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ABSTRACT
The a-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogens Neisseria gonorrhoeae
(NgCAa) and Vibrio cholerae (VchCAa) were investigated for their inhibition by a panel of phenols and
phenolic acids. Mono-, di- and tri-substituted phenols incorporating additional hydroxyl/hydroxymethyl,
amino, acetamido, carboxyl, halogeno and carboxyethenyl moieties were included in the study. The best
NgCAa inhibitrs were phenol, 3-aminophenol, 4-hydroxy-benzylalcohol, 3-amino-4-chlorophenol and para-
cetamol, with KI values of 0.6–1.7mM. The most effective VchCAa inhibitrs were phenol, 3-amino-4-chloro-
phenol and 4-hydroxy-benzyl-alcohol, with KI values of 0.7–1.2mM. Small changes in the phenol scaffold
led to drastic effects on the bacterial CA inhibitory activity. This class of underinvestigated bacterial CA
inhibitors may thus lead to effective compounds for fighting drug resistant bacteria.
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1. Introduction

Phenol (PhOH) was first investigated for its interaction with the
metalloenzyme cabonic anhydrase (CA, EC 4.2.1.1) by Koenig’s
group in 19801, and few years later Lindskog’s group2 demon-
strated that this compound is one of the few competitive inhibi-
tors (with CO2 as substrate) of these enzymes, more precisely of
the human (h) isoform hCA II. However, only in 1994
Christianson’s group3 elegantly demonstrated by using X-ray crys-
tallography that phenol shows a new inhibition mechanism
against this enzyme: it is anchored to the zinc-coordinated water
molecule through hydrogen bonds involving the phenolic OH
group, without displacing the zinc-bound water as other classes
of inhbitors known at that time3. Subsequently, a large number of
simple, synthetic and natural product phenols and polyphenols,
incorporating various ring systems and possessing a range of sub-
stitution patterns were investigated for their inhibitory effects
against all mammalian isoforms (CA I–XV) as well as for their inter-
actions with pathogenic bacterial or fungal such enzymes4–10. For
example dodoneine (Figure 1), a dihydropyranone phenolic com-
pound isolated from the African mistletoe Agelanthus dodoneifo-
lius11 was demonstrated to possess significant CA inhibitory
effects and to induce vasorelaxation through interference with cal-
cium channels blockade and CA inhibition in the vascular smooth
muscle cells11.

Such results prompted an intense research in the synthesis of
phenolic derivatives incorporating diverse scaffolds (e.g. sugars,
steroids, Mannich bases, etc.) 12,13, which have been tested for the
inhibition of all hCAs as well as of enzymes belonging to non-
a-CA classes, such as b-, c-, d-, g-CAs from bacteria, fungi, algae,
diatoms and protozoans14–16. Recent X-tay crystallographic of

aspirin (hydrolyzed to salicylic acid) or caffeic acid bound to hCA
II17 also allowed a better understanding of the binding mode of
such compound to the enzyme (Figure 2) and to rationalise their
inhibition mechanism with useful hints for the drug design of
novel classes of CA inhibitors (CAIs) 18,19. It may be observed that
salicylic acid binds with its carboxylic acid moiety to the zinc-coor-
dinated water molecule through a network of hydrogen bonds,
with two water molecules being observed coordinated toi the
metal ion17a. Caffeic acid anchors with its catechol moiety to the
zinc-coordinated water and to the deep water from the CA active
site17b – Figure 2.

Such data prompted us to investigate the interactions of a ser-
ies of simple phenols and some of their derivatives with bacterial
CAs which have recently been proposed20,21 as novel drug targets
for fighting the emergence of drug resistant bacteria, which no
longer respond to clinically used antibiotics22. We included in the
study NgCAa from Neisseria gonorrhoeae and VchCAa from
Vibrio cholerae.

2. Materials and methods

2.1. Enzymology and CA activity and inhibition measurements

An Applied Photophysics stopped-flow instrument was used to
assay the CA- catalysed CO2 hydration activity23. Phenol red
(0.2mM) was used as a pH indicator, working at the absorbance
maximum of 557 nm, with 10mM HEPES (pH 7.4) as a buffer, and
in the presence of 10mM NaClO4 to maintain constant ionic
strength, in order to follow the initial rates of the CA-catalysed
CO2 hydration reaction for a period of 10–100 s. The CO2 concen-
trations ranged from 1.7 to 17mM for the determination of the
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kinetic parameters and inhibition constants. For each inhibitor, at
least six traces of the initial 5–10% of the reaction were used to
determine the initial velocity. The uncatalyzed rates were deter-
mined in the same manner and subtracted from the total
observed rates. Stock solutions of inhibitors (10–20mM) were pre-
pared in distilled-deionized water, and dilutions up to 10 nM were
done thereafter with the assay buffer. Inhibitor and enzyme solu-
tions were preincubated together for 15min prior to the assay, in
order to allow for the formation of the E-I complex. The inhibition
constants were obtained by non-linear least-squares methods
using Prism 3 and the Cheng-Prusoff equation, as reported previ-
ously21,22, and represent the mean from at least three different
determinations. The NgCAa concentration in the assay system was
7.1 nM whereas the VchCAa was 10.3 nM. The used enzymes were
recombinant proteins obtained in-house, as described earlier22,24.

