INN) 0.874438 0.961006 0.948884

21 Skewness 0.868617 0.959980 0.947187

22 Information Measure of Correlation II 0.853262 0.962518 0.947220

23 Correlation I 0.870344 0.961700 0.948909

24 High Gray Level Run Emphasis 0.849505 0.965484 0.949244

25 Maximum Probability 0.870132 0.961736 0.948910

26 Sum Average 0.855573 0.962344 0.947394

27 Inverse Difference Moment Normalized 0.851663 0.964779 0.948940

28 Homogeneity I 0.856874 0.964978 0.949841

29 Long Run Emphasis 0.852692 0.964942 0.949224

30 Entropy 0.872157 0.959683 0.947427

31 Autocorrelation 0.851201 0.965210 0.949247

32 Dissimilarity 0.850687 0.965320 0.949269

33 Difference Entropy 0.850428 0.965386 0.949289

34 Short Run Emphasis 0.850653 0.965192 0.949154

35 Run Percentage 0.852630 0.965121 0.949370

https://doi.org/10.1371/journal.pone.0188939.t003
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5-fold cross-validation with 10 selected features per pixel (90% of samples were used for train-

ing and 10% were used for testing the classifier). As seen, by increasing the number of compo-

nents the error decreases till 1100 components whereas the error begins to increase by adding

more components. Based on validation results, training the classifier using 1080 learning

cycles offers the best classification accuracy in this study.

This validation step offers many advantages. First, it improves the noise tolerance of the

classifier. If some noise is present in the training set, these noisy samples are used in later stages

of the learning process due to the coarse-to-fine approach of the AdaBoost classifier. Thus, by

determining the optimal number of learning cycles, the influence of these noisy samples on

overall classification function might be minimized. Then, the validation can be used for reduc-

ing classifier over-fitting by identifying the optimum number of learning cycles. Finally, the

classification process will be faster as the classifier will not perform unnecessary computations.

It should be noted that the proposed method was implemented in MATLAB R2016a using an

Intel Core i7-3370 3.4GHz CPU coupled with 8 gigabytes of RAM with average classifier train-

ing time of 260 minutes per dataset.

Table 4 shows the performance of the proposed method compared to other state of the art

segmentation methods for DRIVE and STARE datasets. Table 5 compares the performance of

the proposed method and other state of the art segmentation methods that used CHASE_DB1

dataset. It should be mentioned that the first observer in DRIVE and CHASE_DB1 datasets

has segmented thinner vessels compared to the second observer resulting in low sensitivity

and high specificity while the second observer has segmented thinner vessels compared to the

first observe in STARE dataset, resulting in high sensitivity and low specificity. Please note that

the use of the character “-” in Tables imply that the performance metric was not implemented

by the authors in their respective paper.

The results obtained on the DRIVE dataset shows that the proposed method is amongst the

top methods with an accuracy of 0.9722, sensitivity of 0.8726 and specificity of 0.9884. In the

Fig 11. Generalization error for AdaBoost classifier using 5-fold cross-validation on sample data.

https://doi.org/10.1371/journal.pone.0188939.g011
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Table 4. A comparison between different retinal vessel segmentation methods evaluated using DRIVE and SATRE datasets.

