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Purpose: This study investigates the impact of lung function on radiation

pneumonitis prediction using a dual-omics analysis method.

Methods:We retrospectively collected data of 126 stage III lung cancer patients

treated with chemo-radiotherapy using intensity-modulated radiotherapy,

including pre-treatment planning CT images, radiotherapy dose distribution,

and contours of organs and structures. Lung perfusion functional images were

generated using a previously developed deep learning method. The whole lung

(WL) volume was divided into function-wise lung (FWL) regions based on the

lung perfusion functional images. A total of 5,474 radiomics features and

213 dose features (including dosiomics features and dose-volume histogram

factors) were extracted from the FWL and WL regions, respectively. The

radiomics features (R), dose features (D), and combined dual-omics features

(RD) were used for the analysis in each lung region of WL and FWL, labeled as

WL-R, WL-D, WL-RD, FWL-R, FWL-D, and FWL-RD. The feature selection was

carried out using ANOVA, followed by a statistical F-test and Pearson

correlation test. Thirty times train-test splits were used to evaluate the

predictability of each group. The overall average area under the receiver

operating characteristic curve (AUC), accuracy, precision, recall, and f1-score

were calculated to assess the performance of each group.

Results: The FWL-RD achieved a significantly higher average AUC than the WL-

RD group in the training (FWL-RD: 0.927 ± 0.031, WL-RD: 0.849 ± 0.064) and

testing cohorts (FWL-RD: 0.885 ± 0.028, WL-RD: 0.762 ± 0.053, p < 0.001).

When using radiomics features only, the FWL-R group yielded a better

classification result than the model trained with WL-R features in the training

(FWL-R: 0.919 ± 0.036, WL-R: 0.820 ± 0.052) and testing cohorts (FWL-R:

0.862 ± 0.028, WL-R: 0.750 ± 0.057, p < 0.001). The FWL-D group obtained an

average AUC of 0.782 ± 0.032, obtaining a better classification performance

than the WL-D feature-based model of 0.740 ± 0.028 in the training cohort,

while no significant difference was observed in the testing cohort (FWL-D:

0.725 ± 0.064, WL-D: 0.710 ± 0.068, p = 0.54).
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Conclusion: The dual-omics features fromdifferent lung functional regions can

improve the prediction of radiation pneumonitis for lung cancer patients under

IMRT treatment. This function-wise dual-omics analysis method holds great

promise to improve the prediction of radiation pneumonitis for lung cancer

patients.
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Introduction

Lung cancer is the leading cause of cancer-related death

worldwide (Sung et al., 2021). Radiation therapy or radiotherapy

(RT) is one of the golden-standard treatment techniques for

patients with locally advanced non-small-cell lung cancer

(NSCLC) (Kong et al., 2005; Chang et al., 2016). Study shows

a higher radiation dose can achieve better tumor control and

improve the treatment outcome (Kong et al., 2005). However,

dose escalation of lung cancer is greatly limited by radiation-

induced side effects, such as radiation pneumonitis (RP). RP may

occur in up to 30% of lung RT patients and is lethal in 2% of them

(Zhang et al., 2012; Kipritidis et al., 2015). Hence, predicting RP

is highly desirable for better dose optimization and

personalization to maximize the treatment outcome in lung

cancer RT.

At present treatment planning of lung cancer RT, several

dosimetric factors from the dose-volume histogram (DVH) were

found to be associated with RP, such as V5, V20, and Dmean

(Baisden et al., 2007; Barriger et al., 2012; Bongers et al., 2013;

