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The Retinal Pigment Epithelium: a Convenient 
Source of New Photoreceptor cells?

Shu-Zhen Wang, PhD, Run-Tao Yan, PhD
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Recent success in restoring visual function through photoreceptor replacement in mouse 
models of photoreceptor degeneration intensifies the need to generate or regenerate 
photoreceptor cells for the ultimate goal of using cell replacement therapy for blindness 
caused by photoreceptor degeneration. Current research on deriving new photoreceptors 
for replacement, as regenerative medicine in general, focuses on the use of embryonic 
stem cells and induced pluripotent stem (iPS) cells to generate transplantable cells. 
Nonetheless, naturally occurring regeneration, such as wound healing, involves 
awakening cells at or near a wound site to produce new cells needed to heal the 
wound. Here we discuss the possibility of tweaking an ocular tissue, the retinal pigment 
epithelium (RPE), to produce photoreceptor cells in situ in the eye. Unlike the neural 
retina, the RPE in adult mammals maintains cell proliferation capability. Furthermore, 
progeny cells from RPE proliferation may differentiate into cells other than RPE. The 
combination of proliferation and plasticity opens a question of whether they could be 
channeled by a regulatory gene with pro-photoreceptor activity towards photoreceptor 
production. Studies using embryonic chick and transgenic mouse showed that indeed 
photoreceptor-like cells were produced in culture and in vivo in the eye using gene-
directed reprogramming of RPE cells, supporting the feasibility of using the RPE as a 
convenient source of new photoreceptor cells for in situ retinal repair without involving 
cell transplantation.
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INTRODUCTION

Photoreceptors are the primary neurons in 
the vertebrate retina and their degeneration 
underlies many forms of visual impairment. 
Studies using mouse models of photoreceptor 
degeneration have demonstrated successful 
rescue or restoration of visual function through 
transplantation of photoreceptor cells harvested 
from young retina or generated in vitro from 
mouse stem cells.1-3 This has generated great 

excitement in the vision community and in the 
general public. At the same time, it has heightened 
the scientific and societal importance of defining 
a reliable source of new photoreceptor cells.

Current research on deriving new 
photoreceptors for replacement, as regenerative 
medicine in general, centers on using embryonic 
stem cells and induced pluripotent stem (iPS) 
cells to generate transplantable cells.4-10 Great 
strikes have been made towards the ultimate 
goal of cell replacement using photoreceptor 
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cells derived from the patient’s own somatic 
cells through iPS cell technology. Nonetheless, 
nature uses a different approach to repair an 
injury. It begins with awakening adult cells 
at the site of a wound to proliferate, followed 
by activating/reactivating cell differentiation 
programs to produce the desired cells. If an in 
vivo regeneration mechanism could be employed 
to produce new photoreceptor cells, then 
photoreceptor replacement could be attainable 
without cell transplantation and associated risks 
and complications.

CHALLENGES FACING PHOTORECEPTOR 
REGENERATION IN THE MATURE 
MAMMALIAN RETINA

Injuries induce photoreceptor regeneration from 
retinal stem cells residing at the ciliary margin 
in teleost fish eyes.11 However, this regeneration 
mechanism seems lacking in mammals.12,13 The 
previously reported presence of retinal stem cells 
in adult ciliary epithelium of the mammalian 
eye14,15 has been contested.16,17 A recent study 
reported the presence of multipotent stem cells 
in the retina of 4-8 weeks old mice that could 
be expanded in vitro for over 35 passages and 
produced different types of cells including 
functional photoreceptor cells.18 It would be 
interesting and important to demonstrate the 
presence of multipotent retinal stem cells in well 
matured and aged mice. Muller glia in various 
species, including mammals, possess certain 
properties of progenitor cells, but their ability 
to efficiently give rise to photoreceptors needs 
to be demonstrated.19-28

ALTERNATIVE OCULAR TISSUES AS A 
SOURCE OF NEW PHOTORECEPTORS

The rather disappointing outcomes from exploring 
the neural retina for photoreceptor regeneration, 
along with the discoveries of multipotent stem 
cells from various tissues in adult mammals, 
have spurred interests in non-neural tissues of 
the eye for photoreceptor genesis. Alternative 
sources being examined include the iris pigment 
epithelium,29-34 the ciliary body,14,15,32,35 the 
limbal epithelium,36 and the retinal pigment 

epithelium (RPE). Excluding the RPE, none of 
the alternatives give rise to a significant number 
of, if any, photoreceptor-like cells. This may 
reflect the biological nature of these tissues; it 
may also stem from the used approaches, as 
few of the studies used a regulatory gene with 
pro-photoreceptor activity to steer uncommitted 
cells toward the photoreceptor path or to initiate 
photoreceptor differentiation program in the 
otherwise non-neural cells.