Method DRIVE STARE

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

Second observer 0.7796 0.9717 0.9464 0.9466 0.8955 0.9382 0.9347 0.9686

Unsupervised segmentation methods

Zhao et al. [69] 0.7354 0.9789 0.9477 - 0.7187 0.9767 0.9509 -

Azzopardi et al. [17] 0.7656 0.9704 0.9442 0.9614 0.7716 0.9701 0.9497 0.9563

You et al. [29] 0.7410 0.9751 0.9434 - 0.7260 0.9756 0.9497 -

Fraz et al. [70] 0.7152 0.9759 0.9430 - 0.7311 0.9680 0.9442 -

Lam et al. [71] - - - - - - 0.9567 0.9739

Al-Diri et al. [72] 0.7282 0.9551 - - 0.7521 0.9681 - -

BahadarKhan et al. [19] 0.746 0.980 0.961 0.863 0.758 0.963 0.946 0.861

Wang et al. [13] - - 0.9461 0.9543 - - 0.9521 0.9682

Khan et al. [16] 0.7155 0.9805 0.9579 - 0.7728 0.9649 0.9518 -

Miri et al. [73] 0.7352 0.9795 0.9458 - - - - -

Supervised segmentation methods

Staal et al. [23] - - 0.9441 0.9520 - - 0.9516 0.9614

Soares et al. [15] 0.7332 0.9782 0.9461 0.9614 0.7207 0.9747 0.9479 0.9671

Lupascu et al. [27] 0.720 - 0.9597 0.9561 - - - -

Marı́n et al. [24] 0.7067 0.9801 0.9452 0.9588 0.6944 0.9819 0.9526 0.9769

Wang et al. [13] - - 0.946 - - - 0.952 -

Ricci et al. [26] - - 0.9595 0.9633 - - 0.9646 0.9680

Fraz et al. [25] 0.7406 0.9807 0.9480 0.9747 0.7548 0.9763 0.9534 0.9768

Cheng et al. [68] 0.7252 0.9798 0.9474 0.9648 0.7813 0.9843 0.9633 0.9844

Aslani et al. [35] 0.7545 0.9801 0.9513 0.9682 0.7556 0.9837 0.9605 0.9789

Niemeijer et al. [22] - - 0.9416 0.9294 - - - -

Zhu et al. [31] 0.7140 0.9868 0.9607 0.9086 - - - -

Zhu et al. [32] 0.7462 0.9838 0.9618 0.9419 - - - -

Han et al. [74] 0.6770 0.9871 0.9473 - 0.7043 0.9869 0.9573 -

Wang et al. [28] 0.8173 0.9733 0.9767 0.9475 0.8104 0.9791 0.9813 0.9751

Peng et al. [75] - - - - 0.7256 0.9750 0.9492 -

Maharjan et al. [76] 0.6411 0.9625 0.9349 - 0.6162 0.9615 0.9353 -

Rodrigues et al. [77] 0.7654 0.9789 0.9607 - 0.6120 0.9787 0.9406 -

Proposed Method 0.8726 0.9884 0.9722 0.9795 0.8085 0.9798 0.9514 0.9701

https://doi.org/10.1371/journal.pone.0188939.t004

Table 5. A comparison between different retinal vessel segmentation methods evaluated using CHASE_DB1 dataset.

Method Sensitivity Specificity Accuracy AUC

Second observer 0.767 0.985 0.969 0.9451

Fraz et al. [70] (supervised) 0.722 0.971 0.946 0.9712

Azzopardi et al. [17] 0.758 0.958 0.938 0.9487

Frangi et al. [52] 0.897 0.663 0.920 -

Chaudhuri et al. [5] 0.282 0.926 0.848 -

Chanwimaluang et al. [78] 0.508 0.943 0.913 -

Chakraborti et al. [79] 0.528 0.959 0.929 -

Proposed Method 0.8192 0.9591 0.9482 0.9436

https://doi.org/10.1371/journal.pone.0188939.t005
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case of the results obtained from STARE dataset, with an accuracy of 0.9514, sensitivity of

0.8085 and specificity of 0.9798, the proposed method is amongst the top methods proposed

for retinal vessel segmentation. Although the CHASE_DB1 dataset has received less interest

from researchers, the proposed method was also amongst the top methods proposed and eval-

uated using CHASE_DB1 dataset with an accuracy of 0.9482, sensitivity of 0.8192 and specific-

ity of 0.9591. The proposed method was able to achieve a higher AUC value compared to most

other methods on DRIVE, STARE and CHASE_DB1 datasets with AUC of 0.9795, 0.9701 and

0.9436, respectively.

Moreover, the results show that the proposed method was more accurate than the segmen-

tation provided by the second human observer for DRIVE and STARE datasets while being

very close to the segmentation provided by the second human observer in CHASE_DB1 data-

set. The results achieved are comparable to most supervised and unsupervised segmentation

methods from the literature. The low interest for including CHASE_DB1 dataset in the devel-

opment of vessel segmentation methods and lower segmentation accuracy observed in this

dataset can be attributed to the non-uniform illumination in the background coupled with

central vessel reflexes on some images and the low overall contrast between vessels, making

accurate segmentation a challenging task. Although it is possible to increase the segmentation

accuracy of the proposed method by adjusting the parameters for preprocessing and feature

extraction/selection separately for each of the datasets, the goal of the study was to identify an

optimal set of features, preprocessing and segmentation parameters that could be used on a

variety of datasets and images.

For ensuring the robustness of supervised segmentation methods, a cross-training/testing

approach is commonly used where a classifier is trained using one dataset and tested on

other datasets and vice-versa. From a practical standpoint, this cross-training/testing can be a

Table 6. The segmentation performance of the proposed method in case of cross-training/testing.