Palma et al., 2013; Cai et al., 2014; Pinnix et al., 2015). These

parameters are commonly used as dose constraints in clinical

plan evaluation (Ganti et al., 2021). Meanwhile, several prevalent

models using DVH parameters, such as normal tissue

complication probability (NTCP), were proposed to predict

high risk RP patients (Begosh-Mayne et al., 2020; Wang et al.,

2020). However, DVH parameters can only distinguish statistical

one-dimensional dose information rather than characterizing the

dose distribution heterogeneity. With the aid of the radiomics

definition (Lambin et al., 2017), dosiomics features were

calculated based on the three-dimensional dose distribution to

describe the dose spatial information (Liang et al., 2019). Several

studies also have demonstrated significantly superior models

with the dosiomics feature compared to the DVH-based

model or the NTCP model for predicting RP (Liang et al.,

2019; Palma et al., 2019; Adachi et al., 2021). Meanwhile, CT-

based radiomics features describe the statistical information,

shaped, and textual characteristics in a certain volume. The

dual-omics combines the radiomics and dose features and is

able to further improves the prediction for RP (Adachi et al.,

2021; Jiang et al., 2021; Puttanawarut et al., 2022). However,

those radiomics or dose features utilized in current studies were

calculated from the whole lung region, rather than considering

the heterogeneity inside the lung, for example, the difference in

high- and low- functional lung regions.

Lung function information has been proven to be associated

with RP, which promises to improve the RP prediction accuracy

(Bucknell et al., 2018; Lee et al., 2018; Weller et al., 2019;

Bourbonne et al., 2020; O’Reilly et al., 2020). O’Reilly et al.

demonstrated the RP prediction improvement using the DVH

factor (V20) from three high functional lung regions and

compared these biomarkers to the entire lung region (O’Reilly

et al., 2020). Lee et al. evaluated the correlation between several

DVH factors (V5, V20, and Dmean) between the high functional

lung region and the whole lung region, showing the potential of

stratifying patients for pneumonitis prediction (Lee et al., 2018).

Owen et al. demonstrated that irradiating to low functional lung

regionmay increase radiation toxicity (Owen et al., 2021). Several

studies also showed the potential of using dosimetry parameters

based on functional lung images in predicting RP (Wang et al.,

2012; Farr et al., 2015; Kimura et al., 2015; Xiao et al., 2018; Owen

et al., 2021). However, these studies only explored the association

between the dose factors and the RP without investigating the

correlation between anatomical CT images and the RP. Besides,

most studies focused on the dose features in the high functional

lung region rather than the low functional lung region.

In this study, we developed a function-wise lung (FWL)

analysis approach by integrating radiomics and dose features

from both whole lung (WL) and FWL (including separated high-

and low- functional lung) to predict RP for NSCLC patients. The

radiomics features, dose features, and combined dual-omics

features of each group were utilized for analysis. The feature

selection metrics are the ANOVA followed by the statistical

F-test and the Pearson correlation test. Thirty times train-test

splits were used to evaluate the predictability of each group. The

overall average area under the receiver operating characteristic

curve (AUC), accuracy, precision, recall, and f1-score were

calculated to assess the performance of each group.

Materials and methods

Data characteristics

The inclusion criteria are as follows: 1) diagnosed as primary

locally-advanced lung cancer (stages IIIA/IIIC (AJCC 8th)); 2)
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having no distant metastasis; 3) treated with curative intensity-

modulated radiotherapy (IMRT); 4) receiving contrast-enhanced

CT for RT; 5) 18–70 years old. And the exclusion criteria are as

follows:1) received chest RT or surgery or chemotherapy

previously; 2) having previous chest malignancies; 3) received

RT < 2 weeks; 4) incomplete RT treatment due to factors other

than acute RP; 5) incomplete RT data.

The study was approved by the Institutional Review Board of

the Affiliated Cancer Hospital of Zhengzhou University. Initially,

a total of 162 pathological confirmed NSCLC patients staging

IIIA/IIIC between 2015 and 2019 were retrospectively collected

from the hospital. Considering the excluded criteria (shown in

below), 126 cases were final enrolled in the study (Figure 1). All

patients were treated by the 6 MV IMRT with a 50–70 Gy total

prescription dose and 1.8–2.2 Gy fractional dose for 5 days per

week. The radiation pneumonitis (RP) case was consecutively

followed up at least 6 months after the first radiotherapy, and

then graded with the Common Terminology Criteria for Adverse

Events (CTCAE) V4.0. by one qualified imaging physician based

on the CT scans. In this study, RP patients with grading ≥ 2 are

defined as severe RP events because of dose escalation

consideration.