ATTRACTION OF THE RPE

The anatomical location places the RPE at an 
ideal position for providing new photoreceptors 
to repopulate a damaged retina. The key question 
upfront is whether or not the RPE is biologically 
amenable to a reprogramming scheme to give 
rise to photoreceptor cells. Developmentally, 
the RPE and the neural retina originate from 
the same structure, i.e. the optic vesicle. This 
common origin may facilitate fate changes. 
Indeed, classic experiments have revealed an 
intriguing phenomenon, RPE becoming a neural 
retina, referred to as RPE transdifferentiation. 
In very young chick embryos, physically 
separating the RPE from the neural retina,37 
or surgically removing most of the neural 
retina,38 results in the RPE developing into a 
neural retina. Subsequent investigation led to 
the discovery of bFGF as a stimulus for this 
phenomenal transdifferentiation.39 RPE-to-
neural retina transdifferentiation also occurs 
in amphibians.40-42 In culture, rodent RPE from 
young embryos has been shown to undergo 
RPE-to-retina transdifferentiation.43,44 Mutations 
in regulatory factors involved in regulating 
RPE versus retinal fate or disruptions of bone 
morphogenetic protein (BMP) and Wnt (Int/
wingless) signaling pathways can result in ventral 
RPE transdifferentiation into neural retina.45-52 
Notably, this RPE-to-retina transdifferentiation 
results in the RPE to be no longer present.

The RPE plays important roles in the 
well-being and function of photoreceptor cells 
and the retina as a whole. Dysfunctional RPE 
is believed to be an underlying pathological 
condition in age-related macular degeneration, 
a leading cause of blindness in the elderly in 
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developed countries. Adult mammalian RPE 
is well-known for two biological properties: 
proliferation and plasticity. In the mature eye, 
most cells in the RPE remain quiescent, except 
a small population in the periphery where cell 
proliferation has been observed.53 However, RPE 
cells can re-enter the cell cycle to proliferate 
upon retinal detachment,54-56 when stimulated 
physically,57 or under disease conditions.60-62 
This proliferative response may result in RPE 
regeneration/wound healing.61-65 It may also 
lead to proliferative retinopathy when progeny 
cells from RPE proliferation differentiate into 
cells with tractional force causing retinal 
detachment.66 On the other hand, these very 
traits of proliferation and plasticity raise an 
intriguing possibility of exploring the RPE as 
a source of new photoreceptor cells.

With mounting knowledge on the regulatory 
guidance of photoreceptor production during 
retinal development, an alternative approach 
emerged to produce new photoreceptor 
cells, i.e. reprogramming the RPE by genes 
with pro-photoreceptor activities, to channel 
RPE proliferation and plasticity towards 
photoreceptor production.

RPE-TO-PHOTORECEPTOR 
REPROGRAMMING IN EMBRYONIC 
CHICK CELL CULTURE

The feasibility of channelling RPE proliferation 
and plasticity to photoreceptor production 
using genes that steer unspecified cells toward 
the path of differentiating into photoreceptors 
was first tested with the chick system, taking 
advantage of abundant RPE tissue from chick 
embryos and readily achievable wide-spread 
gene transduction from replication-competent 
retrovirus RCAS. Dissociated RPE cell culture 
was established from chick embryos at day 6 
(E6) and thereafter, stages at which the RPE has 
already lost its competence to undergo the classic 
RPE-to-retina transdifferentiation. Cells in the 
primary RPE cell culture were then infected with 
RCAS expressing a gene with pro-photoreceptor 
activities. Using this system, over 20 regulatory 
genes shown or implicated to be important for 
the development of the eye, the retina, and/

or photoreceptor cells have been screened for 
activities to guide cultured RPE cells to the path 
of differentiating towards photoreceptors.67 The 
screening identified neurogenin1 (ngn1) and 
ngn3 as the two top-performers for eliciting 
RPE-to-photoreceptor reprogramming.67 Both 
genes induced the production of neural clusters 
from otherwise monolayer RPE cell cultures 
(Figures 1A and B)67 and de novo generation 
of large numbers (as high as 80% of the cells 
present in the culture) of cells (referred to as 
reprogrammed cells) positive for photoreceptor 
protein visinin (Figure 1C).67

Molecularly, the reprogrammed cells 
expressed transcription factors crx, nr2e3, 
raxL, RXRγ, and neuroD, which participate in 
initiating the photoreceptor differentiation 
program. Reprogrammed cells also expressed 
components of phototransduction, including 
red opsin, the α-subunit of CNG channels, and 
cone α-transducin. Red opsin+ cells displayed 
dot-like immunostaining at the apices of the 
cells (Figures 1F and G),67 reminiscent of that 
in the retina, indicating proper localization of 
red opsin in the reprogrammed cells.