Dataset Sensitivity Specificity Accuracy AUC

DRIVE Trained on STARE 0.8390 0.9915 0.9701 0.9835

Trained on CHASE_DB1 0.7511 0.9949 0.9608 0.9875

STARE Trained on DRIVE 0.8488 0.9682 0.9484 0.9541

Trained on CHASE_DB1 0.7182 0.9862 0.9418 0.9698

CHASE_DB1 Trained on DRIVE 0.7735 0.9392 0.9224 0.9201

Trained on STARE 0.7082 0.9556 0.9305 0.9077

https://doi.org/10.1371/journal.pone.0188939.t006

Table 7. A comparison between the average accuracy of different segmentation methods with cross-

training/testing.

Method DRIVE

Trained on STARE

STARE

Trained on DRIVE

Soares et al. [15] 0.9397 0.9327

Ricci et al. [26] 0.9266 0.9452

Marı́n et al. [24] 0.9448 0.9526

Fraz et al. [25] 0.9456 0.9495

Cheng et al. [68] 0.9384 0.9476

Aslani et al. [35] 0.9496 0.9545

Wang et al. [28] 0.9803 0.9710

Proposed Method 0.9701 0.9484

https://doi.org/10.1371/journal.pone.0188939.t007
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good measure of the effectiveness of supervised segmentation on unseen data with Table 6

illustrating the segmentation accuracy in case of this cross-training/testing. A total of 5%, 1%

and 1% of the previously selected random pixels from DRIVE (train set), STARE and CHAS-

E_DB1 datasets were used for training the classifiers, respectively. Table 7 compares the accu-

racy of different supervised methods proposed for retinal vessel segmentation in the case of

Fig 12. ROC curve of the proposed classifier. (a) DRIVE, (b) STARE and (c) CHASE_DB1 (CHASE) datasets.

https://doi.org/10.1371/journal.pone.0188939.g012
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cross-training/testing. As seen, the accuracy obtained for cross-training/testing is comparable

to other methods from the literature with an accuracy of 0.9701 for DRIVE dataset trained

using STARE dataset and an accuracy of 0.9484 for STARE dataset trained using DRIVE data-

set. The proposed method can be considered independent of the training data as it did not

show a considerable drop in accuracy compared to some other methods from the literature.

The ROC curves of the proposed segmentation method for DRIVE, STARE and CHASE_DB1

datasets are illustrated in Fig 12. Table 8 shows the average segmentation time required by dif-

ferent vessel segmentation methods computed per image.

Figs 13 and 14 illustrate a visual comparison between the vessel segmentation performance

of the proposed method and other state of the art methods for a sample image from DRIVE

and STARE datasets, respectively. As seen, the proposed method was able to provide acceptable

segmentation accuracy with low levels of noise and segmentation artifacts. Although the visual

comparison is subjective, it can still be used to highlight the advantages and disadvantages of

different segmentation approaches. As illustrated, thin vessels and the noise in the images can

be considered as the main challenges in retinal vessel segmentation. Another advantage of the

proposed method can be seen in pathological retinal images where vessel pixels can be easily

identified as non-vessels, degrading the usefulness of the segmentation. As illustrated in Fig 15,

the proposed method could provide less noisy segmentation compared to other methods from

the literature on some sample pathological retinal images from STARE dataset.

Conclusions

Vessel segmentation can be considered as an important step toward automated retina analy-

sis tools. The segmented vessels can be used for advance retina image analysis such as com-

puting the vessel tortuosity and diameter, differentiating arteries and veins along with

Table 8. A comparison between the average processing time of different segmentation methods per image.

Method Average processing time per

image

Computational resources Development

environment

Khan et al. [16] 10.6 seconds Intel Core i3 CPU running at 2.53 GHz, 4 GB RAM MATLAB

BahadarKhan et al. [19] 1.5 seconds MATLAB

Dai et al. [80] 1 minutes and 46 seconds MATLAB

Zhao et al. [46] 4.6 seconds MATLAB & C++

Mapayi et al. [81] 2.6 seconds Intel Core i5 CPU running at 2.30GHz, 4GB RAM MATLAB

Asad et al. [82] 2 minutes and 45 seconds Intel Core i3 CPU running at 2.53 GHz, 3 GB RAM MATLAB

Lam et al. [83] 13 minutes Intel Core2duo CPU running at 1.83 GHz, 2 GB

RAM

Not mentioned

Al-Diri et al. [72] 11 minutes Intel Pentium 4 CPU running at 1.2 GHz MATLAB

Staal et al. [23] (supervised) 15 minutes Intel Pentium 4 CPU running at 1.0 GHz, 1 GB RAM Not mentioned

Marı́n et al. [24] (supervised) 1.5 minutes Intel Core2duo CPU running at 2.13 GHz, 2 GB

RAM

Not mentioned

Fraz et al. [25] (supervised) 2 minutes Intel Core i3 CPU running at 2.27 GHz, 4 GB RAM MATLAB