Image acquisition

Three types of image data were involved in this study,

including planning CT images, three-dimension dose

distribution images, and organs-at-risk (OAR) structures. All

planning CT images were acquired from a 16-slice Brilliance Big

Bore CT (Philips Medical System, Cleveland, OH, U.S.). The

scanning parameters were as follows: scanning X-ray tube

voltage = 120 kV, current = 321 mA, thickness = 3 mm, slice

pixels = 512 × 512 and spacing = 1.152 mm × 1.152 mm. The

scanning range was from the level of the cricoid cartilage to the

lower border of the 12th thoracic vertebra covering the WL

volume (Bradley et al., 2020). The 3D dose was calculated with a

grid of 3 mm in the treatment planning system (TPS). The gross

tumor volume was excluded from the lung volume with manually

contouring by a qualified physician.

Function-wise lung region

In this study, the functional images were generated using a

previously developed deep learning neural network, which can

translate the pulmonary anatomy information into functional

information (Ren et al., 2021a; Ren et al., 2021b). In general, a 3D

attention residual neural network was utilized to extract high

level features from CT images and synthesize the perfusion

images. This model was trained with CT and single-photon

emission computerized tomography (SPECT) perfusion

images of lung disease patients. This model used a 3D

encoding-decoding structure to capture the hierarchical

texture features of the input CT images with two attention

modules to help focus on the defect regions, which is able to

achieve a medium-to-high approximation with the ground truth

SPECT perfusion images.

After image synthesis, the functional image was normalized

to the range of 0–1 by subtracting the minimum value and then

FIGURE 1
Flowchart of the inclusion and exclusion criteria.
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divided by the maximum pixel value of function images. A

threshold of 0.3 was used to divide the lung into high- and

low- functional regions. Then the high- and low- functional lung

regions were segmented on the CT image. This procedure is

illustrated in Figure 2. After thresholding, the FWL was defined

as the combination of the high- and low- functional lung regions.

Besides, the WL region was also utilized as the basic comparison

model.

Feature extraction

In the study, radiomics features (Lambin et al., 2017) and

dose features of the previous regions were extracted from the CT

images and 3D dose distribution.

For radiomics features, the first-order and high-order

radiomics features were extracted based on the original image

and 11 filter-based images. The details of these radiomics features

were described in the study (Lam et al., 2021). The only difference

was the settings of bin counts, in the range of [20, 50, 100, 150,

200] and a total of 5,474 radiomics features were extracted from a

region of interest (ROI).

The dose features can be categorized into three types: 1)

scale-invariant 3D dose statistical moments (Pham et al., 2011),

2) DVH parameters (Marks et al., 2010; Faught et al., 2017), and

3) dosiomics features (Liang et al., 2019). The scale-invariant 3D

dose statistical moments described the dose spatial distribution

along three directions of anterior-posterior, medial-lateral, and

craniocaudal (Pham et al., 2011). Except for the constant value of

the order of [0, 0, 0], a total of 63 dose statistical moments were

employed in the dose features. The DVH parameters consisted of

Dx and Vx, where Dx is the dose larger than x% volume, and Vx

is the volume larger than the x Gy or x% of the prescription dose.

A total of 59 DVH parameters were included. The dosiomics

features were radiomics features based on the image of 3D dose

distribution. In the study, only the original image type was

adopted in extracting dosiomics features. A number of

91 dosiomics features were extracted from the original 3D

dose distribution in an ROI. Eventually, a total of 213 dose

features were included.

In the study, two kinds of regions (WL and FWL) were used

to extract features with a total of 5,687 features and

11,374 features, respectively.