Morphologically, in contrast to the 
hexagonal RPE cells, visinin+ cells resembled 
young photoreceptor cells, with an elongated cell 
body, an axon-like process, an inner segment-like 
compartment, and a lipid droplet-like structural 
feature (Figure 1D and E).67 Electron microscopy 
showed that reprogrammed cells developed a 
cellular compartment rich in mitochondria, 
resembling the inner segment of photoreceptor 
cells.67 On the apex of the inner segment-like 
structure, reprogrammed cells displayed ciliary 
expansions, reminiscent of the developing outer 
segments of retinal photoreceptors in E17 eye 
or in culture.

Physiologically, light response and visual 
recovery are two hallmarks of photoreceptors. 
Fluorescent calcium imaging showed that 
reprogrammed cells exhibited both hallmarks: 
they responded to light by decreasing their Ca2+ 
levels (Figure 2) and responded to 9-cis-retinal 
by increasing their Ca2+ levels (Figure 3).67 These 
results indicate that reprogrammed cells were 
able to develop advanced photoreceptor traits at 
molecular, structural, and physiological levels.
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IN OVO RPE-TO-PHOTORECEPTOR 
REPROGRAMMING IN EMBRYONIC 
CHICK EYE

To be a convenient source of new photoreceptor 
cells, RPE in the eye needs to be responsive 
to the reprogram scheme. In E7.5 chick eyes, 
either the wild type or those infected with 

control retrovirus RCAS expressing GFP 
(RCAS-GFP), developing photoreceptor cells 
positive for visinin were confined within the 
neural retina at the prospective location of the 
outer nuclear layer (ONL), and the RPE layer 
lacked visinin+ cells (Figures 4A and B).68 In 
embryonic chick eyes infected with retrovirus 
RCAS-ngn3, the RPE layer contained visinin+ 

Figure 1. Photoreceptor-like cells in reprogrammed RPE cell culture derived from day 6 chick embryos. A: Bright field 
view of a control culture infected with RCAS-GFP. B: Bright field view of ngn1 reprogrammed culture (infected with 
RCAS-ngn1) displaying neuron-like clusters (*), which were absent in the control (A). C: Epi-fluorescence view of 
reprogrammed culture immunostained for photoreceptor protein visinin. D, E: Morphologies of visinin+ cells viewed 
with bright field (E) and epi-fluorescence (D). Arrows point to the cell body and arrowheads point to a structural 
feature reminiscent of the lipid-droplet typically present in chick photoreceptors. F: Morphologies of red opsin+ cells in 
ngn1 reprogrammed culture. Arrows point to cell bodies. Arrowheads point to cells’ apices decorated by anti-red opsin 
immunostaining. G: A cell double-labeled for visinin (in red) and red opsin (in blue) in ngn1 reprogrammed culture. 
Scale bars: 50 μm.
[Data are from the authors’ laboratories].
[Modified from Yan et al., 2010. Originally published in Journal of Comparative Neurology; DOI 10.1002/cne.22236].67
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Figure 2. Light responses of reprogrammed cells examined with Ca2+ imaging. A, B: Images before (A) and after 10 
seconds (10 s, B) of light exposure of a control RPE cell culture. C: A bright field view of the control culture. D, E: 
Images of a reprogrammed culture before (D) and after 10 seconds (E) of light exposure. F: A bright field view of 
the reprogrammed culture. Arrows: cells with noticeable reductions in fluorescence intensities. G: Means and SDs of 
calculated integrated optical density (IOD) ratios (IODt/ IOD0) of cell’s fluorescent intensity. Scale bars: 50 μm
[Data from the authors’ laboratories].
[Modified from Yan et al., 2010. Originally published in Journal of Comparative Neurology; DOI 10.1002/cne.22236].67