Sofka and Stewart [84]

(supervised)

2.3 seconds Intel Core i5-M480 CPU running at 2.67 GHz, 4 GB

RAM

C++

Soares et al. [15] (supervised) 18.7 seconds MATLAB & C++

Bankhead et al. [12] 15 seconds MATLAB & C++

Vlachos et al. [85] 6.5 seconds MATLAB

Azzopardi et al. [17] 7.5 seconds MATLAB & C++

Nguyen et al. [86] 4.6 seconds MATLAB

Proposed method 8.2 minutes MATLAB

https://doi.org/10.1371/journal.pone.0188939.t008
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measuring the arteriovenous ratio. Moreover, segmented vessels are routinely used as fea-

tures in retinal disease classification systems that are used for identification of several sys-

tematic diseases such as stroke, hypertension or diabetes, to name a few. In this paper, a

supervised retinal vessel segmentation algorithm based on matched filters and AdaBoost

Fig 13. A visual comparison between different retinal vessel segmentation methods on a sample image from DRIVE dataset. (a) color

fundus image, (b) manual segmentation by second observer, (c) manual segmentation by first observer, (d) proposed segmentation, (e) Wang

et al. [28], (f) Marı́n et al. [24], (g) Aslani et al. [35], (h) Han et al. [74], (i) Maharjan et al. [76].

https://doi.org/10.1371/journal.pone.0188939.g013
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classifier is proposed. The image is enhanced using morphological operations, the contrast is

increased utilizing CLAHE method and the image inhomogeneity is corrected by Retinex

approach. Then, a combination of B-COSFIRE and Frangi matched filters are used to

enhance the blood vessel network. From this enhanced image, using a sliding window, dif-

ferent pixel-wise statistical features are computed. Utilizing mRMR feature selection, a

set of features were selected for use in an AdaBoost classifier while keeping the features as

small as possible without sacrificing the segmentation accuracy. The proposed method could

handle pathological retina images and produces good segmentation, especially in thinner

vessels. The proposed segmentation method was validated on publicly accessible datasets

using common validation metrics where the results in DRIVE (Sensitivity = 0.8726, Specific-

ity = 0.9884), STARE (Sensitivity = 0.8085, Specificity = 0.9798) and CHASE_DB1 (Sensitiv-

ity = 0.8192, Specificity = 0.9591) datasets were shown to be comparable to all supervised

and unsupervised methods from the literature.

Algorithm availability

The data used to test the algorithm with source code and MATLAB implementation of algo-

rithms used in Table 8 are included as supporting information. The DRIVE, STARE and

CHASE_DB1 datasets are available at http://www.isi.uu.nl/Research/Databases/DRIVE/,

http://www.ces.clemson.edu/~ahoover/stare/ and https://blogs.kingston.ac.uk/retinal/

chasedb1/, respectively.

Fig 14. A visual comparison between different retinal vessel segmentation methods on a sample image from STARE dataset. (a) color

fundus image, (b) manual segmentation by first observer, (c) proposed segmentation, (d) Peng et al. [75], (e) Hoover et al. [36] and (f) Soares et al.

[15].

https://doi.org/10.1371/journal.pone.0188939.g014
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Supporting information

S1 File. Data used to test the algorithm.

(RAR)

S1 Link. MATLAB implementation of Bankhead et al. [12] available at http://

petebankhead.github.io/ARIA/.

(RAR)

S2 Link. Source code of Sofka and Stewart [84] available at https://www.cs.rpi.edu/~sofka/

vessels_exec.html.

(RAR)

Fig 15. A visual comparison between different retina vessel segmentation methods on sample pathological images from STARE

dataset. (a) color fundus image, (b) manual segmentation by first observer, (c) proposed segmentation, (d) Rodrigues et al. [77], (e) Aslani et al.

[35], (f) Wang et al. [28], (g) Han et al. [74].

https://doi.org/10.1371/journal.pone.0188939.g015
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S3 Link. MATLAB implementation of Soares et al. [15] available at https://sourceforge.

net/projects/retinal/.

(RAR)

S4 Link. MATLAB implementation of Vlachos et al. [85] available at https://

matlabfreecode.wordpress.com/2013/02/27/detection-of-vessels-in-eye-retina-using-line-

tracking-algorithm-with-matlab-code/.

(RAR)

S5 Link. MATLAB implementation of Azzopardi et al. [17] available at http://www.

mathworks.com/matlabcentral/fileexchange/37395.

(RAR)

S6 Link. MATLAB implementation of Nguyen et al. [86] available at http://people.eng.

unimelb.edu.au/thivun/projects/retinal_segmentation/.

(RAR)
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