Feature selection

The feature dimension reduction is a crucial step to avoidmodel

overfitting or underfitting. A combination of the F-test and the

Pearson correlation test was utilized for the feature selection on the

scikit-learn package in Python (version 1.0.1) (Pedregosa et al., 2011;

Buitinck et al., 2013). Besides, the randomly under-samplingmethod

FIGURE 2
The scheme of the function-wise lung region generation.
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was performed for comprehensively screening out the optimal

feature group, which was described in the study (Yu et al., 2019;

Lam et al., 2021).

The detail of feature selection is illustrated in Figure 3.

70% patients were randomly under-sampled from the whole

patient cohorts by 100 times. At each sampling, all features

with a variance of zero were filtered out to reduce the feature

dimensions and the subsequent computational complexity.

After that, the F-score of all features was calculated by

combing the label data based on the F-test, and an F-score

with a p-value smaller than 0.01 was marked as 1, otherwise as

0. Through 100 times sampling, a matric with 100×N (N:

feature quantity with variance >0) was obtained. It is followed
by the frequency filtering process to acquire more stable and

robust features. Then, 10% of the quantity of all features or at

least 40 features were reserved. Finally, the primary feature

group was chosen by the Pearson correlation test with the

threshold of coefficient of 0.5 as keeping the higher frequency

one for two correlated features.

Model construction and evaluation

In the study, two single-omics models, radiomics model (R) and

dosiomicsmodel (D), and the combinedmodel (RD)were developed

for WL and FWL regions separately, producing six models in total,

labeled as WL-R, WL-D, WL-RD, FWL-R, FWL-D, and FWL-RD.

The schematic diagram of the model development and

evaluation is shown in Figure 4. All patient cohort was randomly

divided into training and testing cohorts with a ratio of 3:1 across a

repeat stratified splitting process of 30 times with different

randomization, which simulated various patients’ data

distributions to assess the model performance. At each split,

training cohorts were sent to the procedure of feature selection,

and the relevant primary feature groupwas obtained. Then, different

feature combinations owning from one to all primary features were

explored. The finally optimal feature group was determined by the

maximum of the following overall average area under the receiver

operating characteristic curve (ROC) curve (AUC) in the testing

cohort. With the optimal feature combination, a classification

regression algorithm of Ridge was utilized to develop a

classification model using 10-fold cross-validation and hyper-

parameters optimization search in the training cohort. The loss

function for the Ridge classifier is min
ω

‖Xω − y‖22 + α‖ω‖22, where α
is complexity parameter with α> 0. After that, the model

performance in the training and testing cohorts was performed

by using a series of evaluationmetrics, including accuracy, precision,

recall, F1-score, and AUC. The average and the standard deviation

(STD) were calculated in the training and testing cohorts by

considering all splitting. The final model was evaluated by using

the optimal feature group.

Model comparison and statistic analysis

For each omics feature, the model performance using the

corresponding omics features extracted from the function-

FIGURE 3
The scheme of randomly under-sampled feature selection
method using unsupervised ans supervised feature selection
algorithms.

FIGURE 4
The scheme of model construction and evaluation.
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wise lung regions was compared against the WL region in the

training and testing cohorts using the five evaluation metrics.

For each involved lung region, the model using dual-omics

features was compared against the single-omics features in

both training and testing cohorts using five

evaluation metrics. Besides, net clinical benefits for all

models were investigated using decision curve analyses

(DCA) (Vickers and Elkin, 2006; Vickers et al., 2019). The

DCA is a method to evaluate the clinical valuation of

models overcoming the limitations of both

traditional statistical metrics, such as discrimination and

calibration.

The two-sided paired student t-test was utilized to

compare the above-mentioned models with a group of

features. On the other hand, the two-sided paired student

t-test was also performed for the continuous clinical

characteristics, while the Chi-square test was applied for

the categorical variables. A p-value smaller than 0.05 was

considered statistically significant. Except for the previously

mentioned five evaluation metrics, the 95% confidence

interval (CI) by the Delong method with (DeLong et al.,

1988) 2000 times for all metrics was provided to access the

ability to discriminate between severe RP cases and non-RP

cases. Statistical analysis was performed with Python 3.7 and

Pingouin 0.5.0 (Vallat, 2018).