Figure 3. Response to 9-cis-retinal by reprogrammed cells examined with Ca2+ imaging. A-L: Images of reprogrammed 
cells after light bleaching (A) and at the indicated number of minutes (2’-10’) after sequential administration of 
vehicle control (c, B-F), replacement of medium (G), and then 9-cis-retinal (r, H-L). Arrows: cells showing increases in 
fluorescence intensity. Arrowheads: cells lacking such an increase. M: Means and SDs of calculated integrated optical 
density (IOD) ratios (IODt/IOD0) of cell’s fluorescent intensity. Scale bars: 20 μm.
[Data are from the authors’ laboratories].
[Modified from Yan et al., 2010. Originally published in Journal of Comparative Neurology; DOI 10.1002/cne.22236].67
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cells. This was unequivocally observed in 
regions where the RPE and the retina were 
separated (Figures 4C and D).68 The visinin+ 
cells accounted for ~37.2±4.3% of cells in the 
RPE layer. A thin process could be seen on some 
of the visinin+ cells (arrows in Figures 4E and 
F), indicating they were morphologically more 
similar to neurons than to RPE cells, while other 
visinin+ cells were more RPE-like. Some of the 
visinin+ cells in the RPE layer retained dark 
pigmentation typical of RPE cells (arrowheads 
in Figures 4E and F). In addition, visinin+ cells in 
the RPE predated their presence in the retina.68 
Thus visinin+ cells in the PRE layer likely 
originated from the RPE and possibly were 
in transitional stages in RPE-to-photoreceptor 
switching process.

RPE-TO-PHOTORECEPTOR 
REPROGRAMMING IN TRANSGENIC 
MOUSE

The above results provide compelling 
evidence for the feasibility of reprogramming 
embryonic chick RPE to produce photoreceptors. 
Nonetheless, the study used the chick, a non-
mammalian vertebrate that is evolutionally more 
ancient and may manifest phenotypical changes 
that are lacking in mammals after comparable 
experimental manipulations. To move forward 
towards the ultimate therapeutic goal of inducing 
in situ photoreceptor generation, transgenic 
mice were created with a DNA construct that 
would express ngn1 under the control of RPE 
bestrophin1 (VMD2) promoter69 or ngn3 under 
the control of RPE65 promoter.70 The logic was to 
use ngn1/ngn3 to induce in mouse RPE cells the 
expression of genes that initiate photoreceptor 
differentiation and suppress the expression 
of RPE genes, including the transgene itself 
from the RPE promoter (Figure 5). This would 
emulate transient ngn1/ngn3 expression in the 
developing neural retina.71,72 Continuation of the 
process would lead to the production of mature 
photoreceptor cells.

Transgenic animals of PVMD2-ngn1 or PRPE65-
ngn3 showed varied degrees of phenotype 
manifestation. A pronounced phenotypical 
change was the presence of photoreceptor-like 
(PR-L) cells in the subretinal space (Figure 6).73 

Figure 4. Visinin+ cells in the RPE layer in chick embryos 
infected with RCAS expressing ngn3 (RCAS-ngn3). A, B: 
Bright-field (A) and epi-fluorescence of immunostaining 
for visinin (Vis, B) of an E7.5 control eye infected with 
RCAS-GFP. C, D: Bright-field (C) and epi-fluorescence of 
visinin immunostaining (D) of an E7.5 eye infected with 
RCAS-ngn3. E, F: Bright-field (E) and epi-fluorescence of 
visinin immunostaining (F) of a detached region in E7.5 
eye infected with RCAS-ngn3. Arrows point to visinin+ 
cells of the retina, except in E,F, where arrows point to 
visinin+ cells with a neural-like process in the RPE layer. 
Arrowheads point to visinin+ cells in the RPE layers.
ONL, outer nuclear layer; INL, inner nuclear layer
[Data are from the authors’ laboratories].
[Modified from Li et al., 2010. Originally published in 
Investigative Ophthalmology & Visual Science; DOI:10.1167/
iovs.09-3822].68

Figure 5. Diagram of the experimental scheme to induce 
RPE-to-photoreceptor reprogramming by ngn1 in the 
mouse eye.
Reprog, reprogramming; PR, photoreceptor; Tg, transgenic 
mouse.
[The diagram originated from the authors’ laboratories].
[Modified from Yan et al., 2013. Originally published in 
Investigative Ophthalmology & Visual Science; DOI:10.1167/
iovs.13-11936].73
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Immunohistologically and morphologically 
these cells appeared similar to those in the 
ONL. They displayed outer segments discernible 
with bright-field microscopy, decorated by anti-
red opsin and anti-rhodopsin immunostaining 
(Figure 7), and containing stacks of electron-
dense disc membrane that constitutes the outer 
segments of photoreceptors.73