2.2. Chemistry

Compounds 1–22, buffers, acetazolamide AAZ and other reagents
were of > 99% purity and were commercially available from
Sigma-Aldrich (Milan, Italy).

3. Results and discussion

Bacterial CAs were investigated in the last decade for their inhib-
ition with the several types of classical CAIs, among which the sul-
phonamides and their isosteres, the metal complexing anions and
more recently also the coumarins18–22. However, no detaled inhib-
ition data with many other classes of inhibitors, including phenols,
are available so far in the literature for many of these enzymes,
among which NgCAa and VchCAa belong22,24. The first of this
enzyme was recently validated21 as a potential drug target for

developing antibiotics able to reverse or at least to alleviate the
extensive drug resistance phenomenon that has emerged for this
N. gonorrhoeae25. Although phenols usually act as weaker CAIs
compared to other classes such as the sulphonamides or the sul-
famates, we decided to investigate here the susceptibility of these
enzymes to inhibition by a series of simple phenols and phenolic
acids, of types 1–22 (Table 1) investigated earlier for their inter-
action with the human CA isoforms4,6.

The following structure activity relationship (SAR) can be evi-
denced from the inhibition data presented in Table 1:

i. For NgCAa, the compounds 1-22 investigated here showed
inhibitory activity, with KI-s in the range of 0.6–76.0 mM. The
most effective, submicromolar inhibitors were 1, 6, 12, 13,
and paracetamol 8, with KI values of 0.6–1.7 mM. These com-
pounds are the simple phenol, its 4-hydroxymethyl derivative
(12) as well as 3-amino-phenol or 4-acetamido moiety in
derivatives (6, 8 and 13). The presence of a second/third H-
bond donating moiety such as NH2 or OH lead to slight loss
of inhibitory activity KI values in the range of 1.7–6.0 mM
(Table 1) for derivatives 2-7. Among this group, moving of
the amino group to the meta-position in 6 provided the
most potent analog at 1.7 mM. The same range of activity is
observed also for 4-hydroxy-benzoic acid 11, the 3,5-difluoro-
phenol 16, 3,4-dihydroxybenzoic acid 18 and derivative 21
(KI values in the range of 3.7–10.0 mM). However, salicylic
acid 10, 4-cyanophenol 9, the di-substituted phenols 14 and
15 and caffeic acid 22, were much less effective inhibitors,
with KI values in the range of 24.2–76.0 mM. Thus, relatively
small changes in the sscaffold of the phenolic compound
lead to drastic changes in the inhibitory activity, with one of
the best examples being the pair 21/22, with the introduc-
tion off a second OH moiety in the scaffold of 21 leading to
a consistent loss of inhibitory activity. Indeed, caffeic acid 22
is 7.6 times less effective as NgCAa inhibitor compared to 21.

ii. VchCAa was inhibited by the investigated compounds with
KI-s in the range of 0.7–81.6 mM. The most effective inhibitors
were phenol 1, 3-amino-4-chlorophenol 13 and 4-hydroxy-
benzyl-alcohol 12 (KI-s of 0.7–1.2 mM). Several other phenols,
such as derivatives 3-8, 11, 16 and 20 showed effective
micromolar inhibition, with KI values in the range of 3.5–10.6
mM, whereas 2, 9, 10, 14, 15, 17-19 and 21, 22 were less
effective as VchCAa inhibitors (KI values in the range of

Figure 1. Phenolic derivatives dodoneine isolated from Agelanthus dodoneifolius,
and caffeic acid, a widespread phenolic acid in many plants.