Results

Patients characteristics

A total of 126 NSCLC patients were retrospectively involved

in the study. The main characteristics of the patients are listed in

Table 1. As shown in the table, 50.8% of patients (64 cases)

developed the radiation pneumonitis with a grade ≥2. Except for
the gender with a p-value of 0.04, the other clinical factors had no

statistically significant difference between severe RP cases and

non-RP cases.

Optimal feature group

The final optimal features for six sets of WL-R, WL-D, WL-

RD, FWL-R, FWL-D, and FWL-RDwere listed in Supplementary

Table S1. The model performance with different feature numbers

was plotted in Supplementary Figure S1. A total of 39, 24, and

34 features were kept in the final optimal feature groups for FWL-

R, FWL-D, and FWL-RD, respectively. The FWL-RD features

consisted of 6 dosiomics and 28 radiomics features. For the

region of WL, a total of 31, 4, and 29 features were utilized in the

final optimal feature group for the R, D, and RD sets, respectively.

The RD features consist of 6 dosiomics and 23 radiomics features.

The feature number in the model of WL-R set was 35 with the

maximum testing AUC. However, only 31 features were utilized

in the final optimal feature group.

Model performance

Table 2 shows the average model performance for six feature

sets of WL-D, WL-R, WL-RD, FWL-D, FWL-R, and FWL-RD in

training and testing cohorts. Figure 5 shows model performance

comparison between theWL and FWLmodels using each feature

modality by considering 30 times data separations. For using

dual-omics, the model using FWL-RD achieved significantly

higher performance than the model using WL-RD in both

training and testing cohorts, with an average AUC ± STD and

95% confidence interval of 0.927 ± 0.031 [0.917, 0.939]/0.849 ±

0.064 [0.823, 0.869] and 0.885 ± 0.028 [0.874, 0.893]/0.762 ±

0.053 [0.743, 0.781] (p< 0.001), respectively. For using

radiomics, the model using FWL-R feature yielded a better

classification result than the model using WL-R features both

in the training and testing cohorts with AUC ± STD [95% CI] of

0.919 ± 0.036 [0.907, 0.933]/0.820 ± 0.052 [0.802, 0.838] and

0.862 ± 0.028 [0.851, 0.871]/0.750 ± 0.057 [0.730, 0.771]

(p< 0.001), respectively. The FWL-D feature-based model

performance with AUC ± STD [95% CI] of 0.782 ±

0.032 [0.771, 0.794] obtained a better classification

performance than the WL-D feature-based model with

AUC ± STD [95% CI] of 0.740 ± 0.028 [0.729, 0.750],

TABLE 1 Patients’ characteristics.

Characteristics Overall (126)

Gender p � 0.04

Male (N/%) 109/86.5%

Female(N/%) 17/13.5%

Age, median (range) 61 (29 -- 82) (p � 0.67)

Pathology p � 0.46

SCC (N/%) 79/62.7%

ADC (N/%) 42/33.3%

Others (N/%) 5/4.0%

RT Dose, median (range) 60 (50–70) Gy (p � 0.94)

Smoking p � 0.23

Activity or former (N/%) 97/77.0%

Never (N/%) 29/23.0%

Overall Stage p � 0.30

IIIA (N/%) 72/57.1%

IIIB (N/%) 37/29.4%

IIIC (N/%) 17/13.5%

Treatment method p � 0.97

SCRT (N/%) 83/65.9%

CCRT (N/%) 42/33.3%

RT (N/%) 1/0.8%

RP (N/%) 64/50.8%

SCC, squamous carcinoma cancer; ADC, adenocarcinoma cancer; SCRT, sequence

chemoradiotherapy; CCRT, concomitant chemoradiotherapy.
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however there were no significant difference in the testing

cohorts with AUC ± STD [95% CI] of 0.725 ± 0.064 [0.703,

0.746] against to 0.710 ± 0.068 [0.686, 0.734] (p = 0.37).