The very approach of reprogramming the 
RPE to give rise to photoreceptor cells inherently 
raises a concern of whether new photoreceptor 
cells would be produced at the expense of 
the PRE, an undesirable outcome as the RPE 
plays essential roles in maintaining the health 
of the retina, particularly of photoreceptors. 
This concern was eased by the presence of the 

monolayer RPE in eyes with PR-L cells (Figure 
7)73 and at the place with cells seemingly en route 
RPE-to-photoreceptor transition.73 It appears that 
the RPE might have regenerated itself, after some 
of its cells had taken on the route to becoming 
PR-L cells. Self-regeneration or wound healing 
of the mammalian RPE is well documented. 
After experimental RPE debridement in the 
pig eye, the RPE heals.62 RPE wound healing 
has also been reported in aged-related macular 

Figure 6. Recoverin+ cells in the subretinal space in a 
2.5-month-old PRPE65-ngn3 transgenic mouse. Shown 
are views of the same sample under bright field (BF, 
A), counterstaining with nuclear dye (DAPI, B), and 
immunostaining for photoreceptor protein recoverin 
(Rcv, C). Arrowheads point to darkly pigmented 
tissue associated with, as well as demarcating different 
domains of, recoverin+ (PR-L) cells.
ONL, outer nuclear layer; INL, inner nuclear layer; GCL, 
ganglion cell layer
Scale bar, 100 μm, applies to all panels.
[Data are from the authors’ laboratories].
[Modified from Yan et al., 2013. Originally published in 
Investigative Ophthalmology & Visual Science; DOI:10.1167/
iovs.13-11936].73

Figure 7. Structural resemblance of PR-L cells to 
photoreceptors and the preservation of the RPE. Shown 
are histology and immunohistology of the retina from 
a 1-year-old PRPE65-ngn3 transgenic mouse under 
bright field view (A), DAPI counterstaining (B), or 
immunostaining for red opsin (C). In the aging animal, 
the single-layered RPE and a layer of PR-L cells were 
apparent. White arrows point to the immunostained 
outer segments of red cones in the ONL and the apices of 
similarly oriented PR-L cells.
ONL, outer nuclear layer; INL, inner nuclear layer; GCL, 
ganglion cell layer. Scale bar, 50 μm, applies to all panels.
[Data are from the authors’ laboratories].
[Modified from Yan et al., 2013. Originally published in 
Investigative Ophthalmology & Visual Science; DOI:10.1167/
iovs.13-11936].73
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degeneration patients after debridement of 
defective RPE monolayer.65 RPE repair/wound 
healing initially involves cell sliding migration 
and subsequently cell proliferation61 and may 
require the presence of neural retina for the new 
RPE to structurally and functionally mature.63

A question highly relevant to the potential 
application of the reprogramming scheme to 
photoreceptor generation is whether the RPE in 
an aging mouse eye would be responsive to the 
gene-directed reprogramming. Cells seemingly 
en route RPE-to-photoreceptor transition were 
present in the subretinal space in a 9-month-old 
PVMD2-ngn1 animal.73 Dark pigment granules 
were present in these cells, as in cells of the 
adjacent, monolayer RPE. Yet, these transitional 
cells were positive for recoverin, a photoreceptor 
protein involved in phototransduction, and 
displayed an elongated cell body typical of young 
photoreceptor cells. Distal to the domain of the 
transitional cells was a well-defined layer of PR-L 
cells, which no longer displayed conspicuous RPE 
marks.73 These observations suggest that the aging 
RPE in the 9-month-old animal was responsive 
to the reprograming scheme. Additionally, there 
were recoverin+/BrdU+ cells in eyecup explants 
derived from a 6-month-old transgenic mouse, 
indicating that the eyecup from the animal that 
was well into adulthood was able to give birth 
to PR-L cells in vitro.73

In conclusion, results from experiments using 
chick and mouse systems provided support to 
the biological feasibility of using gene-directed 
reprogramming of the RPE to produce new 
photoreceptor cells in situ in the eye. If applicable 
to the human eye, gene-directed reprogramming 
may offer a tantalizing prospect of using the RPE 
as a convenient source of new photoreceptor 
cells for retinal repair in situ, without involving 
cell transplantation and its associated risks and 
complications. However, enticing as it may seem, 
it is imperative to carry out rigorous studies to 
address many issues important to both basic 
science and potential clinical applications.
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