Figure 2. Active site view of hCA II in adduct with A) deacetylated aspirin (PDB 6UX1) and B) caffeic acid (PDB 6YRI). H-bonds are represented as black dashed lines.
The active site zinc ion is shown as a grey sphere, and the water molecules as red spheres. Amino acid residues coordinating the metal ion or involved in inhibitor
binding are also evidenced.
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13.8–81.6 mM, Table 21. Again, as for the enzyme discussed
above, small structural changes in the molecule of the inhibi-
tor lead to significant sifferences of the inhibitory action (for
example compare the three difluorinated phenols 15, 16 and
17, with one isomer, 16 being an effective inhibitor – KI of
4.9 mM – and the remaining two acting as much weaker
inhibitors, with KI-s of 36.6 and 57.3 mM, respectively).

iii. The inhibition pattern of the two bacterial enzymes was gen-
erally rather distinct, although some compounds, such as 1,
12, 13 and 16 showed effective inhibition for both of them.
However, in most cases, the NgCAa was more susceptible to
phenol containing analogs than VchCAa (compare 2, 8, 19
or 21 for their KIs). These data points suggest that presum-
ably it may be possible to obtain both phenols that show a
wide action against various bacterial CAs, but also selective
bacterial CA inhibitors belonging to the phenol and phenolic
acid classes of derivatives.

iv. There were relevant differences of inhibitory activity of the
investigated phenols towards the human over the bacterial
enzymes (Table 1). Few of the investigated derivatives (e.g.
18, 21, 22) showed effective hCA I inhibitory activity while
moderately inhibiting the bacterial enzymes. Most derivatives
were on the other hand poor or ineffective hCA I inhibitors
(e.g. 2, 3, 5, 9, 12, 14, 15-17). hCA II was effectively inhib-
ited by 4, 9, 18 and 20-22, with few compounds being low
activity or inactive as inhibitors (5, 7, 12, 14-17) and most of

Table 1. Inhibition data of human CA isoforms I and II and bacterial NgCAa
and VchCAa using AAZ as standard drug by a stopped-flow CO2 hydrase
assay method23.

Name Structure

KI (mM)
a

hCA I hCA II NgCAa VchCAa

1

 

10.2 5.5 0.9 0.8

2 >100 5.5 5.3 20.3

3 >100 9.4 2.2 8.6

4 10.7 0.1 4.7 8.4

5 >100 >100 3.9 9.4

6 4.9 4.7 1.7 3.9

7 >100 >100 6.0 10.6

8 10.0 6.2 1.5 7.0

9 >100 0.1 24.2 17.2

10 9.9 7.1 43.8 39.1

11 9.8 10.6 8.7 3.5

12 68.9 95.3 0.6 1.2

13 6.3 4.9 0.8 0.7

14 57.8 57.5 71.5 81.6

15 >100 >100 35.9 36.6

(continued)

Table 1. Continued.

Name Structure

KI (mM)
a

hCA I hCA II NgCAa VchCAa

16 38.8 33.9 3.7 4.9

17 >100 >100 63.1 57.3

18 1.1 0.5 9.3 13.8

19 5.7 5.2 33.1 49.6

20 4.2 4.1 16.3 7.3

21 1.1 1.3 10.0 40.5

22 2.4 1.6 76.0 78.1

AAZ – 0.25 0.01 0.075 0.0068
aMean from 3 different assays, by a stopped flow technique (errors were in the
range of ± 5–10% of the reported values).
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them being moderale, micromolar inhibitors. However, even
on this small panel of tested phenols, some compounds
showed selectivity form inhibiting the bacterial over the
human isoforms, such as for example 12, and to a lower
extent 13. In fact 4-hydroxy-benzylalcohol has a selectivity
index for inhibiting NgCAa over hCA I of 114.8 and over hCA
II of 158.8. For VchCAa, the selectivity ratios are of 57.4 (bac-
terial enzyme over hCA I) and of 79.4 (bacterial enzyme over
hCA II). It should be mentioned that benzylalcohol, a com-
pound structurally similar to 12, was crystallised in adduct
with hCA II, and it binds to the enzyme in a similar manner
to phenol, by anchoring with the OH group to the zinc-coor-
dinated water molecule26.

4. Conclusions

We report a study of bacterial CA inhibition with simple phenols
and few phenolic acids. Two a-class enzymes from bacterial patho-
gens which developed drug resistance to classical antibiotics, i.e.
NgCAa from Neisseria gonorrhoeae and VchCAa from Vibrio chol-
erae were included in the study. The panel of 22 phenols and
phenolic acids inhibited both enzymes with KI values in the range
of 0.6–76.0 mM for NgCAa, and of 0.6–76.0 mM for VchCAa. The
best NgCAa inhibitors were phenol, 3-aminophenol, 4-hydroxy-
benzylalcohol, 3-amino-4-chlorophenol and paracetamol, with KIs
of 0.6–1.7mM. The most effective VchCAa inhibitors were phenol,
3-amino-4-chlorophenol and 4-hydroxy-benzyl-alcohol, with KI-s of
0.7–1.2mM. Small changes in the phenol scaffold led to drastic
effects on the bacterial CA inhibitory activity. This class of underin-
vestigated bacterial CA inhibitors may thus lead to effective com-
pounds for fighting drug resistant bacteria.
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