The decision curve analysis for all models is shown in

Figure 6. The models using the FWL region’s feature

performed a better clinical value than the models using WL

region’s feature for both single and dual-omics. And, the model

using FWL-RD achieved the highest overall net benefit across the

majority of the range of reasonable threshold probabilities in

both training and testing cohorts compared with the other

feature group. ROC in the training and testing cohorts for all

six models and their comparison in each feature modality and

lung region were shown in Supplementary Figures S2, S3. For the

best model with FWL-RD feature set, the weights of each final

optimal features are displayed in Supplementary Table S3.

Discussion

In the study, we proposed an FWL sub-region generation

method to benefit the prediction of acute radiation pneumonitis

using pre-treatment imaging data. The predictability of each

single omics and dual-omics (radiomics, dosiomics, and their

combination) from the FWL were investigated and compared

with the features from the WL region. As shown in Table 2 and

Figure 6, the evaluation metrics and the decision curve analysis

revealed that the FWL subregion generation method presented a

significant prediction improvement in terms of radiomics and

dual-omics features than using theWL region (p < 0.001), but not

for dosiomics features.

For the models using FWL feature sets, the prediction

accuracy has significant improvement as compared with the

models using WL feature sets. This may suggest the features

from both high and low functional lung regions have better

prognostic power than the WL region. In FWL-R, FWL-D, and

FWL-RD final features sets, there are 16, 7, and 15 features from

the high functional regions, while they are 23, 2, and 19 for low

functional regions. It should be noted that the high FWL

dosiomics features played a more critical role in the FWL-D

signatures. Several studies have showed the same conclusion for

predicting RP when using the dose features from the high

functional region (Yorke et al., 2002; Hunt et al., 2006; Wang

et al., 2012; Hoover et al., 2014; Faught et al., 2017; Bucknell et al.,

2018; Lee et al., 2018; O’Reilly et al., 2020). The low functional

TABLE 2 The average model performance in the training and testing cohorts using six feature sets of WL-D, WL-R, WL-RD, FWL-D, FWL-R, FWL-RD.
The dark red color represents higher values.

AUC, area under the receiver operator characteristic curve; ACC, accuracy; Pre, Precision; Re, Recall; F1, F1-score.

FIGURE 5
The comparison of model performance in the training and
testing cohorts by using two region features of the whole lung and
function-wise lung regions. The star means the p-value smaller
0.001 (p<0.001).
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lung radiomics occupied a slightly more quantity than high FWL

regions. The lower FWL’s radiomics signatures further lead to the

more low FWL’s dual-omics signatures. It may imply that the

heterogeneity of lung tissue, characterized by radiomics feature,

presented both in high and low functional regions. The

improvement for FWL-R to WL-R and FWL-RD to WL-RD

may come from the smaller volume of region (high or low

functional regions) than the WL region can benefit from

extracting and distinguishing more heterogeneous radiomics

features. Palm et al. (Palma et al., 2019) also found that the

lower right lung has a significant correlation with radiation

pneumonitis. In general, the lower functional region covers

part of the lower right lung region. This may be one reason

for the improvement by integrating the features from the low

functional lung region.

For the FWL-RD signatures, except for one radiomics

feature, the other radiomics signatures come from filtered CT

images. The other radiomics signatures of FWL-RD are high-

order features to describe gray level textural information of the

lung region. For dosiomics signatures of FWL-RD, most of the

signatures come from high-order features describing the dose

distribution in the lung region or subregion. The selected final

features are dominated by high-order omics features, which are

also similar to previous studies (Hirose et al., 2020; Bourbonne

et al., 2021; Jiang et al., 2021; Puttanawarut et al., 2022). None of

DVH parameters (such as V5, V20, Dmean) were included in our

data study, which is inconsistent with the previous studies (Palma

et al., 2013; Glick et al., 2018; Onishi et al., 2018).

In our dataset, the threshold of 0.3 only was adopted in

dividing the lung into high and low functional lung regions.

Previous studies report that the threshold can be different,

ranging from 20% to the value of the maximum functional

lung image pixel (Seppenwoolde et al., 2000; Kawakami et al.,

2007; Lavrenkov et al., 2007; Ohno et al., 2011; Ding et al., 2018).

Following their method, we have investigated the model

performance using three omics features from the FWL regions

using a list threshold from 0.2 to 0.8 with a step of 0.1, as shown

in Supplementary Figure S4. Besides, we statistically analyzed the

difference for the testing AUC between the threshold of 0.3 and

the others by using the t-test, as shown in Supplementary Table

S4. As shown in the figure and table, except for dosiomics, the

threshold of 0.3 achieved a statistical higher classification result

in testing cohorts for the majority of feature groups of radiomics

and dual-omics (except for the threshold of 0.2, 0.6 and 0.8 in RD

feature groups with p = 0.107, 0.054 and p = 0.343 respectively),

which is consistent with a previous study (Seppenwoolde et al.,

2000). Based on the previous observations, we determine the

threshold of 0.3 as an optimal threshold by considering three

kinds of features. For dosiomics, the threshold of 0.2 obtained a

maximum AUC value, which agreed with the study (Ding et al.,

2018). In addition, an optimal threshold only using the high

functional lung region’s omics features was also assessed with the

threshold list, as shown in Supplementary Figure S5. And the

corresponding statistical analysis was shown in Supplementary

Table S5. However, non-ignificant improvement (p > 0.05) was

observed by comparing the high-functional lung regions to the

whole lung region.

The current study still faces several limitations. First, the

functional lung images generated by DL model may have

uncertainties. Even though the DL-based approach can make

FIGURE 6
The comparison of clinical application values using decision curve analysis. The left and right plots showed the results of training and testing
cohorts, respectively. The solid cyan line, solid brown line, solid light green line, solid pink line, solid green line, and solid red line represent the results
of WL-D, FWL-D, WL-R, FWL-R, WL-RD, FWL-RD sets, respectively. The horizontal solid black line denotes that all patients didn’t suffer from RP. On
the contrary, the dashed black line represents a condition that all patients occurred RP.
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the image acquisition convenient and less costly for patients, the

uncertainty caused by the DL model can cause a discrepancy in

high and low functional lung regions. This variance may finally

affect the correlation relation between some omics features and

the RP, thus changing final signature features. This proposed

FWL approach should be verified using the real perfusion lung

image. Second, all involved patients were treated by the IMRT

technique. The other radiotherapy, such as volumetric

modulated arc therapy and proton radiotherapy, should be

investigated for our proposed FWL region method to further

explore its feasibility and capability. Third, the unbalanced

between the small sample cohort and a large number of

features can induce overfitting both in training and testing

cohorts (Hawkins, 2004). To minimize this effect, we adopted

randomly under-sampling method in the feature selection to

enhance the stability of final feature signatures. However, a large

prospective cohort should be carried out to access the validation

of our proposed FWL method. Finally, the reproducibility and

stability of omics features were not validated against disturbance.

Some studies have demonstrated that the reproducibility and

stability of features can be affected by the dose calculation grid

size and algorithm (Placidi et al., 2020), CT image acquisition,

ROI segmentation (Zwanenburg et al., 2019), and time or volume

change in 4D-CT (Larue et al., 2017; Lafata et al., 2018), etc.

Therefore, it is important to validate the feature robustness

before clinical application.

Conclusion

In the study, we proposed an FWL approach to deeply

explore the heterogeneous lung tissue and omics features and

evaluated the approach in improvement of the prediction of the

RP for lung cancer IMRT patients. The dual-omics features from

different functional regions can improve the prediction of

radiation pneumonitis for lung cancer patients under IMRT

treatment. This function-wise dual-omics analysis method

holds great promise to improve the prediction of radiation

pneumonitis for lung cancer patients.
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